Abstract

In order to circumvent radio spectrum congestion, we propose an innovative system which can provide multiple infrared optical wireless beams simultaneously where each beam supports multi-gigabit-per-second communication. Scalable two-dimensional beam steering by means of wavelength tuning is proposed. A passive beam-steering module constructed with cascaded reflection gratings is designed for simultaneous multi-user coverage. We experimentally characterized the beam-steered system and thoroughly evaluated the performance of steered channels using the spectrally efficient and robust discrete multitone modulation in a bandwidth-limited system deploying 10 GHz telecom transceivers. This study reports the achievement of at least 37 Gbps free-space transmission per beam over a distance of up to 2 m over 5.61° × 12.66° scanning angles.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Steerable pencil beams for multi-Gbps indoor optical wireless communication

C. W. Oh, E. Tangdiongga, and A. M. J. Koonen
Opt. Lett. 39(18) 5427-5430 (2014)

Toward multi-Gbps indoor optical wireless multicasting system employing passive diffractive optics

C. W. Oh, F. M. Huijskens, Z. Cao, E. Tangdiongga, and A. M. J. Koonen
Opt. Lett. 39(9) 2622-2625 (2014)

High-speed duplex optical wireless communication system for indoor personal area networks

Ke Wang, Ampalavanapillai Nirmalathas, Christina Lim, and Efstratios Skafidas
Opt. Express 18(24) 25199-25216 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. Cherry, “Edholm’s law of bandwidth,” IEEE Spectr. 41(7), 58–60 (2004).
    [Crossref]
  2. M. Reardon, “Wireless spectrum: What it is, and why you should care,” http://www.cnet.com/news/wireless-spectrum-what-it-is-and-why-you-should-care .
  3. “The internet of things,” http://share.cisco.com/internet-of-things.html .
  4. G. Parodi, “Radio spectrum shortage prompts a growing number of initiatives,” http://www.atelier.net/en/trends/articles/radio-spectrum-shortage-prompts-growing- number-initiatives_422770.
  5. T. Kridel, “Cognitive Radio: A solution for the spectrum shortage?” http://www.lightreading.com/cognitive-radio-a-solution-for-the-spectrum-shortage/a/d-id/699609
  6. T. McCall and M. Mahoney, “Spectrum of Issues,” http://visual.ly/spectrum-issues .
  7. L. Yang, “60 GHz: Opportunity for gigabit WPAN and WLAN convergence,” ACM SIGCOMM Comput. Commun. Review 39(1), 56–61 (2008).
    [Crossref]
  8. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” in Proceedings of IEEE (IEEE, 1997), pp. 265–298.
  9. H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
    [Crossref]
  10. K.-D. Langer and J. Grubor, “Recent developments in optical wireless communications using infrared and visible light,” in Proceedings of 9th International Conference on Transparent Optical Networks (ICTON, 2007), pp. 146–151.
    [Crossref]
  11. A. M. J. Koonen, “Optical Techniques for Gbps Wireless Indoor Access” in Proceedings of International Topical Meeting on Microwave Photonics / 9th Asia-Pacific Microwave Photonics Conference (MWP/APMP, 2014), pp. 403–408.
  12. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
    [Crossref]
  13. Y. Wang, Y. Shao, H. Shang, X. Lu, Y. Wang, J. Yu, and N. Chi, “875-Mb/s Asynchronous Bi- directional 64QAM-OFDM SCM-WDM Transmission over RGB-LED-based Visible Light Communication System,” in Optical Fiber Communication Conference, 2013 OSA Technical Digest Series (Optical Society of America, 2013), paper OTh1G–3.
    [Crossref]
  14. G. Cossu, A. M. Khalid, R. Corsini, and E. Ciaramella, “Non-Directed Line-of-Sight Visible Light System providing High-Speed and Robustness to Ambient Light,” in Optical Fiber Communication Conference, 2013 OSA Technical Digest Series (Optical Society of America, 2013), paper OTh1G–2.
    [Crossref]
  15. F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, and K. Huang, “3.22-Gb / s WDM Visible Light Communication of a Single RGB LED Employing Carrier-Less Amplitude and Phase Modulation,” in Optical Fiber Communication Conference, 2013 OSA Technical Digest Series (Optical Society of America, 2013), paper OTh1G–4.
    [Crossref]
  16. D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
    [Crossref]
  17. A. M. J. Koonen, “Fiber to the home/fiber to the premises: What, where, and when?” in Proceedings of IEEE (IEEE, 2006), pp. 911–934.
  18. F. R. Gfeller, H. R. Nueller, and P. Vettiger, “Infrared Communication for In-House Applications,” in Proceedings of IEEE COMPCON (IEEE,1978), pp. 132–138.
  19. R. Ramirez-Iniguez and R. J. Green, “Indoor optical wireless communications.” in Proceedings of IEE Colloquium Optical Wireless Communications (IEE, 1999), pp. 14/1–14/7.
    [Crossref]
  20. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed duplex optical wireless communication system for indoor personal area networks,” Opt. Express 18(24), 25199–25216 (2010).
    [Crossref] [PubMed]
  21. H. Al Hajjar, B. Fracasso, and D. Leroux, “Indoor optical wireless Gbps link dimensioning,” in Optical Fiber Communication Conference, 2013 OSA Technical Digest Series (Optical Society of America, 2013), paper NTu3J–3.
  22. H. Chen, H. P. A. van den Boom, E. Tangdiongga, and T. Koonen, “30-Gbps Bidirectional Transparent Optical Transmission with an MMF Access and an Indoor optical Wireless Link,” IEEE Photon Technol. Lett. 24(7), 572–574 (2012).
    [Crossref]
  23. P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical Wireless Communication With Adaptive Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25(15), 1428–1431 (2013).
    [Crossref]
  24. A. M. J. Koonen, C. W. Oh, and E. Tangdiongga, “Reconfigurable free-space optical indoor network using multiple pencil beam steering,” in Proceedings of 19th Optoelectronics and Communications Conference and the 39th Australian Conference on Optical Fibre Technology (OECC/ACOFT, 2014), pp. 204–206.
  25. C. W. Oh, E. Tangdiongga, and A. M. J. Koonen, “Steerable pencil beams for multi-Gbps indoor optical wireless communication,” Opt. Lett. 39(18), 5427–5430 (2014).
    [Crossref] [PubMed]
