Abstract

A working-point trackable fiber-optic hydrophone with high acoustic resolution is proposed and experimentally demonstrated. The sensor is based on a polydimethylsiloxane (PDMS) cavity molded at the end of a single-mode fiber, acting as a low-finesse Fabry–Perot (FP) interferometer. The working point tracking is achieved by using a low cost white-light interferometric system with a simple tunable FP filter. By real-time adjusting the optical path difference of the FP filter, the sensor working point can be kept at its highest sensitivity point. This helps address the sensor working point drift due to hydrostatic pressure, water absorption, and/or temperature changes. It is demonstrated that the sensor system has a high resolution with a minimum detectable acoustic pressure of 148 Pa and superior stability compared to a system using a tunable laser.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-optic hydrophone using a cylindrical Helmholtz resonator as a mechanical anti-aliasing filter

Zefeng Wang, Yongming Hu, Zhou Meng, and Ming Ni
Opt. Lett. 33(1) 37-39 (2008)

Compressible fiber optic micro-Fabry-Pérot cavity with ultra-high pressure sensitivity

Ying Wang, D. N. Wang, Chao Wang, and Tianyi Hu
Opt. Express 21(12) 14084-14089 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber optic hydrophone,” J. Acoust. Soc. Am. 62(5), 1302–1304 (1977).
    [Crossref]
  2. C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
    [Crossref]
  3. J. Staudenraus and W. Eisenmenger, “Fiber-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31(4), 267–273 (1993).
    [Crossref]
  4. C. Wurster, J. Staudenraus, and W. Eisenmenger, “The fiber optic probe hydrophone,” in Proceedings of IEEE Ultrasonics Symposium ULTSYM-94, 2, (1994), pp. 941–944.
    [Crossref]
  5. B. Shen, Y. Wada, D. Koyama, R. Isago, Y. Mizuno, and K. Nakamura, “Fiber-optic ultrasonic probe based on refractive-index modulation in water,” in Proceedings of SPIE7753 21st International Conference on Optical Fiber Sensors, 7753, (2011), pp.77539W.
    [Crossref]
  6. G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensor: overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
    [Crossref]
  7. A. J. Rad, F. Ueberle, and K. Krueger, “Investigation on the comparability of the light spot hydrophone and the fiber optic hydrophone in lithotripter field measurements,” Rev. Sci. Instrum. 85(1), 014902 (2014).
    [Crossref] [PubMed]
  8. N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
    [Crossref] [PubMed]
  9. D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12(1), 122–128 (2003).
    [Crossref]
  10. W. Zhang, Y. Liu, and F. Li, “Fiber Bragg grating hydrophone with high sensitivity,” Chin. Opt. Lett. 6(9), 631–633 (2008).
    [Crossref]
  11. Y. Tan, Y. Zhang, and B. Guan, “Hydrostatic pressure insensitive dual polarization fiber grating laser hydrophone,” IEEE Sens. J. 11(5), 1169–1172 (2011).
    [Crossref]
  12. X. Ni, Y. Zhao, and J. Yang, “Research of a novel fiber Bragg grating underwater acoustic sensor,” Sensor. Actuat. A-Phys. 138(1), 76–80 (2007).
  13. M. Moccia, M. Pisco, A. Cutolo, V. Galdi, P. Bevilacqua, and A. Cusano, “Opto-acoustic behavior of coated fiber Bragg gratings,” Opt. Express 19(20), 18842–18860 (2011).
    [Crossref] [PubMed]
  14. B. O. Guan, Y. N. Tan, and H. Y. Tam, “Dual polarization fiber grating laser hydrophone,” Opt. Express 17(22), 19544–19550 (2009).
    [Crossref] [PubMed]
  15. A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
    [Crossref] [PubMed]
  16. F. Zhang, W. Zhang, F. Li, and Y. Liu, “DFB fiber laser hydrophone with an acoustic low-pass filter,” IEEE Photonic. Tech. L. 23(17), 1264–1266 (2011).
