Abstract

High spatial resolution with deep imaging penetration depth is the main advantage of focal modulation microscopy (FMM). This paper investigates effects of polarization on FMM in a high-NA system based on vectorial diffraction theory. Compared with confocal microscopy, FMM shows a 20.1% improvement in axial resolution. The performance of different polarization patterns is also discussed numerically. The study on polarization modulation may provide a new way to obtain a tighter focal spot.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Considerations of aperture configuration in focal modulation microscopy from the standpoint of modulation depth

Guangjun Gao, Shau Poh Chong, Colin J. R. Sheppard, and Nanguang Chen
J. Opt. Soc. Am. A 28(4) 496-501 (2011)

High-speed focal modulation microscopy using acousto-optical modulators

Shau Poh Chong, Chee Howe Wong, Kit Fei Wong, Colin J.R. Sheppard, and Nanguang Chen
Biomed. Opt. Express 1(3) 1026-1037 (2010)

Focal modulation microscopy

Nanguang Chen, Chee-Howe Wong, and Colin J. R. Sheppard
Opt. Express 16(23) 18764-18769 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. Abdelkader, S. M. Elewah, and H. E. Kaufman, “Confocal microscopy of corneal wound healing after deep lamellar keratoplasty in rabbits,” Arch. Ophthalmol. 128(1), 75–80 (2010).
    [Crossref] [PubMed]
  2. D. S. Gareau, S. Abeytunge, and M. Rajadhyaksha, “Line-scanning reflectance confocal microscopy of human skin: comparison of full-pupil and divided-pupil configurations,” Opt. Lett. 34(20), 3235–3237 (2009).
    [Crossref] [PubMed]
  3. J. P. Yuan, W. Zeng, M. R. Dorwart, Y.-J. Choi, P. F. Worley, and S. Muallem, “SOAR and the polybasic STIM1 domains gate and regulate Orai channels,” Nat. Cell Biol. 11(3), 337–343 (2009).
    [Crossref] [PubMed]
  4. N. Chen, C.-H. Wong, and C. J. Sheppard, “Focal modulation microscopy,” Opt. Express 16(23), 18764–18769 (2008).
    [Crossref] [PubMed]
  5. J. M. Schmitt, A. Knüttel, and M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11(8), 2226–2235 (1994).
    [Crossref] [PubMed]
  6. X. Gan, S. P. Schilders, and M. Gu, “Image enhancement through turbid media under a microscope by use of polarization gating methods,” J. Opt. Soc. Am. A 16(9), 2177–2184 (1999).
    [Crossref]
  7. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
    [Crossref] [PubMed]
  8. M. E. Brezinski, Optical Coherence Tomography: Principles and Applications (Academic Press, 2003).
  9. P. Gao and G. U. Nienhaus, “Confocal laser scanning microscopy with spatiotemporal structured illumination,” Opt. Lett. 41(6), 1193–1196 (2016).
    [Crossref] [PubMed]
  10. N. Chen, G. Gao, and S. P. Chong, Focal Modulation Microscopy: Principle and Techniques (INTECH Open Access Publisher, 2012).
  11. W. Gong, K. Si, N. Chen, and C. J. Sheppard, “Focal modulation microscopy with annular apertures: a numerical study,” J. Biophotonics 3(7), 476–484 (2010).
    [Crossref] [PubMed]
  12. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1), 1–7 (2000).
    [Crossref]
  13. M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields,” Optik (Stuttg.) 112(9), 399–406 (2001).
    [Crossref]
  14. A. B. W. Smith, L. V. Zavyalova, and A. Estroff, “Benefiting from polarization effects on high-NA imaging,” in Microlithography 2004, 2004)
  15. C. J. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43(22), 4322–4327 (2004).
    [Crossref] [PubMed]
  16. G. M. Lerman and U. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express 16(7), 4567–4581 (2008).
    [Crossref] [PubMed]
  17. Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 19(17), 15947–15954 (2011).
    [Crossref] [PubMed]
  18. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
    [Crossref]
  19. Y. Kozawa and S. Sato, “Numerical analysis of resolution enhancement in laser scanning microscopy using a radially polarized beam,” Opt. Express 23(3), 2076–2084 (2015).
    [Crossref] [PubMed]
  20. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, (The Royal Society, 1959), 358–379.
    [Crossref]
  21. X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12(11), 115707 (2010).
    [Crossref]
  22. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [Crossref] [PubMed]
  23. K. Si, W. Gong, N. Chen, and C. J. Sheppard, “Enhanced background rejection in thick tissue using focal modulation microscopy with quadrant apertures,” Opt. Commun. 284(5), 1475–1480 (2011).
    [Crossref]
  24. C. J. Sheppard and T. Wilson, “Depth of field in the scanning microscope,” Opt. Lett. 3(3), 115–117 (1978).
    [Crossref] [PubMed]
  25. C. J. Sheppard, W. Gong, and K. Si, “The divided aperture technique for microscopy through scattering media,” Opt. Express 16(21), 17031–17038 (2008).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