  26. A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. Thomsen, and D.C. O’Brien, “Beyond 100Gb/s indoor Wide Field-of-View Optical Wireless Communications,” IEEE Photon Technol. Lett. 27(4), 367–370 (2015).
    [Crossref]
  27. C. W. Oh, E. Tangdiongga, and A. M. J. Koonen, “42.8 Gbps Indoor Optical Wireless Communication with 2-Dimensional Optical Beam steering,” in Optical Fiber Communication Conference, 2015 OSA Technical Digest Series (Optical Society of America, 2015), paper M2F.3.
  28. C. W. Oh, E. Tangdiongga, and A. M. J. Koonen, “Time-sharing resources for low cost and high performance indoor optical wireless networks,” in Proceedings of European Conference on Optical Communication (ECOC, 2015), pp. 1–3.
    [Crossref]
  29. W. Guo, P. Binetti, C. Althouse, L. A. Johansson, and L. A. Coldren, “InP Photonic Integrated Circuit with On-chip Tunable Laser Source for 2D Optical Beam Steering,” in Optical Fiber Communication Conference, 2013 OSA Technical Digest (Optical Society of America, 2013), paper OTh3I.7.
    [Crossref]
  30. H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely Wavelength-Tunable DFB Laser Array Integrated With Funnel Combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
    [Crossref]
  31. K. A. Mekonnen, C. W. Oh, Z. Cao, A. M. Khalid, N. Calabretta, E. Tangdiongga, and A. M. J. Koonen, “PIC-enabled Dynamic Bidirectional Indoor Network Employing Optical Wireless and Millimeter-wave Radio Techniques,” in Proceedings of European Conference on Optical Communication (ECOC, 2016), (accepted).
  32. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “Indoor Optical Wireless Localization System with Height Estimation for High-Speed Wireless Communications in Personal Areas,” in Proceedings of International Topical Meeting on Microwave Photonics, (MWP, 2012), pp. 72–75.
    [Crossref]
  33. P. Kułakowski, J. Vales-Alonso, E. Egea-López, and W. Ludwina, “Angle-of-arrival localization based on antenna arrays for wireless sensor networks,” J. Comput. Electr. Eng. 36(6), 1181–1186 (2010).
    [Crossref]
  34. G. Cossu, M. Presi, R. Corsini, P. Choudhury, A. M. Khalid, and E. Ciaramella, “A visible light localization aided optical wireless system,” in Proceedings of 2nd IEEE workshop on optical wireless communications, (IEEE, 2011), pp. 828–833.
    [Crossref]
  35. F. Winkler and E. Fischer, E. Graß andG. Fischer, “ A 60 GHz OFDM indoor localization system based on DTDOA,” in Proceedings of the 14th IST Mobile and Wireless Communications Summit (IST SUMMIT, 2005). pp. 1–5.
  36. K. Wang, A. T. Nirmalathas, C. Lim, and E. Skafidas, “Experimental Demonstration of Optical Wireless Indoor Localization System with Background Light Power Estimation,” in Optical Fiber Communication Conference), 2015 OSA Technical Digest Series (Optical Society of America, 2015), paper W2A.63.
    [Crossref]
  37. A. Gomez, K. Shi, C. Quintana, G. Faulkner, B. Thomsen, and D. C. O’Brien, “A 50 Gb/s Transparent Indoor Optical Wireless Communications Link With an Integrated Localization and Tracking System,” J. Lightwave Technol. 34(10), 2510–2517 (2016).
    [Crossref]
  38. V. Nikulin, R. Khandekar, and J. Sofka, “Performance of a laser communication system with acousto-optic tracking: An experimental study,” Proc. SPIE 6105, 61050C (2006).
    [Crossref]
  39. K. Van Acoleyen, K. Komorowska, W. Bogaerts, and R. Baets, “Integrated optical beam steerers,” in Optical Fiber Communication Conference, 2013 OSA Technical Digest Series (Optical Society of America, 2013), paper OTh1B.6.
  40. W. Guo, P. R. A. Binetti, C. Althouse, M. L. Mašanović, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, “Two-dimensional optical beam steering with InP-based photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 9(4), 6100212 (2013).
  41. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
    [Crossref] [PubMed]
  42. F. Vasey, F. K. Reinhart, R. Houdré, and J. M. Stauffer, “Spatial optical beam steerin with an AlGaAs integrated phased array,” Appl. Opt. 32(18), 3220–3232 (1993).
    [Crossref] [PubMed]
  43. P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” in Proceedings of IEEE (IEEE, 2009), pp. 1078–1096.
  44. R. L. Forward, “Passive beam-deflecting apparatus”, U.S. Patent No. 3612659 A, 1971.
  45. Z. Yaqoob, M. A. Arain, and N. A. Riza, “High-speed two-dimensional laser scanner based on Bragg gratings stored in photothermorefractive glass,” Appl. Opt. 42(26), 5251–5262 (2003).
    [Crossref] [PubMed]
  46. I. Filinski and T. Skettrup, “Fast dispersive beam deflectors and modulators,” J. Quantum Electron 18(7), 1059–1062 (1982).
    [Crossref]
  47. N. A. Riza, “High speed optical scanner for multi-dimensional beam pointing and acquisition,” in LEOS’99 IEEE Lasers and Electro-Optics Society 1999 12th Annual Meeting (IEEE,1999), pp. 70–71.
    [Crossref]
  48. T. Chan, E. Myslivets, and J. E. Ford, “2-Dimensional beamsteering using dispersive deflectors and wavelength tuning,” Opt. Express 16(19), 14617–14628 (2008).
    [Crossref] [PubMed]
  49. International Standard IEC 60825–1 © IEC: 1993 + A1:1997 + A2:2001: Safety of Laser Products – Part 1: Equipment Classification and Requirements. International Electrotechnical Commissions, Geneva (2001).
  50. K. Schulmeister, R. Gilber, F. Edthofer, B. Seiser, and G. Vees, “Comparison of different beam diameter definitions to characterize thermal damage of the eye,” Proc. SPIE 6101, 61011A (2006).
    [Crossref]
  51. “Technical note 6 Echelle gratings,” http://www.gratinglab.com/Information/Technical_Notes/TechNote6.aspx
  52. S. C. J. Lee, “Discrete multitone modulation for short-range optical communications,” Eindhoven: Technische Universiteit Eindhoven, (2009).
  53. K.-D. Langer, (2015), “DMT modulation for VLC. In: Shlomi Arnon (ed.) Visible Light Communication,” (Cambridge: Cambridge University Press. Cambridge Books Online, 2015).
  54. A. M. J. Koonen, C. W. Oh, K. Mekonnen, and E. Tangdiongga, “Ultra-high capacity indoor optical wireless communication using steered pencil beams,” in Proceedings of IEEE International Topical meeting on Microwave Photonics MWP 2015 (IEEE, 2015), paper WeC-5.
    [Crossref]
  55. “Corning® SMF-28e+® Photonic Optical Fiber,” Corning Incorporated (2010).