    [Crossref]
  17. F. Launay, R. Lardat, R. Bouffaron, G. Roux, M. Doisy, and C. Bergogne, “Static pressure and temperature compensated wideband Fiber Laser Hydrophone,” in Proceedings of SPIE8794 Fifth European Workshop on Optical Fibre Sensors, 87940K, (2013).
    [Crossref]
  18. F. Zhang, X. Zhang, L. Wang, and C. Wang, “Study on the frequency response of static pressure compensated fiber laser hydrophone-theory and finite element simulation,” in Proceedings of SPIE9157 23rd International Conference on Optical Fiber Sensors, 9157, (2014).
  19. D. Gallego and H. Lamela, “High-sensitivity ultrasound interferometric single-mode polymer optical fiber sensors for biomedical applications,” Opt. Lett. 34(12), 1807–1809 (2009).
    [Crossref] [PubMed]
  20. P. C. Beard and T. N. Mills, “Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer,” Appl. Opt. 35(4), 663–675 (1996).
    [Crossref] [PubMed]
  21. P. C. Beard and T. N. Mills, “Miniature optical fiber ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33(9), 801–803 (1997).
    [Crossref]
  22. V. Wilkens and C. Koch, “Fiber-optic multilayer hydrophone for ultrasonic measurement,” Ultrasonics 37(1), 45–49 (1999).
    [Crossref]
  23. W. Weise, V. Wilken, and C. Koch, “Frequency response of fiber-optic multilayer hydrophones: experimental investigation and finite element simulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(7), 937–946 (2002).
    [Crossref] [PubMed]
  24. V. Wilkens, “Characterization of an optical multilayer hydrophone with constant frequency response in the range from 1 to 75 MHz,” J. Acoust. Soc. Am. 113(3), 1431–1438 (2003).
    [Crossref] [PubMed]
  25. P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
    [Crossref] [PubMed]
  26. K. S. Kim, Y. Mizuno, and K. Nakamura, “Fiber-optic ultrasonic hydrophone using short Fabry-Perot cavity with multilayer reflectors deposited on small stub,” Ultrasonics 54(4), 1047–1051 (2014).
    [Crossref] [PubMed]
  27. Z. F. Liang, G. P. Zhou, and S. Y. Lin, “Review of the high-power low-frequency ultrasonic fields measurement,” Technical Acoustics 23(1), 61–66 (2004).
  28. K. J. Disotell and J. W. Gregory, “Measurement of transient acoustic fields using a single-shot pressure-sensitive paint system,” Rev. Sci. Instrum. 82(7), 075112 (2011).
    [Crossref] [PubMed]
  29. H. Bae, D. Yun, H. Liu, D. A. Olson, and M. Yu, “Hybrid Miniature Fabry–Perot Sensor with Dual Optical Cavities for Simultaneous Pressure and Temperature Measurements,” J. Lightwave Technol. 32(8), 1585–1593 (2014).
    [Crossref]
  30. B. T. Meggitt, “Fiber optic white-light interferometric sensors,” in Optical Fiber Sensor Technology, K. T. V. Grattan and B. T. Meggitt, (Chapman & Hall, 1995), pp. 269–312.
  31. I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 10–11 (2014).
    [Crossref]
  32. W. Sim, B. Kim, B. Choi, and J. O. Park, “Theoretical and experimental studies on the parylene diaphragms for microdevices,” Microsyst. Technol. 11(1), 11–15 (2005).
    [Crossref]
  33. P. Herrera-Franco, F. Hernández-Sánchez, E. Adem, and B. Guillermina, “Dynamic mechanical properties of compatibilized PET with radiation oxidized HDPE,” Polym. Bull. 56(1), 47–52 (2006).
    [Crossref]
  34. S. L. Zhang and J. C. M. Li, “Anisotropic elastic moduli and Poisson’s ratios of a poly(ethylene terephthalate) film,” J. Polym. Sci., B, Polym. Phys. 42(2), 260–266 (2004).
    [Crossref]
  35. M. Yu, H. Bae, and X. M. Zhang, “Ultra-miniature fiber-optic pressure sensor system and method of fabrication,” US Patent 8,151,648, Feb. 3, 2011.

