Abstract

Group-III-nitride laser diode (LD)-based solid-state lighting device has been demonstrated to be droop-free compared to light-emitting diodes (LEDs), and highly energy-efficient compared to that of the traditional incandescent and fluorescent white light systems. The YAG:Ce3+ phosphor used in LD-based solid-state lighting, however, is associated with rapid degradation issue. An alternate phosphor/LD architecture, which is capable of sustaining high temperature, high power density, while still intensity- and bandwidth-tunable for high color-quality remained unexplored. In this paper, we present for the first time, the proof-of-concept of the generation of high-quality white light using an InGaN-based orange nanowires (NWs) LED grown on silicon, in conjunction with a blue LD, and in place of the compound-phosphor. By changing the relative intensities of the ultrabroad linewidth orange and narrow-linewidth blue components, our LED/LD device architecture achieved correlated color temperature (CCT) ranging from 3000 K to above 6000K with color rendering index (CRI) values reaching 83.1, a value unsurpassed by the YAG-phosphor/blue-LD counterpart. The white-light wireless communications was implemented using the blue LD through on-off keying (OOK) modulation to obtain a data rate of 1.06 Gbps. We therefore achieved the best of both worlds when orange-emitting NWs LED are utilized as “active-phosphor”, while blue LD is used for both color mixing and optical wireless communications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors

Changmin Lee, Chao Shen, Clayton Cozzan, Robert M. Farrell, James S. Speck, Shuji Nakamura, Boon S. Ooi, and Steven P. DenBaars
Opt. Express 25(15) 17480-17487 (2017)

High-power blue superluminescent diode for high CRI lighting and high-speed visible light communication

Abdullah A. Alatawi, Jorge A. Holguin-Lerma, Chun Hong Kang, Chao Shen, Ram Chandra Subedi, Abdulrahman M. Albadri, Ahmed Y. Alyamani, Tien Khee Ng, and Boon S. Ooi
Opt. Express 26(20) 26355-26364 (2018)

2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system

Changmin Lee, Chao Shen, Hassan M. Oubei, Michael Cantore, Bilal Janjua, Tien Khee Ng, Robert M. Farrell, Munir M. El-Desouki, James S. Speck, Shuji Nakamura, Boon S. Ooi, and Steven P. DenBaars
Opt. Express 23(23) 29779-29787 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Y. Tsao, “Solid-State Lighting: Lamps, Chips and Materials for Tomorrow,” in Conference on Lasers and Electro-Optics (CLEO) (2005), paper CMI1.
    [Crossref]
  2. H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: Potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
    [Crossref]
  3. J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Buettner, K. Langer, and J. W. Walewski, “230 Mbit/s via a Wireless Visible-Light Link Based on OOK Modulation of Phosphorescent White LEDs,” in Optical Fiber Communication Conference (OFC) (2010), paper OThH3.
  4. C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, and H. K. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express 20(15), 16218–16223 (2012).
    [Crossref]
  5. J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
    [Crossref]
  6. L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100, 1853–1888 (2011).
    [Crossref]
  7. C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of the LED visible light communication system integrated to the main electricity network,” Electron. Lett. 47(15), 867–868 (2011).
    [Crossref]
  8. Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D43, 354002 (2010).
  9. F. Wu, C. Lin, C. Wei, C. Chen, Z. Chen, and K. Huang, “3.22-Gb/s WDM Visible Light Communication of a Single RGB LED Employing Carrier-Less Amplitude and Phase Modulation,” in Optical Fiber Communication Conference (2013), paper OTh1G.4.
    [Crossref]
  10. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
    [Crossref] [PubMed]
  11. D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express 23(2), 1627–1637 (2015).
    [Crossref] [PubMed]
  12. B. Janjua, H. M. Oubei, J. R. D. Retamal, T. K. Ng, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, H.-C. Kuo, G.-R. Lin, J.-H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
    [Crossref] [PubMed]
  13. A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. R. J. Brueck, and J. Y. Tsao, “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Express 19(S4), A982–A990 (2011).
    [Crossref] [PubMed]
  14. S. Nakamura, T. Mukai, and M. Senoh, “High-Brightness Ingan/Algan Double-Heterostructure Blue-Green-Light-Emitting Diodes,” J. Appl. Phys. 76(12), 8189–8191 (1994).
    [Crossref]
  15. I. Akasaki and H. Amano, “Crystal growth and conductivity control of group III nitride semiconductors and their application to short wavelength light emitters,” Jpn. J. Appl. Phys. 36, 5393–5408 (1997).
    [Crossref]
  16. S. Grzanka, P. Perlin, R. Czernecki, L. Marona, M. Bockowski, B. Lucznik, M. Leszczynski, and T. Suski, “Effect of efficiency ‘droop’ in violet and blue InGaN laser diodes,” Appl. Phys. Lett. 95(7), 071108 (2009).
    [Crossref]
  17. X. B. Zou, K. M. Wong, X. L. Zhu, W. C. Chong, J. Ma, and K. M. Lau, “High-Performance Green and Yellow LEDs Grown on SiO2 Nanorod Patterned GaN/Si Templates,” IEEE Electron Device Lett. 34(7), 903–905 (2013).
    [Crossref]
  18. R. Hashimoto, J. I. Hwang, S. Saito, and S. Nunoue, “High-efficiency green-yellow light-emitting diodes grown on sapphire (0001) substrate,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(11), 1529–1532 (2013).
    [Crossref]
  19. S. Nakamura, “Present performance of InGaN-based blue/green/yellow LEDs,” Proc. SPIE 3002, 26–35 (1997).
    [Crossref]
  20. M. J. Lai, M. J. Jeng, and L. B. Chang, “High-efficiency InGaN-based yellow-green light-emitting diodes,” Jpn. J. Appl. Phys. 49, 49 (2010).
  21. S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar GaN substrates,” Appl. Phys. Express 3(12), 122102 (2010).
    [Crossref]
  22. C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, and B. S. Ooi, “Facile Formation of High-Quality InGaN/GaN Quantum-Disks-in-Nanowires on Bulk-Metal Substrates for High-Power Light-Emitters,” Nano Lett. 16(2), 1056–1063 (2016).
    [Crossref] [PubMed]
  23. M. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, “Band-tail model and temperature-induced blue-shift in photoluminescence spectra of InxGa1-xN grown on sapphire,” J. Electron. Mater. 29(3), 332–341 (2000).
    [Crossref]
  24. S. Y. Woo, M. Bugnet, H. P. T. Nguyen, Z. Mi, and G. A. Botton, “Atomic Ordering in InGaN Alloys within Nanowire Heterostructures,” Nano Lett. 15(10), 6413–6418 (2015).
    [Crossref] [PubMed]
  25. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, and H. Amano, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36, L382–L385 (1997).
  26. W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
    [Crossref] [PubMed]
  27. C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system,” Opt. Express 23(23), 29779–29787 (2015).
    [Crossref] [PubMed]
  28. A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
    [Crossref]