2016 (1)

2015 (1)

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. Thomsen, and D.C. O’Brien, “Beyond 100Gb/s indoor Wide Field-of-View Optical Wireless Communications,” IEEE Photon Technol. Lett. 27(4), 367–370 (2015).
[Crossref]

2014 (2)

C. W. Oh, E. Tangdiongga, and A. M. J. Koonen, “Steerable pencil beams for multi-Gbps indoor optical wireless communication,” Opt. Lett. 39(18), 5427–5430 (2014).
[Crossref] [PubMed]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

2013 (3)

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical Wireless Communication With Adaptive Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25(15), 1428–1431 (2013).
[Crossref]

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

W. Guo, P. R. A. Binetti, C. Althouse, M. L. Mašanović, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, “Two-dimensional optical beam steering with InP-based photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 9(4), 6100212 (2013).

2012 (1)

H. Chen, H. P. A. van den Boom, E. Tangdiongga, and T. Koonen, “30-Gbps Bidirectional Transparent Optical Transmission with an MMF Access and an Indoor optical Wireless Link,” IEEE Photon Technol. Lett. 24(7), 572–574 (2012).
[Crossref]

2011 (2)

2010 (2)

P. Kułakowski, J. Vales-Alonso, E. Egea-López, and W. Ludwina, “Angle-of-arrival localization based on antenna arrays for wireless sensor networks,” J. Comput. Electr. Eng. 36(6), 1181–1186 (2010).
[Crossref]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed duplex optical wireless communication system for indoor personal area networks,” Opt. Express 18(24), 25199–25216 (2010).
[Crossref] [PubMed]

2008 (2)

L. Yang, “60 GHz: Opportunity for gigabit WPAN and WLAN convergence,” ACM SIGCOMM Comput. Commun. Review 39(1), 56–61 (2008).
[Crossref]

T. Chan, E. Myslivets, and J. E. Ford, “2-Dimensional beamsteering using dispersive deflectors and wavelength tuning,” Opt. Express 16(19), 14617–14628 (2008).
[Crossref] [PubMed]

2007 (1)

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely Wavelength-Tunable DFB Laser Array Integrated With Funnel Combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

2006 (2)

V. Nikulin, R. Khandekar, and J. Sofka, “Performance of a laser communication system with acousto-optic tracking: An experimental study,” Proc. SPIE 6105, 61050C (2006).
[Crossref]

K. Schulmeister, R. Gilber, F. Edthofer, B. Seiser, and G. Vees, “Comparison of different beam diameter definitions to characterize thermal damage of the eye,” Proc. SPIE 6101, 61011A (2006).
[Crossref]

2004 (1)

S. Cherry, “Edholm’s law of bandwidth,” IEEE Spectr. 41(7), 58–60 (2004).
[Crossref]

2003 (1)

1993 (1)

1982 (1)

I. Filinski and T. Skettrup, “Fast dispersive beam deflectors and modulators,” J. Quantum Electron 18(7), 1059–1062 (1982).
[Crossref]

Althouse, C.

W. Guo, P. R. A. Binetti, C. Althouse, M. L. Mašanović, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, “Two-dimensional optical beam steering with InP-based photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 9(4), 6100212 (2013).

Ambacher, O.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Ambrosius, H. P. M. M.

W. Guo, P. R. A. Binetti, C. Althouse, M. L. Mašanović, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, “Two-dimensional optical beam steering with InP-based photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 9(4), 6100212 (2013).

Antes, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Arain, M. A.

Binetti, P. R. A.

W. Guo, P. R. A. Binetti, C. Althouse, M. L. Mašanović, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, “Two-dimensional optical beam steering with InP-based photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 9(4), 6100212 (2013).

Boes, F.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Bovington, J. T.

Bowers, J. E.

Brandl, P.

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical Wireless Communication With Adaptive Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25(15), 1428–1431 (2013).
[Crossref]

Calabretta, N.

K. A. Mekonnen, C. W. Oh, Z. Cao, A. M. Khalid, N. Calabretta, E. Tangdiongga, and A. M. J. Koonen, “PIC-enabled Dynamic Bidirectional Indoor Network Employing Optical Wireless and Millimeter-wave Radio Techniques,” in Proceedings of European Conference on Optical Communication (ECOC, 2016), (accepted).

Cao, Z.

K. A. Mekonnen, C. W. Oh, Z. Cao, A. M. Khalid, N. Calabretta, E. Tangdiongga, and A. M. J. Koonen, “PIC-enabled Dynamic Bidirectional Indoor Network Employing Optical Wireless and Millimeter-wave Radio Techniques,” in Proceedings of European Conference on Optical Communication (ECOC, 2016), (accepted).

Chan, T.

Chen, H.

H. Chen, H. P. A. van den Boom, E. Tangdiongga, and T. Koonen, “30-Gbps Bidirectional Transparent Optical Transmission with an MMF Access and an Indoor optical Wireless Link,” IEEE Photon Technol. Lett. 24(7), 572–574 (2012).
[Crossref]

Cherry, S.

S. Cherry, “Edholm’s law of bandwidth,” IEEE Spectr. 41(7), 58–60 (2004).
[Crossref]

Choudhury, P.

G. Cossu, M. Presi, R. Corsini, P. Choudhury, A. M. Khalid, and E. Ciaramella, “A visible light localization aided optical wireless system,” in Proceedings of 2nd IEEE workshop on optical wireless communications, (IEEE, 2011), pp. 828–833.
[Crossref]

Chun, H.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Ciaramella, E.

G. Cossu, M. Presi, R. Corsini, P. Choudhury, A. M. Khalid, and E. Ciaramella, “A visible light localization aided optical wireless system,” in Proceedings of 2nd IEEE workshop on optical wireless communications, (IEEE, 2011), pp. 828–833.
[Crossref]

Coldren, L. A.