2014 (4)

A. J. Rad, F. Ueberle, and K. Krueger, “Investigation on the comparability of the light spot hydrophone and the fiber optic hydrophone in lithotripter field measurements,” Rev. Sci. Instrum. 85(1), 014902 (2014).
[Crossref] [PubMed]

K. S. Kim, Y. Mizuno, and K. Nakamura, “Fiber-optic ultrasonic hydrophone using short Fabry-Perot cavity with multilayer reflectors deposited on small stub,” Ultrasonics 54(4), 1047–1051 (2014).
[Crossref] [PubMed]

I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 10–11 (2014).
[Crossref]

H. Bae, D. Yun, H. Liu, D. A. Olson, and M. Yu, “Hybrid Miniature Fabry–Perot Sensor with Dual Optical Cavities for Simultaneous Pressure and Temperature Measurements,” J. Lightwave Technol. 32(8), 1585–1593 (2014).
[Crossref]

2011 (5)

A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
[Crossref] [PubMed]

M. Moccia, M. Pisco, A. Cutolo, V. Galdi, P. Bevilacqua, and A. Cusano, “Opto-acoustic behavior of coated fiber Bragg gratings,” Opt. Express 19(20), 18842–18860 (2011).
[Crossref] [PubMed]

F. Zhang, W. Zhang, F. Li, and Y. Liu, “DFB fiber laser hydrophone with an acoustic low-pass filter,” IEEE Photonic. Tech. L. 23(17), 1264–1266 (2011).
[Crossref]

K. J. Disotell and J. W. Gregory, “Measurement of transient acoustic fields using a single-shot pressure-sensitive paint system,” Rev. Sci. Instrum. 82(7), 075112 (2011).
[Crossref] [PubMed]

Y. Tan, Y. Zhang, and B. Guan, “Hydrostatic pressure insensitive dual polarization fiber grating laser hydrophone,” IEEE Sens. J. 11(5), 1169–1172 (2011).
[Crossref]

2009 (3)

2008 (2)

W. Zhang, Y. Liu, and F. Li, “Fiber Bragg grating hydrophone with high sensitivity,” Chin. Opt. Lett. 6(9), 631–633 (2008).
[Crossref]

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensor: overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[Crossref]

2007 (1)

X. Ni, Y. Zhao, and J. Yang, “Research of a novel fiber Bragg grating underwater acoustic sensor,” Sensor. Actuat. A-Phys. 138(1), 76–80 (2007).

2006 (1)

P. Herrera-Franco, F. Hernández-Sánchez, E. Adem, and B. Guillermina, “Dynamic mechanical properties of compatibilized PET with radiation oxidized HDPE,” Polym. Bull. 56(1), 47–52 (2006).
[Crossref]

2005 (1)

W. Sim, B. Kim, B. Choi, and J. O. Park, “Theoretical and experimental studies on the parylene diaphragms for microdevices,” Microsyst. Technol. 11(1), 11–15 (2005).
[Crossref]

2004 (3)

S. L. Zhang and J. C. M. Li, “Anisotropic elastic moduli and Poisson’s ratios of a poly(ethylene terephthalate) film,” J. Polym. Sci., B, Polym. Phys. 42(2), 260–266 (2004).
[Crossref]

Z. F. Liang, G. P. Zhou, and S. Y. Lin, “Review of the high-power low-frequency ultrasonic fields measurement,” Technical Acoustics 23(1), 61–66 (2004).

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[Crossref]

2003 (2)

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12(1), 122–128 (2003).
[Crossref]

V. Wilkens, “Characterization of an optical multilayer hydrophone with constant frequency response in the range from 1 to 75 MHz,” J. Acoust. Soc. Am. 113(3), 1431–1438 (2003).
[Crossref] [PubMed]

2002 (1)

W. Weise, V. Wilken, and C. Koch, “Frequency response of fiber-optic multilayer hydrophones: experimental investigation and finite element simulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(7), 937–946 (2002).
[Crossref] [PubMed]

2000 (1)

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
[Crossref] [PubMed]

1999 (1)

V. Wilkens and C. Koch, “Fiber-optic multilayer hydrophone for ultrasonic measurement,” Ultrasonics 37(1), 45–49 (1999).
[Crossref]

1997 (1)

P. C. Beard and T. N. Mills, “Miniature optical fiber ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33(9), 801–803 (1997).
[Crossref]

1996 (1)

1993 (1)

J. Staudenraus and W. Eisenmenger, “Fiber-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31(4), 267–273 (1993).
[Crossref]

1977 (1)

J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber optic hydrophone,” J. Acoust. Soc. Am. 62(5), 1302–1304 (1977).
[Crossref]

Adem, E.