2016 (1)

C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, and B. S. Ooi, “Facile Formation of High-Quality InGaN/GaN Quantum-Disks-in-Nanowires on Bulk-Metal Substrates for High-Power Light-Emitters,” Nano Lett. 16(2), 1056–1063 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (1)

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

2013 (2)

X. B. Zou, K. M. Wong, X. L. Zhu, W. C. Chong, J. Ma, and K. M. Lau, “High-Performance Green and Yellow LEDs Grown on SiO2 Nanorod Patterned GaN/Si Templates,” IEEE Electron Device Lett. 34(7), 903–905 (2013).
[Crossref]

R. Hashimoto, J. I. Hwang, S. Saito, and S. Nunoue, “High-efficiency green-yellow light-emitting diodes grown on sapphire (0001) substrate,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(11), 1529–1532 (2013).
[Crossref]

2012 (3)

2011 (4)

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: Potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100, 1853–1888 (2011).
[Crossref]

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of the LED visible light communication system integrated to the main electricity network,” Electron. Lett. 47(15), 867–868 (2011).
[Crossref]

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. R. J. Brueck, and J. Y. Tsao, “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Express 19(S4), A982–A990 (2011).
[Crossref] [PubMed]

2010 (4)

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D43, 354002 (2010).

M. J. Lai, M. J. Jeng, and L. B. Chang, “High-efficiency InGaN-based yellow-green light-emitting diodes,” Jpn. J. Appl. Phys. 49, 49 (2010).

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar GaN substrates,” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[Crossref] [PubMed]

2009 (1)

S. Grzanka, P. Perlin, R. Czernecki, L. Marona, M. Bockowski, B. Lucznik, M. Leszczynski, and T. Suski, “Effect of efficiency ‘droop’ in violet and blue InGaN laser diodes,” Appl. Phys. Lett. 95(7), 071108 (2009).
[Crossref]

2000 (1)

M. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, “Band-tail model and temperature-induced blue-shift in photoluminescence spectra of InxGa1-xN grown on sapphire,” J. Electron. Mater. 29(3), 332–341 (2000).
[Crossref]

1997 (3)

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, and H. Amano, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36, L382–L385 (1997).

S. Nakamura, “Present performance of InGaN-based blue/green/yellow LEDs,” Proc. SPIE 3002, 26–35 (1997).
[Crossref]

I. Akasaki and H. Amano, “Crystal growth and conductivity control of group III nitride semiconductors and their application to short wavelength light emitters,” Jpn. J. Appl. Phys. 36, 5393–5408 (1997).
[Crossref]

1994 (1)

S. Nakamura, T. Mukai, and M. Senoh, “High-Brightness Ingan/Algan Double-Heterostructure Blue-Green-Light-Emitting Diodes,” J. Appl. Phys. 76(12), 8189–8191 (1994).
[Crossref]

Akasaki, I.