2011 (2)

K. Si, W. Gong, N. Chen, and C. J. Sheppard, “Enhanced background rejection in thick tissue using focal modulation microscopy with quadrant apertures,” Opt. Commun. 284(5), 1475–1480 (2011).
[Crossref]

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 19(17), 15947–15954 (2011).
[Crossref] [PubMed]

2010 (3)

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12(11), 115707 (2010).
[Crossref]

W. Gong, K. Si, N. Chen, and C. J. Sheppard, “Focal modulation microscopy with annular apertures: a numerical study,” J. Biophotonics 3(7), 476–484 (2010).
[Crossref] [PubMed]

A. Abdelkader, S. M. Elewah, and H. E. Kaufman, “Confocal microscopy of corneal wound healing after deep lamellar keratoplasty in rabbits,” Arch. Ophthalmol. 128(1), 75–80 (2010).
[Crossref] [PubMed]

2009 (2)

D. S. Gareau, S. Abeytunge, and M. Rajadhyaksha, “Line-scanning reflectance confocal microscopy of human skin: comparison of full-pupil and divided-pupil configurations,” Opt. Lett. 34(20), 3235–3237 (2009).
[Crossref] [PubMed]

J. P. Yuan, W. Zeng, M. R. Dorwart, Y.-J. Choi, P. F. Worley, and S. Muallem, “SOAR and the polybasic STIM1 domains gate and regulate Orai channels,” Nat. Cell Biol. 11(3), 337–343 (2009).
[Crossref] [PubMed]

2008 (4)

2004 (1)

2001 (1)

M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields,” Optik (Stuttg.) 112(9), 399–406 (2001).
[Crossref]

2000 (2)

K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1), 1–7 (2000).
[Crossref]

1999 (1)

1994 (1)

1991 (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref] [PubMed]

1978 (1)

Abdelkader, A.

A. Abdelkader, S. M. Elewah, and H. E. Kaufman, “Confocal microscopy of corneal wound healing after deep lamellar keratoplasty in rabbits,” Arch. Ophthalmol. 128(1), 75–80 (2010).
[Crossref] [PubMed]

Abeytunge, S.

Alfano, R. R.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref] [PubMed]

Brown, T.

Chen, N.

K. Si, W. Gong, N. Chen, and C. J. Sheppard, “Enhanced background rejection in thick tissue using focal modulation microscopy with quadrant apertures,” Opt. Commun. 284(5), 1475–1480 (2011).
[Crossref]

W. Gong, K. Si, N. Chen, and C. J. Sheppard, “Focal modulation microscopy with annular apertures: a numerical study,” J. Biophotonics 3(7), 476–484 (2010).
[Crossref] [PubMed]

N. Chen, C.-H. Wong, and C. J. Sheppard, “Focal modulation microscopy,” Opt. Express 16(23), 18764–18769 (2008).
[Crossref] [PubMed]

Choi, Y.-J.

J. P. Yuan, W. Zeng, M. R. Dorwart, Y.-J. Choi, P. F. Worley, and S. Muallem, “SOAR and the polybasic STIM1 domains gate and regulate Orai channels,” Nat. Cell Biol. 11(3), 337–343 (2009).
[Crossref] [PubMed]

Chong, C. T.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Choudhury, A.

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1), 1–7 (2000).
[Crossref]

Dorwart, M. R.

J. P. Yuan, W. Zeng, M. R. Dorwart, Y.-J. Choi, P. F. Worley, and S. Muallem, “SOAR and the polybasic STIM1 domains gate and regulate Orai channels,” Nat. Cell Biol. 11(3), 337–343 (2009).
[Crossref] [PubMed]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1), 1–7 (2000).
[Crossref]

Elewah, S. M.

A. Abdelkader, S. M. Elewah, and H. E. Kaufman, “Confocal microscopy of corneal wound healing after deep lamellar keratoplasty in rabbits,” Arch. Ophthalmol. 128(1), 75–80 (2010).
[Crossref] [PubMed]

Gan, X.

Gao, P.

Gareau, D. S.

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1), 1–7 (2000).
[Crossref]

Gong, W.