P. Herrera-Franco, F. Hernández-Sánchez, E. Adem, and B. Guillermina, “Dynamic mechanical properties of compatibilized PET with radiation oxidized HDPE,” Polym. Bull. 56(1), 47–52 (2006).
[Crossref]

Bae, H.

Beard, P.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

Beard, P. C.

P. C. Beard and T. N. Mills, “Miniature optical fiber ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33(9), 801–803 (1997).
[Crossref]

P. C. Beard and T. N. Mills, “Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer,” Appl. Opt. 35(4), 663–675 (1996).
[Crossref] [PubMed]

Betz, D. C.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12(1), 122–128 (2003).
[Crossref]

Bevilacqua, P.

Bucaro, J. A.

J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber optic hydrophone,” J. Acoust. Soc. Am. 62(5), 1302–1304 (1977).
[Crossref]

Carome, E. F.

J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber optic hydrophone,” J. Acoust. Soc. Am. 62(5), 1302–1304 (1977).
[Crossref]

Choi, B.

W. Sim, B. Kim, B. Choi, and J. O. Park, “Theoretical and experimental studies on the parylene diaphragms for microdevices,” Microsyst. Technol. 11(1), 11–15 (2005).
[Crossref]

Culshaw, B.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12(1), 122–128 (2003).
[Crossref]

Cusano, A.

Cutolo, A.

Dandridge, A.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[Crossref]

Dardy, H. D.

J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber optic hydrophone,” J. Acoust. Soc. Am. 62(5), 1302–1304 (1977).
[Crossref]

Disotell, K. J.

K. J. Disotell and J. W. Gregory, “Measurement of transient acoustic fields using a single-shot pressure-sensitive paint system,” Rev. Sci. Instrum. 82(7), 075112 (2011).
[Crossref] [PubMed]

Eisenmenger, W.

J. Staudenraus and W. Eisenmenger, “Fiber-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31(4), 267–273 (1993).
[Crossref]

C. Wurster, J. Staudenraus, and W. Eisenmenger, “The fiber optic probe hydrophone,” in Proceedings of IEEE Ultrasonics Symposium ULTSYM-94, 2, (1994), pp. 941–944.
[Crossref]

Galdi, V.

Gallego, D.

Gregory, J. W.

K. J. Disotell and J. W. Gregory, “Measurement of transient acoustic fields using a single-shot pressure-sensitive paint system,” Rev. Sci. Instrum. 82(7), 075112 (2011).
[Crossref] [PubMed]

Guan, B.

Y. Tan, Y. Zhang, and B. Guan, “Hydrostatic pressure insensitive dual polarization fiber grating laser hydrophone,” IEEE Sens. J. 11(5), 1169–1172 (2011).
[Crossref]

Guan, B. O.

Guillermina, B.

P. Herrera-Franco, F. Hernández-Sánchez, E. Adem, and B. Guillermina, “Dynamic mechanical properties of compatibilized PET with radiation oxidized HDPE,” Polym. Bull. 56(1), 47–52 (2006).
[Crossref]

Hernández-Sánchez, F.

P. Herrera-Franco, F. Hernández-Sánchez, E. Adem, and B. Guillermina, “Dynamic mechanical properties of compatibilized PET with radiation oxidized HDPE,” Polym. Bull. 56(1), 47–52 (2006).
[Crossref]

Herrera-Franco, P.

P. Herrera-Franco, F. Hernández-Sánchez, E. Adem, and B. Guillermina, “Dynamic mechanical properties of compatibilized PET with radiation oxidized HDPE,” Polym. Bull. 56(1), 47–52 (2006).
[Crossref]

Hinckley, S.

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensor: overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[Crossref]

Hurrell, A.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

Imamura, K.

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
[Crossref] [PubMed]

Johnston, I. D.

I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 10–11 (2014).
[Crossref]

Kim, B.

