Abstract

A titanium dioxide (TiO2) / electro-optic (EO) polymer hybrid waveguide modulator was designed and fabricated. This modulator possessed a significant advantage for realizing high poling efficiency regardless of the EO polymer resistivity. The in-device EO coefficient was measured to be 100 pm/V, which was 32% higher than that of the thin polymer film. As a result, the phase modulator displayed a VπL figure of merit of 3.5 V∙cm at 1550 nm, which can be reduced further in a push-pull Mach-Zehnder interferometer structure. Temporal stability test of the modulator at 85°C indicated only 8% change of Vπ over 500 hours. The propagation loss in the waveguide was measured as ~3 dB/cm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced conductivity of sol-gel silica cladding for efficient poling in electro-optic polymer/TiO2 vertical slot waveguide modulators

Yasufumi Enami, Youssef Jouane, Jingdong Luo, and Alex K-Y. Jen
Opt. Express 22(24) 30191-30199 (2014)

Mesoporous sol-gel silica cladding for hybrid TiO2/electro-optic polymer waveguide modulators

Yasufumi Enami, Yasuhisa Kayaba, Jingdong Luo, and Alex K.-Y. Jen
Opt. Express 22(13) 16418-16423 (2014)

Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO2 multilayer slot waveguide modulators

Y. Jouane, Y-C. Chang, D. Zhang, J. Luo, A. K-Y. Jen, and Y. Enami
Opt. Express 22(22) 27725-27732 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
    [Crossref]
  2. J. Luo and A. K. Y. Jen, “Highly efficient organic electrooptic materials AND their hybrid systems for advanced photonic devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 6555812 (2013).
    [Crossref]
  3. F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photonics 3(5), 780 (2016).
  4. F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 85601 (2015).
  5. R. Song, A. Yick, and W. H. Steier, “Conductivity-dependency-free in-plane poling for Mach-Zehnder modulator with highly conductive electro-optic polymer,” Appl. Phys. Lett. 90(19), 191103 (2007).
    [Crossref]
  6. X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear Optical Side-chain Polymers Postfunctionalized with High-β Chromophores Exhibiting Large Electro-optic Property,” J. Polym. Sci. Part A 49(1), 47–54 (2011).
    [Crossref]
  7. Y. Mori, K. Nakaya, X. Piao, K. Yamamoto, A. Otomo, and S. Yokoyama, “Large Electro-optic Activity and Enhanced Temporal Stability of Methacrylate-based Crosslinking Hyperbranched Nonlinear Optical Polymer,” J. Polym. Sci. 50(7), 1254–1260 (2012).
    [Crossref]
  8. F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 Core and Electro-Optic Polymer Cladding Wavaguide Modulators,” Appl. Phys. Lett. 102(23), 233504 (2013).
    [Crossref]
  9. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [Crossref] [PubMed]
  10. J. Hu, S. Ward, and Q. Wang, “Field-induced electric switching in sol-gel-derived SiO2 films,” Appl. Phys. Lett. 83(15), 3153–3155 (2003).
    [Crossref]
  11. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
    [Crossref]
  12. S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
    [Crossref]

2016 (1)

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photonics 3(5), 780 (2016).

2015 (1)

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 85601 (2015).

2014 (1)

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

2013 (2)

J. Luo and A. K. Y. Jen, “Highly efficient organic electrooptic materials AND their hybrid systems for advanced photonic devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 6555812 (2013).
[Crossref]

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 Core and Electro-Optic Polymer Cladding Wavaguide Modulators,” Appl. Phys. Lett. 102(23), 233504 (2013).
[Crossref]

2012 (1)

Y. Mori, K. Nakaya, X. Piao, K. Yamamoto, A. Otomo, and S. Yokoyama, “Large Electro-optic Activity and Enhanced Temporal Stability of Methacrylate-based Crosslinking Hyperbranched Nonlinear Optical Polymer,” J. Polym. Sci. 50(7), 1254–1260 (2012).
[Crossref]