I. Akasaki and H. Amano, “Crystal growth and conductivity control of group III nitride semiconductors and their application to short wavelength light emitters,” Jpn. J. Appl. Phys. 36, 5393–5408 (1997).
[Crossref]

Alias, M. S.

C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, and B. S. Ooi, “Facile Formation of High-Quality InGaN/GaN Quantum-Disks-in-Nanowires on Bulk-Metal Substrates for High-Power Light-Emitters,” Nano Lett. 16(2), 1056–1063 (2016).
[Crossref] [PubMed]

Amano, H.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, and H. Amano, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36, L382–L385 (1997).

I. Akasaki and H. Amano, “Crystal growth and conductivity control of group III nitride semiconductors and their application to short wavelength light emitters,” Jpn. J. Appl. Phys. 36, 5393–5408 (1997).
[Crossref]

Banerjee, A.

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[Crossref] [PubMed]

Bhattacharya, P.

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[Crossref] [PubMed]

Bockowski, M.

S. Grzanka, P. Perlin, R. Czernecki, L. Marona, M. Bockowski, B. Lucznik, M. Leszczynski, and T. Suski, “Effect of efficiency ‘droop’ in violet and blue InGaN laser diodes,” Appl. Phys. Lett. 95(7), 071108 (2009).
[Crossref]

Botton, G. A.

S. Y. Woo, M. Bugnet, H. P. T. Nguyen, Z. Mi, and G. A. Botton, “Atomic Ordering in InGaN Alloys within Nanowire Heterostructures,” Nano Lett. 15(10), 6413–6418 (2015).
[Crossref] [PubMed]

Brueck, S. R. J.

Buettner, A.

J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Buettner, K. Langer, and J. W. Walewski, “230 Mbit/s via a Wireless Visible-Light Link Based on OOK Modulation of Phosphorescent White LEDs,” in Optical Fiber Communication Conference (OFC) (2010), paper OThH3.

Bugnet, M.

S. Y. Woo, M. Bugnet, H. P. T. Nguyen, Z. Mi, and G. A. Botton, “Atomic Ordering in InGaN Alloys within Nanowire Heterostructures,” Nano Lett. 15(10), 6413–6418 (2015).
[Crossref] [PubMed]

Cantore, M.

Chang, L. B.

M. J. Lai, M. J. Jeng, and L. B. Chang, “High-efficiency InGaN-based yellow-green light-emitting diodes,” Jpn. J. Appl. Phys. 49, 49 (2010).

Chen, C.

F. Wu, C. Lin, C. Wei, C. Chen, Z. Chen, and K. Huang, “3.22-Gb/s WDM Visible Light Communication of a Single RGB LED Employing Carrier-Less Amplitude and Phase Modulation,” in Optical Fiber Communication Conference (2013), paper OTh1G.4.
[Crossref]

Chen, Z.

F. Wu, C. Lin, C. Wei, C. Chen, Z. Chen, and K. Huang, “3.22-Gb/s WDM Visible Light Communication of a Single RGB LED Employing Carrier-Less Amplitude and Phase Modulation,” in Optical Fiber Communication Conference (2013), paper OTh1G.4.
[Crossref]

Chi, Y.-C.

Chong, W. C.

X. B. Zou, K. M. Wong, X. L. Zhu, W. C. Chong, J. Ma, and K. M. Lau, “High-Performance Green and Yellow LEDs Grown on SiO2 Nanorod Patterned GaN/Si Templates,” IEEE Electron Device Lett. 34(7), 903–905 (2013).
[Crossref]

Choudhury, P.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Chow, C. W.

C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, and H. K. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express 20(15), 16218–16223 (2012).
[Crossref]

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of the LED visible light communication system integrated to the main electricity network,” Electron. Lett. 47(15), 867–868 (2011).
[Crossref]

Chung, R. B.

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar GaN substrates,” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Ciaramella, E.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Coltrin, M. E.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Corsini, R.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Cossu, G.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Crawford, M. H.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Czernecki, R.

S. Grzanka, P. Perlin, R. Czernecki, L. Marona, M. Bockowski, B. Lucznik, M. Leszczynski, and T. Suski, “Effect of efficiency ‘droop’ in violet and blue InGaN laser diodes,” Appl. Phys. Lett. 95(7), 071108 (2009).
[Crossref]

Davis, W.

DenBaars, S. P.

C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system,” Opt. Express 23(23), 29779–29787 (2015).
[Crossref] [PubMed]

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar GaN substrates,” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

El-Desouki, M. M.

Elgala, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: Potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Eliseev, M.

M. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, “Band-tail model and temperature-induced blue-shift in photoluminescence spectra of InxGa1-xN grown on sapphire,” J. Electron. Mater. 29(3), 332–341 (2000).
[Crossref]

Farrell, R. M.