W. Sim, B. Kim, B. Choi, and J. O. Park, “Theoretical and experimental studies on the parylene diaphragms for microdevices,” Microsyst. Technol. 11(1), 11–15 (2005).
[Crossref]

Kim, K. S.

K. S. Kim, Y. Mizuno, and K. Nakamura, “Fiber-optic ultrasonic hydrophone using short Fabry-Perot cavity with multilayer reflectors deposited on small stub,” Ultrasonics 54(4), 1047–1051 (2014).
[Crossref] [PubMed]

Kirkendall, C. K.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[Crossref]

Koch, C.

W. Weise, V. Wilken, and C. Koch, “Frequency response of fiber-optic multilayer hydrophones: experimental investigation and finite element simulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(7), 937–946 (2002).
[Crossref] [PubMed]

V. Wilkens and C. Koch, “Fiber-optic multilayer hydrophone for ultrasonic measurement,” Ultrasonics 37(1), 45–49 (1999).
[Crossref]

Krueger, K.

A. J. Rad, F. Ueberle, and K. Krueger, “Investigation on the comparability of the light spot hydrophone and the fiber optic hydrophone in lithotripter field measurements,” Rev. Sci. Instrum. 85(1), 014902 (2014).
[Crossref] [PubMed]

Lamela, H.

Li, F.

F. Zhang, W. Zhang, F. Li, and Y. Liu, “DFB fiber laser hydrophone with an acoustic low-pass filter,” IEEE Photonic. Tech. L. 23(17), 1264–1266 (2011).
[Crossref]

W. Zhang, Y. Liu, and F. Li, “Fiber Bragg grating hydrophone with high sensitivity,” Chin. Opt. Lett. 6(9), 631–633 (2008).
[Crossref]

Li, J. C. M.

S. L. Zhang and J. C. M. Li, “Anisotropic elastic moduli and Poisson’s ratios of a poly(ethylene terephthalate) film,” J. Polym. Sci., B, Polym. Phys. 42(2), 260–266 (2004).
[Crossref]

Liang, Z. F.

Z. F. Liang, G. P. Zhou, and S. Y. Lin, “Review of the high-power low-frequency ultrasonic fields measurement,” Technical Acoustics 23(1), 61–66 (2004).

Lin, S. Y.

Z. F. Liang, G. P. Zhou, and S. Y. Lin, “Review of the high-power low-frequency ultrasonic fields measurement,” Technical Acoustics 23(1), 61–66 (2004).

Liu, H.

Liu, Y.

F. Zhang, W. Zhang, F. Li, and Y. Liu, “DFB fiber laser hydrophone with an acoustic low-pass filter,” IEEE Photonic. Tech. L. 23(17), 1264–1266 (2011).
[Crossref]

W. Zhang, Y. Liu, and F. Li, “Fiber Bragg grating hydrophone with high sensitivity,” Chin. Opt. Lett. 6(9), 631–633 (2008).
[Crossref]

McCluskey, D. K.

I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 10–11 (2014).
[Crossref]

Mills, T. N.

P. C. Beard and T. N. Mills, “Miniature optical fiber ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33(9), 801–803 (1997).
[Crossref]

P. C. Beard and T. N. Mills, “Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer,” Appl. Opt. 35(4), 663–675 (1996).
[Crossref] [PubMed]

Mizuno, Y.

K. S. Kim, Y. Mizuno, and K. Nakamura, “Fiber-optic ultrasonic hydrophone using short Fabry-Perot cavity with multilayer reflectors deposited on small stub,” Ultrasonics 54(4), 1047–1051 (2014).
[Crossref] [PubMed]

Moccia, M.

Morris, P.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

Nakamura, K.

K. S. Kim, Y. Mizuno, and K. Nakamura, “Fiber-optic ultrasonic hydrophone using short Fabry-Perot cavity with multilayer reflectors deposited on small stub,” Ultrasonics 54(4), 1047–1051 (2014).
[Crossref] [PubMed]

Ni, X.

X. Ni, Y. Zhao, and J. Yang, “Research of a novel fiber Bragg grating underwater acoustic sensor,” Sensor. Actuat. A-Phys. 138(1), 76–80 (2007).