K. Si, W. Gong, N. Chen, and C. J. Sheppard, “Enhanced background rejection in thick tissue using focal modulation microscopy with quadrant apertures,” Opt. Commun. 284(5), 1475–1480 (2011).
[Crossref]

W. Gong, K. Si, N. Chen, and C. J. Sheppard, “Focal modulation microscopy with annular apertures: a numerical study,” J. Biophotonics 3(7), 476–484 (2010).
[Crossref] [PubMed]

C. J. Sheppard, W. Gong, and K. Si, “The divided aperture technique for microscopy through scattering media,” Opt. Express 16(21), 17031–17038 (2008).
[Crossref] [PubMed]

Gu, M.

Hao, X.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12(11), 115707 (2010).
[Crossref]

Hashimoto, N.

Hibi, T.

Ho, P. P.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref] [PubMed]

Horanai, H.

Kaufman, H. E.

A. Abdelkader, S. M. Elewah, and H. E. Kaufman, “Confocal microscopy of corneal wound healing after deep lamellar keratoplasty in rabbits,” Arch. Ophthalmol. 128(1), 75–80 (2010).
[Crossref] [PubMed]

Knüttel, A.

Kozawa, Y.

Kuang, C.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12(11), 115707 (2010).
[Crossref]

Kurihara, M.

Lerman, G. M.

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1), 1–7 (2000).
[Crossref]

Levy, U.

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref] [PubMed]

Liu, X.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12(11), 115707 (2010).
[Crossref]

Lukyanchuk, B.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Muallem, S.

J. P. Yuan, W. Zeng, M. R. Dorwart, Y.-J. Choi, P. F. Worley, and S. Muallem, “SOAR and the polybasic STIM1 domains gate and regulate Orai channels,” Nat. Cell Biol. 11(3), 337–343 (2009).
[Crossref] [PubMed]

Nemoto, T.

Nienhaus, G. U.

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1), 1–7 (2000).
[Crossref]

Rajadhyaksha, M.

Sato, A.

Sato, S.

Schilders, S. P.

Schmitt, J. M.

Sheppard, C.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Sheppard, C. J.

Shi, L.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Si, K.

K. Si, W. Gong, N. Chen, and C. J. Sheppard, “Enhanced background rejection in thick tissue using focal modulation microscopy with quadrant apertures,” Opt. Commun. 284(5), 1475–1480 (2011).
[Crossref]

W. Gong, K. Si, N. Chen, and C. J. Sheppard, “Focal modulation microscopy with annular apertures: a numerical study,” J. Biophotonics 3(7), 476–484 (2010).
[Crossref] [PubMed]

C. J. Sheppard, W. Gong, and K. Si, “The divided aperture technique for microscopy through scattering media,” Opt. Express 16(21), 17031–17038 (2008).
[Crossref] [PubMed]

Totzeck, M.

M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields,” Optik (Stuttg.) 112(9), 399–406 (2001).
[Crossref]

Wang, H.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Wang, L.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref] [PubMed]

Wang, T.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12(11), 115707 (2010).
[Crossref]

Wilson, T.

Wong, C.-H.

Worley, P. F.

J. P. Yuan, W. Zeng, M. R. Dorwart, Y.-J. Choi, P. F. Worley, and S. Muallem, “SOAR and the polybasic STIM1 domains gate and regulate Orai channels,” Nat. Cell Biol. 11(3), 337–343 (2009).
[Crossref] [PubMed]

Yadlowsky, M.

Yokoyama, H.

Youngworth, K.

Yuan, J. P.

J. P. Yuan, W. Zeng, M. R. Dorwart, Y.-J. Choi, P. F. Worley, and S. Muallem, “SOAR and the polybasic STIM1 domains gate and regulate Orai channels,” Nat. Cell Biol. 11(3), 337–343 (2009).
[Crossref] [PubMed]

Zeng, W.

J. P. Yuan, W. Zeng, M. R. Dorwart, Y.-J. Choi, P. F. Worley, and S. Muallem, “SOAR and the polybasic STIM1 domains gate and regulate Orai channels,” Nat. Cell Biol. 11(3), 337–343 (2009).
[Crossref] [PubMed]

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref] [PubMed]

Appl. Opt. (1)

Arch. Ophthalmol. (1)

A. Abdelkader, S. M. Elewah, and H. E. Kaufman, “Confocal microscopy of corneal wound healing after deep lamellar keratoplasty in rabbits,” Arch. Ophthalmol. 128(1), 75–80 (2010).
[Crossref] [PubMed]

J. Biophotonics (1)

W. Gong, K. Si, N. Chen, and C. J. Sheppard, “Focal modulation microscopy with annular apertures: a numerical study,” J. Biophotonics 3(7), 476–484 (2010).
[Crossref] [PubMed]

J. Opt. (1)

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12(11), 115707 (2010).
[Crossref]

J. Opt. Soc. Am. A (2)

Nat. Cell Biol. (1)