Fischer, A. J.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Fujito, K.

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar GaN substrates,” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Grzanka, S.

S. Grzanka, P. Perlin, R. Czernecki, L. Marona, M. Bockowski, B. Lucznik, M. Leszczynski, and T. Suski, “Effect of efficiency ‘droop’ in violet and blue InGaN laser diodes,” Appl. Phys. Lett. 95(7), 071108 (2009).
[Crossref]

Guo, W.

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[Crossref] [PubMed]

Gyongyosi, L.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100, 1853–1888 (2011).
[Crossref]

Haas, H.

D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express 23(2), 1627–1637 (2015).
[Crossref] [PubMed]

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: Potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100, 1853–1888 (2011).
[Crossref]

Habel, K.

J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Buettner, K. Langer, and J. W. Walewski, “230 Mbit/s via a Wireless Visible-Light Link Based on OOK Modulation of Phosphorescent White LEDs,” in Optical Fiber Communication Conference (OFC) (2010), paper OThH3.

Hanzo, L.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100, 1853–1888 (2011).
[Crossref]

Hashimoto, R.

R. Hashimoto, J. I. Hwang, S. Saito, and S. Nunoue, “High-efficiency green-yellow light-emitting diodes grown on sapphire (0001) substrate,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(11), 1529–1532 (2013).
[Crossref]

He, J.-H.

Huang, K.

F. Wu, C. Lin, C. Wei, C. Chen, Z. Chen, and K. Huang, “3.22-Gb/s WDM Visible Light Communication of a Single RGB LED Employing Carrier-Less Amplitude and Phase Modulation,” in Optical Fiber Communication Conference (2013), paper OTh1G.4.
[Crossref]

Huang, P. Y.

Hwang, J. I.

R. Hashimoto, J. I. Hwang, S. Saito, and S. Nunoue, “High-efficiency green-yellow light-emitting diodes grown on sapphire (0001) substrate,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(11), 1529–1532 (2013).
[Crossref]

Ichikawa, M.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D43, 354002 (2010).

Imre, S.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100, 1853–1888 (2011).
[Crossref]

Janjua, B.

Jeng, M. J.

M. J. Lai, M. J. Jeng, and L. B. Chang, “High-efficiency InGaN-based yellow-green light-emitting diodes,” Jpn. J. Appl. Phys. 49, 49 (2010).

Karlicek, R. F.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Katsuragawa, M.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, and H. Amano, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36, L382–L385 (1997).

Khalid, A. M.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Koleske, D. D.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Komori, M.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, and H. Amano, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36, L382–L385 (1997).

Kottke, C.

J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Buettner, K. Langer, and J. W. Walewski, “230 Mbit/s via a Wireless Visible-Light Link Based on OOK Modulation of Phosphorescent White LEDs,” in Optical Fiber Communication Conference (OFC) (2010), paper OThH3.

Kuo, H.-C.

Lai, M. J.

M. J. Lai, M. J. Jeng, and L. B. Chang, “High-efficiency InGaN-based yellow-green light-emitting diodes,” Jpn. J. Appl. Phys. 49, 49 (2010).

Langer, K.

J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Buettner, K. Langer, and J. W. Walewski, “230 Mbit/s via a Wireless Visible-Light Link Based on OOK Modulation of Phosphorescent White LEDs,” in Optical Fiber Communication Conference (OFC) (2010), paper OThH3.

Lau, K. M.

X. B. Zou, K. M. Wong, X. L. Zhu, W. C. Chong, J. Ma, and K. M. Lau, “High-Performance Green and Yellow LEDs Grown on SiO2 Nanorod Patterned GaN/Si Templates,” IEEE Electron Device Lett. 34(7), 903–905 (2013).
[Crossref]

Lee, C.

Lee, J.

M. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, “Band-tail model and temperature-induced blue-shift in photoluminescence spectra of InxGa1-xN grown on sapphire,” J. Electron. Mater. 29(3), 332–341 (2000).
[Crossref]

Leszczynski, M.

S. Grzanka, P. Perlin, R. Czernecki, L. Marona, M. Bockowski, B. Lucznik, M. Leszczynski, and T. Suski, “Effect of efficiency ‘droop’ in violet and blue InGaN laser diodes,” Appl. Phys. Lett. 95(7), 071108 (2009).
[Crossref]

Lin, C.

F. Wu, C. Lin, C. Wei, C. Chen, Z. Chen, and K. Huang, “3.22-Gb/s WDM Visible Light Communication of a Single RGB LED Employing Carrier-Less Amplitude and Phase Modulation,” in Optical Fiber Communication Conference (2013), paper OTh1G.4.
[Crossref]

Lin, G.-R.

Liu, Y.

C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, and H. K. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express 20(15), 16218–16223 (2012).
[Crossref]

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of the LED visible light communication system integrated to the main electricity network,” Electron. Lett. 47(15), 867–868 (2011).
[Crossref]

Liu, Y. F.