Ntziachristos, V.

Olson, D. A.

Park, J. O.

W. Sim, B. Kim, B. Choi, and J. O. Park, “Theoretical and experimental studies on the parylene diaphragms for microdevices,” Microsyst. Technol. 11(1), 11–15 (2005).
[Crossref]

Pisco, M.

Rad, A. J.

A. J. Rad, F. Ueberle, and K. Krueger, “Investigation on the comparability of the light spot hydrophone and the fiber optic hydrophone in lithotripter field measurements,” Rev. Sci. Instrum. 85(1), 014902 (2014).
[Crossref] [PubMed]

Razansky, D.

Rosenthal, A.

Shaw, A.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

Sim, W.

W. Sim, B. Kim, B. Choi, and J. O. Park, “Theoretical and experimental studies on the parylene diaphragms for microdevices,” Microsyst. Technol. 11(1), 11–15 (2005).
[Crossref]

Staszewski, W. J.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12(1), 122–128 (2003).
[Crossref]

Staudenraus, J.

J. Staudenraus and W. Eisenmenger, “Fiber-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31(4), 267–273 (1993).
[Crossref]

C. Wurster, J. Staudenraus, and W. Eisenmenger, “The fiber optic probe hydrophone,” in Proceedings of IEEE Ultrasonics Symposium ULTSYM-94, 2, (1994), pp. 941–944.
[Crossref]

Takahashi, N.

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
[Crossref] [PubMed]

Takahashi, S.

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
[Crossref] [PubMed]

Tam, H. Y.

Tan, C. K. L.

I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 10–11 (2014).
[Crossref]

Tan, Y.

Y. Tan, Y. Zhang, and B. Guan, “Hydrostatic pressure insensitive dual polarization fiber grating laser hydrophone,” IEEE Sens. J. 11(5), 1169–1172 (2011).
[Crossref]

Tan, Y. N.

Thursby, G.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12(1), 122–128 (2003).
[Crossref]

Tracey, M. C.

I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 10–11 (2014).
[Crossref]

Ueberle, F.

A. J. Rad, F. Ueberle, and K. Krueger, “Investigation on the comparability of the light spot hydrophone and the fiber optic hydrophone in lithotripter field measurements,” Rev. Sci. Instrum. 85(1), 014902 (2014).
[Crossref] [PubMed]

Weise, W.

W. Weise, V. Wilken, and C. Koch, “Frequency response of fiber-optic multilayer hydrophones: experimental investigation and finite element simulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(7), 937–946 (2002).
[Crossref] [PubMed]

Wild, G.

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensor: overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[Crossref]

Wilken, V.

W. Weise, V. Wilken, and C. Koch, “Frequency response of fiber-optic multilayer hydrophones: experimental investigation and finite element simulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(7), 937–946 (2002).
[Crossref] [PubMed]

Wilkens, V.

V. Wilkens, “Characterization of an optical multilayer hydrophone with constant frequency response in the range from 1 to 75 MHz,” J. Acoust. Soc. Am. 113(3), 1431–1438 (2003).
[Crossref] [PubMed]

V. Wilkens and C. Koch, “Fiber-optic multilayer hydrophone for ultrasonic measurement,” Ultrasonics 37(1), 45–49 (1999).
[Crossref]

Wurster, C.

C. Wurster, J. Staudenraus, and W. Eisenmenger, “The fiber optic probe hydrophone,” in Proceedings of IEEE Ultrasonics Symposium ULTSYM-94, 2, (1994), pp. 941–944.
[Crossref]

Yang, J.

X. Ni, Y. Zhao, and J. Yang, “Research of a novel fiber Bragg grating underwater acoustic sensor,” Sensor. Actuat. A-Phys. 138(1), 76–80 (2007).

Yoshimura, K.

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
[Crossref] [PubMed]

Yu, M.

Yun, D.

Zhang, E.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, W. Zhang, F. Li, and Y. Liu, “DFB fiber laser hydrophone with an acoustic low-pass filter,” IEEE Photonic. Tech. L. 23(17), 1264–1266 (2011).
[Crossref]

Zhang, S. L.