W. Guo, P. R. A. Binetti, C. Althouse, M. L. Mašanović, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, “Two-dimensional optical beam steering with InP-based photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 9(4), 6100212 (2013).

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
[Crossref] [PubMed]

Corsini, R.

G. Cossu, M. Presi, R. Corsini, P. Choudhury, A. M. Khalid, and E. Ciaramella, “A visible light localization aided optical wireless system,” in Proceedings of 2nd IEEE workshop on optical wireless communications, (IEEE, 2011), pp. 828–833.
[Crossref]

Cossu, G.

G. Cossu, M. Presi, R. Corsini, P. Choudhury, A. M. Khalid, and E. Ciaramella, “A visible light localization aided optical wireless system,” in Proceedings of 2nd IEEE workshop on optical wireless communications, (IEEE, 2011), pp. 828–833.
[Crossref]

Doylend, J. K.

Edthofer, F.

K. Schulmeister, R. Gilber, F. Edthofer, B. Seiser, and G. Vees, “Comparison of different beam diameter definitions to characterize thermal damage of the eye,” Proc. SPIE 6101, 61011A (2006).
[Crossref]

Egea-López, E.

P. Kułakowski, J. Vales-Alonso, E. Egea-López, and W. Ludwina, “Angle-of-arrival localization based on antenna arrays for wireless sensor networks,” J. Comput. Electr. Eng. 36(6), 1181–1186 (2010).
[Crossref]

Elgala, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Faulkner, G.

A. Gomez, K. Shi, C. Quintana, G. Faulkner, B. Thomsen, and D. C. O’Brien, “A 50 Gb/s Transparent Indoor Optical Wireless Communications Link With an Integrated Localization and Tracking System,” J. Lightwave Technol. 34(10), 2510–2517 (2016).
[Crossref]

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. Thomsen, and D.C. O’Brien, “Beyond 100Gb/s indoor Wide Field-of-View Optical Wireless Communications,” IEEE Photon Technol. Lett. 27(4), 367–370 (2015).
[Crossref]

Filinski, I.

I. Filinski and T. Skettrup, “Fast dispersive beam deflectors and modulators,” J. Quantum Electron 18(7), 1059–1062 (1982).
[Crossref]

Ford, J. E.

Freude, W.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Gaberl, W.

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical Wireless Communication With Adaptive Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25(15), 1428–1431 (2013).
[Crossref]

Gfeller, F. R.

F. R. Gfeller, H. R. Nueller, and P. Vettiger, “Infrared Communication for In-House Applications,” in Proceedings of IEEE COMPCON (IEEE,1978), pp. 132–138.

Gilber, R.

K. Schulmeister, R. Gilber, F. Edthofer, B. Seiser, and G. Vees, “Comparison of different beam diameter definitions to characterize thermal damage of the eye,” Proc. SPIE 6101, 61011A (2006).
[Crossref]

Gomez, A.

A. Gomez, K. Shi, C. Quintana, G. Faulkner, B. Thomsen, and D. C. O’Brien, “A 50 Gb/s Transparent Indoor Optical Wireless Communications Link With an Integrated Localization and Tracking System,” J. Lightwave Technol. 34(10), 2510–2517 (2016).
[Crossref]

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. Thomsen, and D.C. O’Brien, “Beyond 100Gb/s indoor Wide Field-of-View Optical Wireless Communications,” IEEE Photon Technol. Lett. 27(4), 367–370 (2015).
[Crossref]

Grubor, J.

K.-D. Langer and J. Grubor, “Recent developments in optical wireless communications using infrared and visible light,” in Proceedings of 9th International Conference on Transparent Optical Networks (ICTON, 2007), pp. 146–151.
[Crossref]

Gu, E.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Guo, W.

W. Guo, P. R. A. Binetti, C. Althouse, M. L. Mašanović, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, “Two-dimensional optical beam steering with InP-based photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 9(4), 6100212 (2013).

Haas, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Heck, M. J. R.

Henneberger, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hillerkuss, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Houdré, R.

Ishii, H.

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely Wavelength-Tunable DFB Laser Array Integrated With Funnel Combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

Johansson, L. A.

W. Guo, P. R. A. Binetti, C. Althouse, M. L. Mašanović, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, “Two-dimensional optical beam steering with InP-based photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 9(4), 6100212 (2013).

Kallfass, I.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Kasaya, K.

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely Wavelength-Tunable DFB Laser Array Integrated With Funnel Combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

Khalid, A. M.

K. A. Mekonnen, C. W. Oh, Z. Cao, A. M. Khalid, N. Calabretta, E. Tangdiongga, and A. M. J. Koonen, “PIC-enabled Dynamic Bidirectional Indoor Network Employing Optical Wireless and Millimeter-wave Radio Techniques,” in Proceedings of European Conference on Optical Communication (ECOC, 2016), (accepted).

G. Cossu, M. Presi, R. Corsini, P. Choudhury, A. M. Khalid, and E. Ciaramella, “A visible light localization aided optical wireless system,” in Proceedings of 2nd IEEE workshop on optical wireless communications, (IEEE, 2011), pp. 828–833.
[Crossref]

Khandekar, R.

V. Nikulin, R. Khandekar, and J. Sofka, “Performance of a laser communication system with acousto-optic tracking: An experimental study,” Proc. SPIE 6105, 61050C (2006).
[Crossref]

Koenig, S.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Koonen, A. M. J.

C. W. Oh, E. Tangdiongga, and A. M. J. Koonen, “Steerable pencil beams for multi-Gbps indoor optical wireless communication,” Opt. Lett. 39(18), 5427–5430 (2014).
[Crossref] [PubMed]

K. A. Mekonnen, C. W. Oh, Z. Cao, A. M. Khalid, N. Calabretta, E. Tangdiongga, and A. M. J. Koonen, “PIC-enabled Dynamic Bidirectional Indoor Network Employing Optical Wireless and Millimeter-wave Radio Techniques,” in Proceedings of European Conference on Optical Communication (ECOC, 2016), (accepted).

C. W. Oh, E. Tangdiongga, and A. M. J. Koonen, “Time-sharing resources for low cost and high performance indoor optical wireless networks,” in Proceedings of European Conference on Optical Communication (ECOC, 2015), pp. 1–3.
[Crossref]

Koonen, T.

H. Chen, H. P. A. van den Boom, E. Tangdiongga, and T. Koonen, “30-Gbps Bidirectional Transparent Optical Transmission with an MMF Access and an Indoor optical Wireless Link,” IEEE Photon Technol. Lett. 24(7), 572–574 (2012).
[Crossref]

Koos, C.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Kulakowski, P.