C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, and H. K. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express 20(15), 16218–16223 (2012).
[Crossref]

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of the LED visible light communication system integrated to the main electricity network,” Electron. Lett. 47(15), 867–868 (2011).
[Crossref]

Lucznik, B.

S. Grzanka, P. Perlin, R. Czernecki, L. Marona, M. Bockowski, B. Lucznik, M. Leszczynski, and T. Suski, “Effect of efficiency ‘droop’ in violet and blue InGaN laser diodes,” Appl. Phys. Lett. 95(7), 071108 (2009).
[Crossref]

Ma, J.

X. B. Zou, K. M. Wong, X. L. Zhu, W. C. Chong, J. Ma, and K. M. Lau, “High-Performance Green and Yellow LEDs Grown on SiO2 Nanorod Patterned GaN/Si Templates,” IEEE Electron Device Lett. 34(7), 903–905 (2013).
[Crossref]

Marona, L.

S. Grzanka, P. Perlin, R. Czernecki, L. Marona, M. Bockowski, B. Lucznik, M. Leszczynski, and T. Suski, “Effect of efficiency ‘droop’ in violet and blue InGaN laser diodes,” Appl. Phys. Lett. 95(7), 071108 (2009).
[Crossref]

Mesleh, R.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: Potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Mi, Z.

S. Y. Woo, M. Bugnet, H. P. T. Nguyen, Z. Mi, and G. A. Botton, “Atomic Ordering in InGaN Alloys within Nanowire Heterostructures,” Nano Lett. 15(10), 6413–6418 (2015).
[Crossref] [PubMed]

Mukai, T.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D43, 354002 (2010).

S. Nakamura, T. Mukai, and M. Senoh, “High-Brightness Ingan/Algan Double-Heterostructure Blue-Green-Light-Emitting Diodes,” J. Appl. Phys. 76(12), 8189–8191 (1994).
[Crossref]

Nakamura, S.

C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system,” Opt. Express 23(23), 29779–29787 (2015).
[Crossref] [PubMed]

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar GaN substrates,” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

S. Nakamura, “Present performance of InGaN-based blue/green/yellow LEDs,” Proc. SPIE 3002, 26–35 (1997).
[Crossref]

S. Nakamura, T. Mukai, and M. Senoh, “High-Brightness Ingan/Algan Double-Heterostructure Blue-Green-Light-Emitting Diodes,” J. Appl. Phys. 76(12), 8189–8191 (1994).
[Crossref]

Narukawa, Y.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D43, 354002 (2010).

Nerreter, S.

J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Buettner, K. Langer, and J. W. Walewski, “230 Mbit/s via a Wireless Visible-Light Link Based on OOK Modulation of Phosphorescent White LEDs,” in Optical Fiber Communication Conference (OFC) (2010), paper OThH3.

Neumann, A.

Ng, T. K.

Nguyen, H. P. T.

S. Y. Woo, M. Bugnet, H. P. T. Nguyen, Z. Mi, and G. A. Botton, “Atomic Ordering in InGaN Alloys within Nanowire Heterostructures,” Nano Lett. 15(10), 6413–6418 (2015).
[Crossref] [PubMed]

Nunoue, S.

R. Hashimoto, J. I. Hwang, S. Saito, and S. Nunoue, “High-efficiency green-yellow light-emitting diodes grown on sapphire (0001) substrate,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(11), 1529–1532 (2013).
[Crossref]

O’Brien, D.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100, 1853–1888 (2011).
[Crossref]

Ohno, Y.

Ooi, B. S.

Osinski, M.

M. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, “Band-tail model and temperature-induced blue-shift in photoluminescence spectra of InxGa1-xN grown on sapphire,” J. Electron. Mater. 29(3), 332–341 (2000).
[Crossref]

Oubei, H. M.

Pan, C.-C.

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar GaN substrates,” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Perlin, P.

S. Grzanka, P. Perlin, R. Czernecki, L. Marona, M. Bockowski, B. Lucznik, M. Leszczynski, and T. Suski, “Effect of efficiency ‘droop’ in violet and blue InGaN laser diodes,” Appl. Phys. Lett. 95(7), 071108 (2009).
[Crossref]

Prabaswara, A.

C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, and B. S. Ooi, “Facile Formation of High-Quality InGaN/GaN Quantum-Disks-in-Nanowires on Bulk-Metal Substrates for High-Power Light-Emitters,” Nano Lett. 16(2), 1056–1063 (2016).
[Crossref] [PubMed]

Retamal, J. R. D.

Rupp, M.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100, 1853–1888 (2011).
[Crossref]

Saito, S.

R. Hashimoto, J. I. Hwang, S. Saito, and S. Nunoue, “High-efficiency green-yellow light-emitting diodes grown on sapphire (0001) substrate,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(11), 1529–1532 (2013).
[Crossref]

Sakai, S.

M. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, “Band-tail model and temperature-induced blue-shift in photoluminescence spectra of InxGa1-xN grown on sapphire,” J. Electron. Mater. 29(3), 332–341 (2000).
[Crossref]

Sanga, D.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D43, 354002 (2010).

Sano, M.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D43, 354002 (2010).

Senoh, M.

S. Nakamura, T. Mukai, and M. Senoh, “High-Brightness Ingan/Algan Double-Heterostructure Blue-Green-Light-Emitting Diodes,” J. Appl. Phys. 76(12), 8189–8191 (1994).
[Crossref]

Shen, C.

C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, and B. S. Ooi, “Facile Formation of High-Quality InGaN/GaN Quantum-Disks-in-Nanowires on Bulk-Metal Substrates for High-Power Light-Emitters,” Nano Lett. 16(2), 1056–1063 (2016).
[Crossref] [PubMed]

C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system,” Opt. Express 23(23), 29779–29787 (2015).
[Crossref] [PubMed]

Sonoda, J.

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar GaN substrates,” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Sota, S.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, and H. Amano, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36, L382–L385 (1997).

Speck, J. S.

Subramania, G. S.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Sugahara, T.

M. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, “Band-tail model and temperature-induced blue-shift in photoluminescence spectra of InxGa1-xN grown on sapphire,” J. Electron. Mater. 29(3), 332–341 (2000).
[Crossref]

Suski, T.

S. Grzanka, P. Perlin, R. Czernecki, L. Marona, M. Bockowski, B. Lucznik, M. Leszczynski, and T. Suski, “Effect of efficiency ‘droop’ in violet and blue InGaN laser diodes,” Appl. Phys. Lett. 95(7), 071108 (2009).
[Crossref]

Takeuchi, H.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, and H. Amano, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36, L382–L385 (1997).

Takeuchi, T.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, and H. Amano, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36, L382–L385 (1997).

Tsai, C.-T.

Tsang, H. K.

Tsao, J. Y.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. R. J. Brueck, and J. Y. Tsao, “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Express 19(S4), A982–A990 (2011).
[Crossref] [PubMed]

J. Y. Tsao, “Solid-State Lighting: Lamps, Chips and Materials for Tomorrow,” in Conference on Lasers and Electro-Optics (CLEO) (2005), paper CMI1.
[Crossref]

Tsonev, D.

Videv, S.

Vucic, J.

J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Buettner, K. Langer, and J. W. Walewski, “230 Mbit/s via a Wireless Visible-Light Link Based on OOK Modulation of Phosphorescent White LEDs,” in Optical Fiber Communication Conference (OFC) (2010), paper OThH3.

Walewski, J. W.

J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Buettner, K. Langer, and J. W. Walewski, “230 Mbit/s via a Wireless Visible-Light Link Based on OOK Modulation of Phosphorescent White LEDs,” in Optical Fiber Communication Conference (OFC) (2010), paper OThH3.

Wang, G. T.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Wang, H.-Y.

Wei, C.

F. Wu, C. Lin, C. Wei, C. Chen, Z. Chen, and K. Huang, “3.22-Gb/s WDM Visible Light Communication of a Single RGB LED Employing Carrier-Less Amplitude and Phase Modulation,” in Optical Fiber Communication Conference (2013), paper OTh1G.4.
[Crossref]

Wei, N.

C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, and B. S. Ooi, “Facile Formation of High-Quality InGaN/GaN Quantum-Disks-in-Nanowires on Bulk-Metal Substrates for High-Power Light-Emitters,” Nano Lett. 16(2), 1056–1063 (2016).
[Crossref] [PubMed]

Wierer, J. J.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. R. J. Brueck, and J. Y. Tsao, “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Express 19(S4), A982–A990 (2011).
[Crossref] [PubMed]

Wong, K. M.

X. B. Zou, K. M. Wong, X. L. Zhu, W. C. Chong, J. Ma, and K. M. Lau, “High-Performance Green and Yellow LEDs Grown on SiO2 Nanorod Patterned GaN/Si Templates,” IEEE Electron Device Lett. 34(7), 903–905 (2013).
[Crossref]

Woo, S. Y.

S. Y. Woo, M. Bugnet, H. P. T. Nguyen, Z. Mi, and G. A. Botton, “Atomic Ordering in InGaN Alloys within Nanowire Heterostructures,” Nano Lett. 15(10), 6413–6418 (2015).
[Crossref] [PubMed]

Wu, F.

F. Wu, C. Lin, C. Wei, C. Chen, Z. Chen, and K. Huang, “3.22-Gb/s WDM Visible Light Communication of a Single RGB LED Employing Carrier-Less Amplitude and Phase Modulation,” in Optical Fiber Communication Conference (2013), paper OTh1G.4.
[Crossref]

Yamamoto, S.

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar GaN substrates,” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Yeh, C. H.