2011 (1)

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear Optical Side-chain Polymers Postfunctionalized with High-β Chromophores Exhibiting Large Electro-optic Property,” J. Polym. Sci. Part A 49(1), 47–54 (2011).
[Crossref]

2010 (1)

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

2007 (1)

R. Song, A. Yick, and W. H. Steier, “Conductivity-dependency-free in-plane poling for Mach-Zehnder modulator with highly conductive electro-optic polymer,” Appl. Phys. Lett. 90(19), 191103 (2007).
[Crossref]

2004 (1)

2003 (1)

J. Hu, S. Ward, and Q. Wang, “Field-induced electric switching in sol-gel-derived SiO2 films,” Appl. Phys. Lett. 83(15), 3153–3155 (2003).
[Crossref]

1990 (1)

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[Crossref]

Alloatti, L.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Almeida, V. R.

Aoki, I.

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 85601 (2015).

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 Core and Electro-Optic Polymer Cladding Wavaguide Modulators,” Appl. Phys. Lett. 102(23), 233504 (2013).
[Crossref]

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear Optical Side-chain Polymers Postfunctionalized with High-β Chromophores Exhibiting Large Electro-optic Property,” J. Polym. Sci. Part A 49(1), 47–54 (2011).
[Crossref]

Barrios, C. A.

Chen, B.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Dinu, R.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Freude, W.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Hau, S. K.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Hillerkuss, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Hu, J.

J. Hu, S. Ward, and Q. Wang, “Field-induced electric switching in sol-gel-derived SiO2 films,” Appl. Phys. Lett. 83(15), 3153–3155 (2003).
[Crossref]

Huang, S.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Inoue, S.

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear Optical Side-chain Polymers Postfunctionalized with High-β Chromophores Exhibiting Large Electro-optic Property,” J. Polym. Sci. Part A 49(1), 47–54 (2011).
[Crossref]

Jen, A. K. Y.

J. Luo and A. K. Y. Jen, “Highly efficient organic electrooptic materials AND their hybrid systems for advanced photonic devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 6555812 (2013).
[Crossref]

Jen, A. K.-Y.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Kim, T.-D.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Kohl, M.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Koishi, M.

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear Optical Side-chain Polymers Postfunctionalized with High-β Chromophores Exhibiting Large Electro-optic Property,” J. Polym. Sci. Part A 49(1), 47–54 (2011).
[Crossref]

Koos, C.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Korn, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Leuthold, J.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Li, J.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Lipson, M.

Luo, J.

J. Luo and A. K. Y. Jen, “Highly efficient organic electrooptic materials AND their hybrid systems for advanced photonic devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 6555812 (2013).
[Crossref]

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Maeda, D.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photonics 3(5), 780 (2016).

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 85601 (2015).

Man, H. T.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[Crossref]

Melikyan, A.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Miura, H.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photonics 3(5), 780 (2016).

Mori, Y.

Y. Mori, K. Nakaya, X. Piao, K. Yamamoto, A. Otomo, and S. Yokoyama, “Large Electro-optic Activity and Enhanced Temporal Stability of Methacrylate-based Crosslinking Hyperbranched Nonlinear Optical Polymer,” J. Polym. Sci. 50(7), 1254–1260 (2012).
[Crossref]

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear Optical Side-chain Polymers Postfunctionalized with High-β Chromophores Exhibiting Large Electro-optic Property,” J. Polym. Sci. Part A 49(1), 47–54 (2011).
[Crossref]

Muehlbrandt, S.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Muslija, A.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Nakaya, A.

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear Optical Side-chain Polymers Postfunctionalized with High-β Chromophores Exhibiting Large Electro-optic Property,” J. Polym. Sci. Part A 49(1), 47–54 (2011).
[Crossref]

Nakaya, K.