P. Kułakowski, J. Vales-Alonso, E. Egea-López, and W. Ludwina, “Angle-of-arrival localization based on antenna arrays for wireless sensor networks,” J. Comput. Electr. Eng. 36(6), 1181–1186 (2010).
[Crossref]

Langer, K.-D.

K.-D. Langer and J. Grubor, “Recent developments in optical wireless communications using infrared and visible light,” in Proceedings of 9th International Conference on Transparent Optical Networks (ICTON, 2007), pp. 146–151.
[Crossref]

Leuther, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Leuthold, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Lim, C.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed duplex optical wireless communication system for indoor personal area networks,” Opt. Express 18(24), 25199–25216 (2010).
[Crossref] [PubMed]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “Indoor Optical Wireless Localization System with Height Estimation for High-Speed Wireless Communications in Personal Areas,” in Proceedings of International Topical Meeting on Microwave Photonics, (MWP, 2012), pp. 72–75.
[Crossref]

Lopez-Diaz, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Ludwina, W.

P. Kułakowski, J. Vales-Alonso, E. Egea-López, and W. Ludwina, “Angle-of-arrival localization based on antenna arrays for wireless sensor networks,” J. Comput. Electr. Eng. 36(6), 1181–1186 (2010).
[Crossref]

Mašanovic, M. L.

W. Guo, P. R. A. Binetti, C. Althouse, M. L. Mašanović, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, “Two-dimensional optical beam steering with InP-based photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 9(4), 6100212 (2013).

McKendry, J. J.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Mekonnen, K. A.

K. A. Mekonnen, C. W. Oh, Z. Cao, A. M. Khalid, N. Calabretta, E. Tangdiongga, and A. M. J. Koonen, “PIC-enabled Dynamic Bidirectional Indoor Network Employing Optical Wireless and Millimeter-wave Radio Techniques,” in Proceedings of European Conference on Optical Communication (ECOC, 2016), (accepted).

Mesleh, R.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Myslivets, E.

Nikulin, V.

V. Nikulin, R. Khandekar, and J. Sofka, “Performance of a laser communication system with acousto-optic tracking: An experimental study,” Proc. SPIE 6105, 61050C (2006).
[Crossref]

Nirmalathas, A.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed duplex optical wireless communication system for indoor personal area networks,” Opt. Express 18(24), 25199–25216 (2010).
[Crossref] [PubMed]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “Indoor Optical Wireless Localization System with Height Estimation for High-Speed Wireless Communications in Personal Areas,” in Proceedings of International Topical Meeting on Microwave Photonics, (MWP, 2012), pp. 72–75.
[Crossref]

Nueller, H. R.

F. R. Gfeller, H. R. Nueller, and P. Vettiger, “Infrared Communication for In-House Applications,” in Proceedings of IEEE COMPCON (IEEE,1978), pp. 132–138.

O’Brien, D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

O’Brien, D. C.

O’Brien, D.C.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. Thomsen, and D.C. O’Brien, “Beyond 100Gb/s indoor Wide Field-of-View Optical Wireless Communications,” IEEE Photon Technol. Lett. 27(4), 367–370 (2015).
[Crossref]

Oh, C. W.

C. W. Oh, E. Tangdiongga, and A. M. J. Koonen, “Steerable pencil beams for multi-Gbps indoor optical wireless communication,” Opt. Lett. 39(18), 5427–5430 (2014).
[Crossref] [PubMed]

C. W. Oh, E. Tangdiongga, and A. M. J. Koonen, “Time-sharing resources for low cost and high performance indoor optical wireless networks,” in Proceedings of European Conference on Optical Communication (ECOC, 2015), pp. 1–3.
[Crossref]

K. A. Mekonnen, C. W. Oh, Z. Cao, A. M. Khalid, N. Calabretta, E. Tangdiongga, and A. M. J. Koonen, “PIC-enabled Dynamic Bidirectional Indoor Network Employing Optical Wireless and Millimeter-wave Radio Techniques,” in Proceedings of European Conference on Optical Communication (ECOC, 2016), (accepted).

Okamoto, K.

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely Wavelength-Tunable DFB Laser Array Integrated With Funnel Combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

Oohashi, H.

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely Wavelength-Tunable DFB Laser Array Integrated With Funnel Combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

Palmer, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Peters, J. D.

Polzer, A.

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical Wireless Communication With Adaptive Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25(15), 1428–1431 (2013).
[Crossref]

Presi, M.

G. Cossu, M. Presi, R. Corsini, P. Choudhury, A. M. Khalid, and E. Ciaramella, “A visible light localization aided optical wireless system,” in Proceedings of 2nd IEEE workshop on optical wireless communications, (IEEE, 2011), pp. 828–833.
[Crossref]

Quintana, C.

A. Gomez, K. Shi, C. Quintana, G. Faulkner, B. Thomsen, and D. C. O’Brien, “A 50 Gb/s Transparent Indoor Optical Wireless Communications Link With an Integrated Localization and Tracking System,” J. Lightwave Technol. 34(10), 2510–2517 (2016).
[Crossref]

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. Thomsen, and D.C. O’Brien, “Beyond 100Gb/s indoor Wide Field-of-View Optical Wireless Communications,” IEEE Photon Technol. Lett. 27(4), 367–370 (2015).
[Crossref]

Rajbhandari, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Reinhart, F. K.

Riza, N. A.

Sato, M.

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. Thomsen, and D.C. O’Brien, “Beyond 100Gb/s indoor Wide Field-of-View Optical Wireless Communications,” IEEE Photon Technol. Lett. 27(4), 367–370 (2015).
[Crossref]

Schidl, S.

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical Wireless Communication With Adaptive Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25(15), 1428–1431 (2013).
[Crossref]

Schmogrow, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Schulmeister, K.

K. Schulmeister, R. Gilber, F. Edthofer, B. Seiser, and G. Vees, “Comparison of different beam diameter definitions to characterize thermal damage of the eye,” Proc. SPIE 6101, 61011A (2006).
[Crossref]

Seiser, B.

K. Schulmeister, R. Gilber, F. Edthofer, B. Seiser, and G. Vees, “Comparison of different beam diameter definitions to characterize thermal damage of the eye,” Proc. SPIE 6101, 61011A (2006).
[Crossref]

Shi, K.