C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, and H. K. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express 20(15), 16218–16223 (2012).
[Crossref]

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of the LED visible light communication system integrated to the main electricity network,” Electron. Lett. 47(15), 867–868 (2011).
[Crossref]

Zhang, M.

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[Crossref] [PubMed]

Zhao, C.

C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, and B. S. Ooi, “Facile Formation of High-Quality InGaN/GaN Quantum-Disks-in-Nanowires on Bulk-Metal Substrates for High-Power Light-Emitters,” Nano Lett. 16(2), 1056–1063 (2016).
[Crossref] [PubMed]

Zhao, Y.

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar GaN substrates,” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Zhu, X. L.

X. B. Zou, K. M. Wong, X. L. Zhu, W. C. Chong, J. Ma, and K. M. Lau, “High-Performance Green and Yellow LEDs Grown on SiO2 Nanorod Patterned GaN/Si Templates,” IEEE Electron Device Lett. 34(7), 903–905 (2013).
[Crossref]

Zou, X. B.

X. B. Zou, K. M. Wong, X. L. Zhu, W. C. Chong, J. Ma, and K. M. Lau, “High-Performance Green and Yellow LEDs Grown on SiO2 Nanorod Patterned GaN/Si Templates,” IEEE Electron Device Lett. 34(7), 903–905 (2013).
[Crossref]

Adv. Opt. Mater. (1)

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek., “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Appl. Phys. Express (1)

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar GaN substrates,” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Appl. Phys. Lett. (1)

S. Grzanka, P. Perlin, R. Czernecki, L. Marona, M. Bockowski, B. Lucznik, M. Leszczynski, and T. Suski, “Effect of efficiency ‘droop’ in violet and blue InGaN laser diodes,” Appl. Phys. Lett. 95(7), 071108 (2009).
[Crossref]

Electron. Lett. (1)

C. W. Chow, C. H. Yeh, Y. F. Liu, and Y. Liu, “Improved modulation speed of the LED visible light communication system integrated to the main electricity network,” Electron. Lett. 47(15), 867–868 (2011).
[Crossref]

IEEE Commun. Mag. (1)

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: Potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

IEEE Electron Device Lett. (1)

X. B. Zou, K. M. Wong, X. L. Zhu, W. C. Chong, J. Ma, and K. M. Lau, “High-Performance Green and Yellow LEDs Grown on SiO2 Nanorod Patterned GaN/Si Templates,” IEEE Electron Device Lett. 34(7), 903–905 (2013).
[Crossref]

IEEE Photonics J. (1)

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

J. Appl. Phys. (1)

S. Nakamura, T. Mukai, and M. Senoh, “High-Brightness Ingan/Algan Double-Heterostructure Blue-Green-Light-Emitting Diodes,” J. Appl. Phys. 76(12), 8189–8191 (1994).
[Crossref]

J. Electron. Mater. (1)

M. Eliseev, M. Osinski, J. Lee, T. Sugahara, and S. Sakai, “Band-tail model and temperature-induced blue-shift in photoluminescence spectra of InxGa1-xN grown on sapphire,” J. Electron. Mater. 29(3), 332–341 (2000).
[Crossref]

J. Phys. (1)

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D43, 354002 (2010).

Jpn. J. Appl. Phys. (3)

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, and H. Amano, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36, L382–L385 (1997).

I. Akasaki and H. Amano, “Crystal growth and conductivity control of group III nitride semiconductors and their application to short wavelength light emitters,” Jpn. J. Appl. Phys. 36, 5393–5408 (1997).
[Crossref]

M. J. Lai, M. J. Jeng, and L. B. Chang, “High-efficiency InGaN-based yellow-green light-emitting diodes,” Jpn. J. Appl. Phys. 49, 49 (2010).

Nano Lett. (3)

C. Zhao, T. K. Ng, N. Wei, A. Prabaswara, M. S. Alias, B. Janjua, C. Shen, and B. S. Ooi, “Facile Formation of High-Quality InGaN/GaN Quantum-Disks-in-Nanowires on Bulk-Metal Substrates for High-Power Light-Emitters,” Nano Lett. 16(2), 1056–1063 (2016).
[Crossref] [PubMed]

W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,” Nano Lett. 10(9), 3355–3359 (2010).
[Crossref] [PubMed]

S. Y. Woo, M. Bugnet, H. P. T. Nguyen, Z. Mi, and G. A. Botton, “Atomic Ordering in InGaN Alloys within Nanowire Heterostructures,” Nano Lett. 15(10), 6413–6418 (2015).
[Crossref] [PubMed]

Opt. Express (6)

C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system,” Opt. Express 23(23), 29779–29787 (2015).
[Crossref] [PubMed]

C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, and H. K. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express 20(15), 16218–16223 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express 23(2), 1627–1637 (2015).
[Crossref] [PubMed]