S. L. Zhang and J. C. M. Li, “Anisotropic elastic moduli and Poisson’s ratios of a poly(ethylene terephthalate) film,” J. Polym. Sci., B, Polym. Phys. 42(2), 260–266 (2004).
[Crossref]

Zhang, W.

F. Zhang, W. Zhang, F. Li, and Y. Liu, “DFB fiber laser hydrophone with an acoustic low-pass filter,” IEEE Photonic. Tech. L. 23(17), 1264–1266 (2011).
[Crossref]

W. Zhang, Y. Liu, and F. Li, “Fiber Bragg grating hydrophone with high sensitivity,” Chin. Opt. Lett. 6(9), 631–633 (2008).
[Crossref]

Zhang, Y.

Y. Tan, Y. Zhang, and B. Guan, “Hydrostatic pressure insensitive dual polarization fiber grating laser hydrophone,” IEEE Sens. J. 11(5), 1169–1172 (2011).
[Crossref]

Zhao, Y.

X. Ni, Y. Zhao, and J. Yang, “Research of a novel fiber Bragg grating underwater acoustic sensor,” Sensor. Actuat. A-Phys. 138(1), 76–80 (2007).

Zhou, G. P.

Z. F. Liang, G. P. Zhou, and S. Y. Lin, “Review of the high-power low-frequency ultrasonic fields measurement,” Technical Acoustics 23(1), 61–66 (2004).

Appl. Opt. (1)

Chin. Opt. Lett. (1)

Electron. Lett. (1)

P. C. Beard and T. N. Mills, “Miniature optical fiber ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33(9), 801–803 (1997).
[Crossref]

IEEE Photonic. Tech. L. (1)

F. Zhang, W. Zhang, F. Li, and Y. Liu, “DFB fiber laser hydrophone with an acoustic low-pass filter,” IEEE Photonic. Tech. L. 23(17), 1264–1266 (2011).
[Crossref]

IEEE Sens. J. (2)

G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensor: overview and state-of-the-art,” IEEE Sens. J. 8(7), 1184–1193 (2008).
[Crossref]

Y. Tan, Y. Zhang, and B. Guan, “Hydrostatic pressure insensitive dual polarization fiber grating laser hydrophone,” IEEE Sens. J. 11(5), 1169–1172 (2011).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

W. Weise, V. Wilken, and C. Koch, “Frequency response of fiber-optic multilayer hydrophones: experimental investigation and finite element simulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(7), 937–946 (2002).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (3)

V. Wilkens, “Characterization of an optical multilayer hydrophone with constant frequency response in the range from 1 to 75 MHz,” J. Acoust. Soc. Am. 113(3), 1431–1438 (2003).
[Crossref] [PubMed]

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber optic hydrophone,” J. Acoust. Soc. Am. 62(5), 1302–1304 (1977).
[Crossref]

J. Lightwave Technol. (1)

J. Micromech. Microeng. (1)

I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering,” J. Micromech. Microeng. 24(3), 10–11 (2014).
[Crossref]

J. Phys. D Appl. Phys. (1)

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[Crossref]

J. Polym. Sci., B, Polym. Phys. (1)

S. L. Zhang and J. C. M. Li, “Anisotropic elastic moduli and Poisson’s ratios of a poly(ethylene terephthalate) film,” J. Polym. Sci., B, Polym. Phys. 42(2), 260–266 (2004).
[Crossref]

Microsyst. Technol. (1)

W. Sim, B. Kim, B. Choi, and J. O. Park, “Theoretical and experimental studies on the parylene diaphragms for microdevices,” Microsyst. Technol. 11(1), 11–15 (2005).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Polym. Bull. (1)

P. Herrera-Franco, F. Hernández-Sánchez, E. Adem, and B. Guillermina, “Dynamic mechanical properties of compatibilized PET with radiation oxidized HDPE,” Polym. Bull. 56(1), 47–52 (2006).
[Crossref]

Rev. Sci. Instrum. (2)

K. J. Disotell and J. W. Gregory, “Measurement of transient acoustic fields using a single-shot pressure-sensitive paint system,” Rev. Sci. Instrum. 82(7), 075112 (2011).
[Crossref] [PubMed]

A. J. Rad, F. Ueberle, and K. Krueger, “Investigation on the comparability of the light spot hydrophone and the fiber optic hydrophone in lithotripter field measurements,” Rev. Sci. Instrum. 85(1), 014902 (2014).
[Crossref] [PubMed]

Sensor. Actuat. A-Phys. (1)

X. Ni, Y. Zhao, and J. Yang, “Research of a novel fiber Bragg grating underwater acoustic sensor,” Sensor. Actuat. A-Phys. 138(1), 76–80 (2007).