A. Gomez, K. Shi, C. Quintana, G. Faulkner, B. Thomsen, and D. C. O’Brien, “A 50 Gb/s Transparent Indoor Optical Wireless Communications Link With an Integrated Localization and Tracking System,” J. Lightwave Technol. 34(10), 2510–2517 (2016).
[Crossref]

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. Thomsen, and D.C. O’Brien, “Beyond 100Gb/s indoor Wide Field-of-View Optical Wireless Communications,” IEEE Photon Technol. Lett. 27(4), 367–370 (2015).
[Crossref]

Shibata, Y.

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely Wavelength-Tunable DFB Laser Array Integrated With Funnel Combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

Skafidas, E.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed duplex optical wireless communication system for indoor personal area networks,” Opt. Express 18(24), 25199–25216 (2010).
[Crossref] [PubMed]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “Indoor Optical Wireless Localization System with Height Estimation for High-Speed Wireless Communications in Personal Areas,” in Proceedings of International Topical Meeting on Microwave Photonics, (MWP, 2012), pp. 72–75.
[Crossref]

Skettrup, T.

I. Filinski and T. Skettrup, “Fast dispersive beam deflectors and modulators,” J. Quantum Electron 18(7), 1059–1062 (1982).
[Crossref]

Sofka, J.

V. Nikulin, R. Khandekar, and J. Sofka, “Performance of a laser communication system with acousto-optic tracking: An experimental study,” Proc. SPIE 6105, 61050C (2006).
[Crossref]

Stauffer, J. M.

Tangdiongga, E.

C. W. Oh, E. Tangdiongga, and A. M. J. Koonen, “Steerable pencil beams for multi-Gbps indoor optical wireless communication,” Opt. Lett. 39(18), 5427–5430 (2014).
[Crossref] [PubMed]

H. Chen, H. P. A. van den Boom, E. Tangdiongga, and T. Koonen, “30-Gbps Bidirectional Transparent Optical Transmission with an MMF Access and an Indoor optical Wireless Link,” IEEE Photon Technol. Lett. 24(7), 572–574 (2012).
[Crossref]

C. W. Oh, E. Tangdiongga, and A. M. J. Koonen, “Time-sharing resources for low cost and high performance indoor optical wireless networks,” in Proceedings of European Conference on Optical Communication (ECOC, 2015), pp. 1–3.
[Crossref]

K. A. Mekonnen, C. W. Oh, Z. Cao, A. M. Khalid, N. Calabretta, E. Tangdiongga, and A. M. J. Koonen, “PIC-enabled Dynamic Bidirectional Indoor Network Employing Optical Wireless and Millimeter-wave Radio Techniques,” in Proceedings of European Conference on Optical Communication (ECOC, 2016), (accepted).

Tessmann, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Thomsen, B.

A. Gomez, K. Shi, C. Quintana, G. Faulkner, B. Thomsen, and D. C. O’Brien, “A 50 Gb/s Transparent Indoor Optical Wireless Communications Link With an Integrated Localization and Tracking System,” J. Lightwave Technol. 34(10), 2510–2517 (2016).
[Crossref]

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. Thomsen, and D.C. O’Brien, “Beyond 100Gb/s indoor Wide Field-of-View Optical Wireless Communications,” IEEE Photon Technol. Lett. 27(4), 367–370 (2015).
[Crossref]

Tsonev, D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Vales-Alonso, J.

P. Kułakowski, J. Vales-Alonso, E. Egea-López, and W. Ludwina, “Angle-of-arrival localization based on antenna arrays for wireless sensor networks,” J. Comput. Electr. Eng. 36(6), 1181–1186 (2010).
[Crossref]

van den Boom, H. P. A.

H. Chen, H. P. A. van den Boom, E. Tangdiongga, and T. Koonen, “30-Gbps Bidirectional Transparent Optical Transmission with an MMF Access and an Indoor optical Wireless Link,” IEEE Photon Technol. Lett. 24(7), 572–574 (2012).
[Crossref]

Vasey, F.

Vees, G.

K. Schulmeister, R. Gilber, F. Edthofer, B. Seiser, and G. Vees, “Comparison of different beam diameter definitions to characterize thermal damage of the eye,” Proc. SPIE 6101, 61011A (2006).
[Crossref]

Vettiger, P.

F. R. Gfeller, H. R. Nueller, and P. Vettiger, “Infrared Communication for In-House Applications,” in Proceedings of IEEE COMPCON (IEEE,1978), pp. 132–138.

Videv, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Wang, K.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed duplex optical wireless communication system for indoor personal area networks,” Opt. Express 18(24), 25199–25216 (2010).
[Crossref] [PubMed]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “Indoor Optical Wireless Localization System with Height Estimation for High-Speed Wireless Communications in Personal Areas,” in Proceedings of International Topical Meeting on Microwave Photonics, (MWP, 2012), pp. 72–75.
[Crossref]

Yang, L.

L. Yang, “60 GHz: Opportunity for gigabit WPAN and WLAN convergence,” ACM SIGCOMM Comput. Commun. Review 39(1), 56–61 (2008).
[Crossref]

Yaqoob, Z.

Yasaka, H.

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely Wavelength-Tunable DFB Laser Array Integrated With Funnel Combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

Zimmermann, H.

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical Wireless Communication With Adaptive Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25(15), 1428–1431 (2013).
[Crossref]

Zwick, T.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

ACM SIGCOMM Comput. Commun. Review (1)

L. Yang, “60 GHz: Opportunity for gigabit WPAN and WLAN convergence,” ACM SIGCOMM Comput. Commun. Review 39(1), 56–61 (2008).
[Crossref]

Appl. Opt. (2)

IEEE Commun. Mag. (1)

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, and K. Okamoto, “Widely Wavelength-Tunable DFB Laser Array Integrated With Funnel Combiner,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1089–1094 (2007).
[Crossref]

W. Guo, P. R. A. Binetti, C. Althouse, M. L. Mašanović, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, “Two-dimensional optical beam steering with InP-based photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 9(4), 6100212 (2013).