Y. Mori, K. Nakaya, X. Piao, K. Yamamoto, A. Otomo, and S. Yokoyama, “Large Electro-optic Activity and Enhanced Temporal Stability of Methacrylate-based Crosslinking Hyperbranched Nonlinear Optical Polymer,” J. Polym. Sci. 50(7), 1254–1260 (2012).
[Crossref]

Odoi, K.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photonics 3(5), 780 (2016).

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 85601 (2015).

Otomo, A.

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 85601 (2015).

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 Core and Electro-Optic Polymer Cladding Wavaguide Modulators,” Appl. Phys. Lett. 102(23), 233504 (2013).
[Crossref]

Y. Mori, K. Nakaya, X. Piao, K. Yamamoto, A. Otomo, and S. Yokoyama, “Large Electro-optic Activity and Enhanced Temporal Stability of Methacrylate-based Crosslinking Hyperbranched Nonlinear Optical Polymer,” J. Polym. Sci. 50(7), 1254–1260 (2012).
[Crossref]

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear Optical Side-chain Polymers Postfunctionalized with High-β Chromophores Exhibiting Large Electro-optic Property,” J. Polym. Sci. Part A 49(1), 47–54 (2011).
[Crossref]

Ozawa, M.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photonics 3(5), 780 (2016).

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 85601 (2015).

Palmer, R.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Piao, X.

Y. Mori, K. Nakaya, X. Piao, K. Yamamoto, A. Otomo, and S. Yokoyama, “Large Electro-optic Activity and Enhanced Temporal Stability of Methacrylate-based Crosslinking Hyperbranched Nonlinear Optical Polymer,” J. Polym. Sci. 50(7), 1254–1260 (2012).
[Crossref]

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear Optical Side-chain Polymers Postfunctionalized with High-β Chromophores Exhibiting Large Electro-optic Property,” J. Polym. Sci. Part A 49(1), 47–54 (2011).
[Crossref]

Qiu, F.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photonics 3(5), 780 (2016).

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 85601 (2015).

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 Core and Electro-Optic Polymer Cladding Wavaguide Modulators,” Appl. Phys. Lett. 102(23), 233504 (2013).
[Crossref]

Schindler, P. C.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Shi, Z.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Sommer, M.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Song, R.

R. Song, A. Yick, and W. H. Steier, “Conductivity-dependency-free in-plane poling for Mach-Zehnder modulator with highly conductive electro-optic polymer,” Appl. Phys. Lett. 90(19), 191103 (2007).
[Crossref]

Spring, A. M.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photonics 3(5), 780 (2016).

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 85601 (2015).

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 Core and Electro-Optic Polymer Cladding Wavaguide Modulators,” Appl. Phys. Lett. 102(23), 233504 (2013).
[Crossref]

Steier, W. H.

R. Song, A. Yick, and W. H. Steier, “Conductivity-dependency-free in-plane poling for Mach-Zehnder modulator with highly conductive electro-optic polymer,” Appl. Phys. Lett. 90(19), 191103 (2007).
[Crossref]

Teng, C. C.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[Crossref]

Van Thourhout, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Wang, Q.

J. Hu, S. Ward, and Q. Wang, “Field-induced electric switching in sol-gel-derived SiO2 films,” Appl. Phys. Lett. 83(15), 3153–3155 (2003).
[Crossref]

Ward, S.

J. Hu, S. Ward, and Q. Wang, “Field-induced electric switching in sol-gel-derived SiO2 films,” Appl. Phys. Lett. 83(15), 3153–3155 (2003).
[Crossref]

Xu, Q.

Yamamoto, K.

Y. Mori, K. Nakaya, X. Piao, K. Yamamoto, A. Otomo, and S. Yokoyama, “Large Electro-optic Activity and Enhanced Temporal Stability of Methacrylate-based Crosslinking Hyperbranched Nonlinear Optical Polymer,” J. Polym. Sci. 50(7), 1254–1260 (2012).
[Crossref]

Yick, A.

R. Song, A. Yick, and W. H. Steier, “Conductivity-dependency-free in-plane poling for Mach-Zehnder modulator with highly conductive electro-optic polymer,” Appl. Phys. Lett. 90(19), 191103 (2007).
[Crossref]

Yip, H.-L.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Yokoyama, S.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photonics 3(5), 780 (2016).