B. Janjua, H. M. Oubei, J. R. D. Retamal, T. K. Ng, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, H.-C. Kuo, G.-R. Lin, J.-H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref] [PubMed]

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. R. J. Brueck, and J. Y. Tsao, “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Express 19(S4), A982–A990 (2011).
[Crossref] [PubMed]

Phys. Status Solidi., C Curr. Top. Solid State Phys. (1)

R. Hashimoto, J. I. Hwang, S. Saito, and S. Nunoue, “High-efficiency green-yellow light-emitting diodes grown on sapphire (0001) substrate,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(11), 1529–1532 (2013).
[Crossref]

Proc. IEEE (1)

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100, 1853–1888 (2011).
[Crossref]

Proc. SPIE (1)

S. Nakamura, “Present performance of InGaN-based blue/green/yellow LEDs,” Proc. SPIE 3002, 26–35 (1997).
[Crossref]

Other (3)

F. Wu, C. Lin, C. Wei, C. Chen, Z. Chen, and K. Huang, “3.22-Gb/s WDM Visible Light Communication of a Single RGB LED Employing Carrier-Less Amplitude and Phase Modulation,” in Optical Fiber Communication Conference (2013), paper OTh1G.4.
[Crossref]

J. Y. Tsao, “Solid-State Lighting: Lamps, Chips and Materials for Tomorrow,” in Conference on Lasers and Electro-Optics (CLEO) (2005), paper CMI1.
[Crossref]

J. Vučić, C. Kottke, S. Nerreter, K. Habel, A. Buettner, K. Langer, and J. W. Walewski, “230 Mbit/s via a Wireless Visible-Light Link Based on OOK Modulation of Phosphorescent White LEDs,” in Optical Fiber Communication Conference (OFC) (2010), paper OThH3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the On-Off Keying Non-return-to-zero (NRZ-OOK) modulation setup for the orange NWs LED / blue LD architecture for optical wireless communications (OWC) and white-light generation. For comparison of white light quality, either a LD or a LED was used to generate blue light and then combined with orange light from NWs LED, without the modulation signal. The white light characteristics were measured using GL-Spectis 5.0 Touch spectrometer without the plano-convex lens and long-pass filter (located after the orange NWs LED), and without the avalanche PD / DCA-J 86100C.
Fig. 2
Fig. 2 a) TEM image of a single tapered NW showing 7 stacks of InGaN quantum disks (white horizontal lines) sandwiched in between GaN barrier. SEM image showing the top view (b), and elevation view (c), showing laterally discontinuous and vertically oriented NWs. The fill factor of 90% and NWs density of 6.8 × 109 cm−2 was estimated.
Fig. 3
Fig. 3 a) PL intensity versus wavelength at room temperature fitted with 2 Gaussian peaks. The evolution of the peak wavelength (λpeak) with temperature (T) are shown in the top and bottom insets, respectively. b) The pictures of the zoom-out view (top) and zoom-in view (bottom) of the NWs LED at injection current of 75 mA. c) EL spectra of the orange NWs LED with varying bias current from 5 to 120 mA, showing a blue shift of 10 nm. Inset shows an ultrabroad linewidth of above 120 nm at high injection current, as obtained by integrating the spectrum.
Fig. 4
Fig. 4 L-I-V characteristics of: (a) orange NWs LED, (b) blue LD, and (c) blue LED; with emission spectra (intensity versus wavelength) for (b) and (c) shown in the insets.
Fig. 5
Fig. 5 (a) A photo showing the white light obtained after mixing orange and diffused blue laser light. The white light spectra generated using orange LED with blue LD (b), and blue LED (c) selected from those showing the best CRI values of 83.1 and 73.4, respectively, with the respective color coordinates and CCT values indicated. The white spots in the chromaticity diagrams correspond to these values. In selecting the best CRI, the injection current for the orange LED was fixed at 50, 100, or 150 mA, while the intensity of the blue component was varied by simply rotating the variable attenuator wheel in case of LD and by changing the voltage bias for the LED, thus resulting in the progression in CCT as shown in (d) and (e), respectively.
Fig. 6
Fig. 6 (a) The white light spectra generated using RGB LD and orange LED for the best CRI value with the corresponding CRI coordinate (white spot with cross) shown in the inset. (b) The CRI coordinates achieved by varying the intensities of the RGB LDs or LEDs to change the color temperatures and to achieve the best CRI value as indicated. A CRI of 90.4 was obtained but at the cost of poor CCT (1920 K).
Fig. 7
Fig. 7 (a) Small-signal frequency response of the blue LD operating at 50 mA. b) Optimization of bit-error rate (BER) using blue LD with OOK modulation by varying the operating current. The optimum current of 39 mA was chosen for further BER optimization by varying the peak-to-peak voltage. The eye diagrams for the best BER obtained with OOK encoding at (c) 0.622 Gbps, and (d) 1.06 Gbps.

Metrics