IEEE Photon Technol. Lett. (2)

H. Chen, H. P. A. van den Boom, E. Tangdiongga, and T. Koonen, “30-Gbps Bidirectional Transparent Optical Transmission with an MMF Access and an Indoor optical Wireless Link,” IEEE Photon Technol. Lett. 24(7), 572–574 (2012).
[Crossref]

A. Gomez, K. Shi, C. Quintana, M. Sato, G. Faulkner, B. Thomsen, and D.C. O’Brien, “Beyond 100Gb/s indoor Wide Field-of-View Optical Wireless Communications,” IEEE Photon Technol. Lett. 27(4), 367–370 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (2)

P. Brandl, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, “Optical Wireless Communication With Adaptive Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25(15), 1428–1431 (2013).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. McKendry, S. Videv, E. Gu, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

IEEE Spectr. (1)

S. Cherry, “Edholm’s law of bandwidth,” IEEE Spectr. 41(7), 58–60 (2004).
[Crossref]

J. Comput. Electr. Eng. (1)

P. Kułakowski, J. Vales-Alonso, E. Egea-López, and W. Ludwina, “Angle-of-arrival localization based on antenna arrays for wireless sensor networks,” J. Comput. Electr. Eng. 36(6), 1181–1186 (2010).
[Crossref]

J. Lightwave Technol. (1)

J. Quantum Electron (1)

I. Filinski and T. Skettrup, “Fast dispersive beam deflectors and modulators,” J. Quantum Electron 18(7), 1059–1062 (1982).
[Crossref]

Nat. Photonics (1)

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (2)

K. Schulmeister, R. Gilber, F. Edthofer, B. Seiser, and G. Vees, “Comparison of different beam diameter definitions to characterize thermal damage of the eye,” Proc. SPIE 6101, 61011A (2006).
[Crossref]

V. Nikulin, R. Khandekar, and J. Sofka, “Performance of a laser communication system with acousto-optic tracking: An experimental study,” Proc. SPIE 6105, 61050C (2006).
[Crossref]

Other (34)

K. Van Acoleyen, K. Komorowska, W. Bogaerts, and R. Baets, “Integrated optical beam steerers,” in Optical Fiber Communication Conference, 2013 OSA Technical Digest Series (Optical Society of America, 2013), paper OTh1B.6.

K. A. Mekonnen, C. W. Oh, Z. Cao, A. M. Khalid, N. Calabretta, E. Tangdiongga, and A. M. J. Koonen, “PIC-enabled Dynamic Bidirectional Indoor Network Employing Optical Wireless and Millimeter-wave Radio Techniques,” in Proceedings of European Conference on Optical Communication (ECOC, 2016), (accepted).

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “Indoor Optical Wireless Localization System with Height Estimation for High-Speed Wireless Communications in Personal Areas,” in Proceedings of International Topical Meeting on Microwave Photonics, (MWP, 2012), pp. 72–75.
[Crossref]

G. Cossu, M. Presi, R. Corsini, P. Choudhury, A. M. Khalid, and E. Ciaramella, “A visible light localization aided optical wireless system,” in Proceedings of 2nd IEEE workshop on optical wireless communications, (IEEE, 2011), pp. 828–833.
[Crossref]

F. Winkler and E. Fischer, E. Graß andG. Fischer, “ A 60 GHz OFDM indoor localization system based on DTDOA,” in Proceedings of the 14th IST Mobile and Wireless Communications Summit (IST SUMMIT, 2005). pp. 1–5.

K. Wang, A. T. Nirmalathas, C. Lim, and E. Skafidas, “Experimental Demonstration of Optical Wireless Indoor Localization System with Background Light Power Estimation,” in Optical Fiber Communication Conference), 2015 OSA Technical Digest Series (Optical Society of America, 2015), paper W2A.63.
[Crossref]

H. Al Hajjar, B. Fracasso, and D. Leroux, “Indoor optical wireless Gbps link dimensioning,” in Optical Fiber Communication Conference, 2013 OSA Technical Digest Series (Optical Society of America, 2013), paper NTu3J–3.

A. M. J. Koonen, C. W. Oh, and E. Tangdiongga, “Reconfigurable free-space optical indoor network using multiple pencil beam steering,” in Proceedings of 19th Optoelectronics and Communications Conference and the 39th Australian Conference on Optical Fibre Technology (OECC/ACOFT, 2014), pp. 204–206.

C. W. Oh, E. Tangdiongga, and A. M. J. Koonen, “42.8 Gbps Indoor Optical Wireless Communication with 2-Dimensional Optical Beam steering,” in Optical Fiber Communication Conference, 2015 OSA Technical Digest Series (Optical Society of America, 2015), paper M2F.3.

C. W. Oh, E. Tangdiongga, and A. M. J. Koonen, “Time-sharing resources for low cost and high performance indoor optical wireless networks,” in Proceedings of European Conference on Optical Communication (ECOC, 2015), pp. 1–3.
[Crossref]

W. Guo, P. Binetti, C. Althouse, L. A. Johansson, and L. A. Coldren, “InP Photonic Integrated Circuit with On-chip Tunable Laser Source for 2D Optical Beam Steering,” in Optical Fiber Communication Conference, 2013 OSA Technical Digest (Optical Society of America, 2013), paper OTh3I.7.
[Crossref]

Y. Wang, Y. Shao, H. Shang, X. Lu, Y. Wang, J. Yu, and N. Chi, “875-Mb/s Asynchronous Bi- directional 64QAM-OFDM SCM-WDM Transmission over RGB-LED-based Visible Light Communication System,” in Optical Fiber Communication Conference, 2013 OSA Technical Digest Series (Optical Society of America, 2013), paper OTh1G–3.
[Crossref]

G. Cossu, A. M. Khalid, R. Corsini, and E. Ciaramella, “Non-Directed Line-of-Sight Visible Light System providing High-Speed and Robustness to Ambient Light,” in Optical Fiber Communication Conference, 2013 OSA Technical Digest Series (Optical Society of America, 2013), paper OTh1G–2.
[Crossref]

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, and K. Huang, “3.22-Gb / s WDM Visible Light Communication of a Single RGB LED Employing Carrier-Less Amplitude and Phase Modulation,” in Optical Fiber Communication Conference, 2013 OSA Technical Digest Series (Optical Society of America, 2013), paper OTh1G–4.
[Crossref]

A. M. J. Koonen, “Fiber to the home/fiber to the premises: What, where, and when?” in Proceedings of IEEE (IEEE, 2006), pp. 911–934.

F. R. Gfeller, H. R. Nueller, and P. Vettiger, “Infrared Communication for In-House Applications,” in Proceedings of IEEE COMPCON (IEEE,1978), pp. 132–138.