J. P. Yuan, W. Zeng, M. R. Dorwart, Y.-J. Choi, P. F. Worley, and S. Muallem, “SOAR and the polybasic STIM1 domains gate and regulate Orai channels,” Nat. Cell Biol. 11(3), 337–343 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Opt. Commun. (2)

K. Si, W. Gong, N. Chen, and C. J. Sheppard, “Enhanced background rejection in thick tissue using focal modulation microscopy with quadrant apertures,” Opt. Commun. 284(5), 1475–1480 (2011).
[Crossref]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1), 1–7 (2000).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Optik (Stuttg.) (1)

M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields,” Optik (Stuttg.) 112(9), 399–406 (2001).
[Crossref]

Science (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref] [PubMed]

Other (4)

M. E. Brezinski, Optical Coherence Tomography: Principles and Applications (Academic Press, 2003).

A. B. W. Smith, L. V. Zavyalova, and A. Estroff, “Benefiting from polarization effects on high-NA imaging,” in Microlithography 2004, 2004)

N. Chen, G. Gao, and S. P. Chong, Focal Modulation Microscopy: Principle and Techniques (INTECH Open Access Publisher, 2012).

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, (The Royal Society, 1959), 358–379.
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (24223 KB)      Total illumination pattern and X, Y, Z polarized components, as a function of time in z=0 plane.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Geometry of the FMM system combined with annular aperture and polarized beams.
Fig. 2
Fig. 2 Energy density distribution of x (left), y (center) and z (right) components for (a-c) circular aperture with radius Ɛa (Ɛ = 0.707); (d-f) annular aperture with radius a and inner radius Ɛa (Ɛ = 0.707). Incident beam is right-circular polarized and axes are in wavelength units.
Fig. 3
Fig. 3 Energy density distribution of x (left), y (center) and z (right) components for FMM signal of annular aperture lens with equal modulated and unmodulated area. Incident beam is right-circular polarized and axes are in wavelength units.
Fig. 4
Fig. 4 (a) Cross sections of the IPSF for CM and FMM (in high-NA system) with equal area in z direction and x direction, respectively. (b) Transverse resolution for FMM in high-NA system with finite detector size. (c) Half-width at half-maximum (HWHM) in x direction as a function of detector size for FMM and CM in high-NA system. Both detector radius and axes are in wavelength units.
Fig. 5
Fig. 5 Simulation results of a sample with a spoke-like pattern. (a) Sample. (b, c) Image of sample in the horizontal (XY) plane for FMM and CM. (d, e) Image of sample in the cross-section (ZX) plane for FMM and CM, respectively. (f) Signal profile along the lines. The comparison is studied in high-NA system, using vectorial diffraction theory. The axes are in wavelength units.
Fig. 6
Fig. 6 Comparison of the integrated intensity of CM, FMM on both scalar and vectorial theory for vd = 0 (solid lines) and vd = 0.4 (dash lines). Both detector radius and axes are in wavelength units.
Fig. 7
Fig. 7 The total background as a function of defocus distance for CM, FMM on both scalar and vectorial theory for vd = 0 (solid lines) and vd = 0.4 (dash lines). Both detector radius and axes are in wavelength units.
Fig. 8
Fig. 8 The intensity distribution for different polarization patterns of radial, circular and linear, in the cases of AFMM with vd = 0. The axis units are in wavelength.
Fig. 9
Fig. 9 The integrated intensity as a function of z for different polarization patterns, in the cases of AFMM with vd = 0 (solid lines) and with vd = 0.4 (dash lines). The axis units are in wavelength.

Tables (1)

Tables Icon

Table 1 Polarization Patterns and Matrixes

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ( r 2 , φ 2 , z 2 )=iC Ω sinθ A 1 ( θ,φ) A 2 (θ,φ)[ p x p y p z ]exp{ikn[ z 2 cosθ + r 2 sinθcos(φ φ 2 )]}dθdφ.
V(θ,φ)= [ 1+(cosθ1) cos 2 φ (cosθ1)cosφsinφ sinθcosφ (cosθ1)cosφsinφ 1+(cosθ1) sin 2 φ sinθsinφ sinθcosφ sinθsinφ cosθ ],
I(r,φ,z,t)=| h 1A (r,φ,z)+ h 1B (r,φ,z) e i2δωt | 2 ×(| h 2 (r,φ,z) | 2 2 D(r,φ)),
I illu =( h 1Ax h 1Bx * + h 1Ax * h 1Bx )+( h 1Ay h 1By * + h 1Ay * h 1By )+( h 1Az h 1Bz * + h 1Az * h 1Bz ),
I FMM = I illu (| h 2 | 2 2 D),
I int (z)= I(r,φ,z)rdrdφ
I bgd ( z 0 )= 0 z 0 I int (z)dz

Metrics