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 85601 (2015).

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 Core and Electro-Optic Polymer Cladding Wavaguide Modulators,” Appl. Phys. Lett. 102(23), 233504 (2013).
[Crossref]

Y. Mori, K. Nakaya, X. Piao, K. Yamamoto, A. Otomo, and S. Yokoyama, “Large Electro-optic Activity and Enhanced Temporal Stability of Methacrylate-based Crosslinking Hyperbranched Nonlinear Optical Polymer,” J. Polym. Sci. 50(7), 1254–1260 (2012).
[Crossref]

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear Optical Side-chain Polymers Postfunctionalized with High-β Chromophores Exhibiting Large Electro-optic Property,” J. Polym. Sci. Part A 49(1), 47–54 (2011).
[Crossref]

Yu, F.

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 Core and Electro-Optic Polymer Cladding Wavaguide Modulators,” Appl. Phys. Lett. 102(23), 233504 (2013).
[Crossref]

Zhang, Z.

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear Optical Side-chain Polymers Postfunctionalized with High-β Chromophores Exhibiting Large Electro-optic Property,” J. Polym. Sci. Part A 49(1), 47–54 (2011).
[Crossref]

Zhou, X.-H.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

ACS Photonics (1)

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photonics 3(5), 780 (2016).

Appl. Phys. Lett. (5)

R. Song, A. Yick, and W. H. Steier, “Conductivity-dependency-free in-plane poling for Mach-Zehnder modulator with highly conductive electro-optic polymer,” Appl. Phys. Lett. 90(19), 191103 (2007).
[Crossref]

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 Core and Electro-Optic Polymer Cladding Wavaguide Modulators,” Appl. Phys. Lett. 102(23), 233504 (2013).
[Crossref]

J. Hu, S. Ward, and Q. Wang, “Field-induced electric switching in sol-gel-derived SiO2 films,” Appl. Phys. Lett. 83(15), 3153–3155 (2003).
[Crossref]

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[Crossref]

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Luo and A. K. Y. Jen, “Highly efficient organic electrooptic materials AND their hybrid systems for advanced photonic devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 6555812 (2013).
[Crossref]

J. Polym. Sci. (1)

Y. Mori, K. Nakaya, X. Piao, K. Yamamoto, A. Otomo, and S. Yokoyama, “Large Electro-optic Activity and Enhanced Temporal Stability of Methacrylate-based Crosslinking Hyperbranched Nonlinear Optical Polymer,” J. Polym. Sci. 50(7), 1254–1260 (2012).
[Crossref]

J. Polym. Sci. Part A (1)

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear Optical Side-chain Polymers Postfunctionalized with High-β Chromophores Exhibiting Large Electro-optic Property,” J. Polym. Sci. Part A 49(1), 47–54 (2011).
[Crossref]

Nat. Photonics (1)

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Opt. Lett. (1)

Sci. Rep. (1)

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 85601 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Designed single-mode TiO2 / EO polymer waveguide, and (b) its TM0 mode pattern (top) and the used EO polymer structure (bottom); (c) another waveguide without the thin sol-gel SiO2 cladding, and (d) its TM0 (top) and TM1 (bottom) mode pattern.
Fig. 2
Fig. 2 Top view of the fabricated modulator.
Fig. 3
Fig. 3 (a) EO polymer and sol-gel TEMS-SiO2 resistivity with different thicknesses measured under the poling condition of 110 V/µm at 141°C, and (b) optical insertion loss of the hybrid waveguides with different lengths.
Fig. 4
Fig. 4 Measured transfer function at 1 kHz for the TiO2/EO polymer hybrid waveguide modulator. Top: Applied triangular voltage waveform. Bottom: Optical output from the modulator.
Fig. 5
Fig. 5 Temporal stability of the modulator at room temperature and 85°C for 500 hours.

Metrics