R. Ramirez-Iniguez and R. J. Green, “Indoor optical wireless communications.” in Proceedings of IEE Colloquium Optical Wireless Communications (IEE, 1999), pp. 14/1–14/7.
[Crossref]

M. Reardon, “Wireless spectrum: What it is, and why you should care,” http://www.cnet.com/news/wireless-spectrum-what-it-is-and-why-you-should-care .

“The internet of things,” http://share.cisco.com/internet-of-things.html .

G. Parodi, “Radio spectrum shortage prompts a growing number of initiatives,” http://www.atelier.net/en/trends/articles/radio-spectrum-shortage-prompts-growing- number-initiatives_422770.

T. Kridel, “Cognitive Radio: A solution for the spectrum shortage?” http://www.lightreading.com/cognitive-radio-a-solution-for-the-spectrum-shortage/a/d-id/699609

T. McCall and M. Mahoney, “Spectrum of Issues,” http://visual.ly/spectrum-issues .

K.-D. Langer and J. Grubor, “Recent developments in optical wireless communications using infrared and visible light,” in Proceedings of 9th International Conference on Transparent Optical Networks (ICTON, 2007), pp. 146–151.
[Crossref]

A. M. J. Koonen, “Optical Techniques for Gbps Wireless Indoor Access” in Proceedings of International Topical Meeting on Microwave Photonics / 9th Asia-Pacific Microwave Photonics Conference (MWP/APMP, 2014), pp. 403–408.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” in Proceedings of IEEE (IEEE, 1997), pp. 265–298.

“Technical note 6 Echelle gratings,” http://www.gratinglab.com/Information/Technical_Notes/TechNote6.aspx

S. C. J. Lee, “Discrete multitone modulation for short-range optical communications,” Eindhoven: Technische Universiteit Eindhoven, (2009).

K.-D. Langer, (2015), “DMT modulation for VLC. In: Shlomi Arnon (ed.) Visible Light Communication,” (Cambridge: Cambridge University Press. Cambridge Books Online, 2015).

A. M. J. Koonen, C. W. Oh, K. Mekonnen, and E. Tangdiongga, “Ultra-high capacity indoor optical wireless communication using steered pencil beams,” in Proceedings of IEEE International Topical meeting on Microwave Photonics MWP 2015 (IEEE, 2015), paper WeC-5.
[Crossref]

“Corning® SMF-28e+® Photonic Optical Fiber,” Corning Incorporated (2010).

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” in Proceedings of IEEE (IEEE, 2009), pp. 1078–1096.

R. L. Forward, “Passive beam-deflecting apparatus”, U.S. Patent No. 3612659 A, 1971.

International Standard IEC 60825–1 © IEC: 1993 + A1:1997 + A2:2001: Safety of Laser Products – Part 1: Equipment Classification and Requirements. International Electrotechnical Commissions, Geneva (2001).

N. A. Riza, “High speed optical scanner for multi-dimensional beam pointing and acquisition,” in LEOS’99 IEEE Lasers and Electro-Optics Society 1999 12th Annual Meeting (IEEE,1999), pp. 70–71.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Hybrid optical–radio wireless-equipped home with optical beam-steering modules at the access points and a central communication controller (CCC) interfacing the in-home and access networks. A tunable laser and an optical cross connect (OXC) provide and route wavelengths through the fiber backbone installed within walls/ceilings.
Fig. 2
Fig. 2 2D beam-steering concept. As an example in the figure, the first grating has an FSR of 3 wavelengths and the second grating provides at least three times the FSR of the first grating, thus, producing a cross dispersion effect.
Fig. 3
Fig. 3 Distribution of diffracted beams from a cross-mounted pair of reflection gratings (63° blazed with 31.6 grooves/mm and 75° blazed with 79 grooves/mm) over a wavelength range between 1529 nm and 1611 nm calculated for 2 m distance from the access point.
Fig. 4
Fig. 4 Testbed setup for 2 m transmission with 2D steering for spectral characterization. Digital-to-Analog Converter (DAC), Analog-to-Digital Converter (ADC), Transmitting (Tx), Receiving (Rx), Mach-Zehnder (MZ), Erbium-doped Fiber Amplifier (EDFA), Radio Frequency (RF).
Fig. 5
Fig. 5 Spectral responses of 2D beam-steered channels for wavelengths between 1530 nm and 1600 nm at 2 m. Modulation (Mod), wavelength (λ), Full Width at Half Maximum (FWHM), spectral bandwidth (BW).
Fig. 6
Fig. 6 Discrete multitone modulation (DMT) operation blocks for transmitting and receiving DMT signals. Quadrature Amplitude Modulation (QAM), Cyclic Prefix (CP).
Fig. 7
Fig. 7 Beam profiles of 2D beam-steered channels for wavelengths between 1530 nm and 1600 nm at 2 m. Modulation (Mod), wavelength (λ), Full Width at Half Maximum (FWHM).
Fig. 8
Fig. 8 Lens tilt tolerance measured with wavelengths between 1530 nm and 1600 nm. Modulation (Mod), wavelength (λ), Full Width at Half Maximum (FWHM).
Fig. 9
Fig. 9 The bitrate and bit error rate performance of an SMF versus direct point-to-point free-space link.
Fig. 10
Fig. 10 Comparison between 2D beam-steered channels and direct point-to-point free-space (FS) channels for 8 wavelengths.
Fig. 11
Fig. 11 Gross and net bitrates achievable with 2D beam steering with cross-mounted reflection gratings for wavelengths between 1530 nm to 1600 nm. The corresponding bit error rates and received optical powers are given.
Fig. 12
Fig. 12 Transmission of direct free-space (FS) point-to-point versus 2D steered channels. The Signal-to-Noise Ratio (SNR) bit loading at different subcarriers with constellation diagrams for received power, Pr = −5.3 dBm, and the BER of the different carrier frequencies at comparable received powers are plotted.

Tables (1)

Tables Icon

Table 1 Measured free-space loss at each wavelength position

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

mλ=d( n 1 sin θ i ± n 2 sin θ m )
FSR= λ m m+1
mλ=2dsin θ m ( m 2 )(2λ)=2dsin θ m
( m n )(nλ)=2dsin θ m ,n is an integer and n0
θ x,m = sin 1 (sin θ x,i mλ d 1 )
θ y,m = sin 1 (sin θ y,i mλ d 2 )
AEL=MPE×π r 2
w(z)= w o 1+ ( z z R ) 2
FFO V ° = θ div ° = MFD f × 180 π

Metrics