Smart Mater. Struct. (1)

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12(1), 122–128 (2003).
[Crossref]

Technical Acoustics (1)

Z. F. Liang, G. P. Zhou, and S. Y. Lin, “Review of the high-power low-frequency ultrasonic fields measurement,” Technical Acoustics 23(1), 61–66 (2004).

Ultrasonics (4)

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics 38(1-8), 581–585 (2000).
[Crossref] [PubMed]

J. Staudenraus and W. Eisenmenger, “Fiber-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31(4), 267–273 (1993).
[Crossref]

K. S. Kim, Y. Mizuno, and K. Nakamura, “Fiber-optic ultrasonic hydrophone using short Fabry-Perot cavity with multilayer reflectors deposited on small stub,” Ultrasonics 54(4), 1047–1051 (2014).
[Crossref] [PubMed]

V. Wilkens and C. Koch, “Fiber-optic multilayer hydrophone for ultrasonic measurement,” Ultrasonics 37(1), 45–49 (1999).
[Crossref]

Other (6)

F. Launay, R. Lardat, R. Bouffaron, G. Roux, M. Doisy, and C. Bergogne, “Static pressure and temperature compensated wideband Fiber Laser Hydrophone,” in Proceedings of SPIE8794 Fifth European Workshop on Optical Fibre Sensors, 87940K, (2013).
[Crossref]

F. Zhang, X. Zhang, L. Wang, and C. Wang, “Study on the frequency response of static pressure compensated fiber laser hydrophone-theory and finite element simulation,” in Proceedings of SPIE9157 23rd International Conference on Optical Fiber Sensors, 9157, (2014).

C. Wurster, J. Staudenraus, and W. Eisenmenger, “The fiber optic probe hydrophone,” in Proceedings of IEEE Ultrasonics Symposium ULTSYM-94, 2, (1994), pp. 941–944.
[Crossref]

B. Shen, Y. Wada, D. Koyama, R. Isago, Y. Mizuno, and K. Nakamura, “Fiber-optic ultrasonic probe based on refractive-index modulation in water,” in Proceedings of SPIE7753 21st International Conference on Optical Fiber Sensors, 7753, (2011), pp.77539W.
[Crossref]

B. T. Meggitt, “Fiber optic white-light interferometric sensors,” in Optical Fiber Sensor Technology, K. T. V. Grattan and B. T. Meggitt, (Chapman & Hall, 1995), pp. 269–312.

M. Yu, H. Bae, and X. M. Zhang, “Ultra-miniature fiber-optic pressure sensor system and method of fabrication,” US Patent 8,151,648, Feb. 3, 2011.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the white-light fiber-optic hydrophone system with a trackable working point.

Fig. 2
Fig. 2

Mechanics modeling of the sensor head: (a) mechanical sensitivity and fundamental natural frequency versus the PDMS cavity length and (b) sensitivity frequency responses of the PDMS cavity for different viscous damping coefficients η (small damping: η = 1 × 10−5 Ns/m, medium damping: η = 1 × 10−4 Ns/m, and large damping: η = 2 × 10−4 Ns/m). The inset in (a) shows the model of the sensor head (a cylinder under dynamic pressure from the top and side). In (a), the eigenfrequency module of COMSOL was used to obtain the natural frequencies by searching the longitudinal resonance modes from several oscillation modes of the PDMS cylinder. In (b), the water drag effect on the surface of the sensor head was included as the spring foundation sub-model in COMSOL with a viscous damping coefficient η.

Fig. 3
Fig. 3

Fabrication process of the sensor head.

Fig. 4
Fig. 4

Sensor characterization results: (a) Sensor sensitivity calibration curve. (b) Directivity obtained at 80 kHz. The directivity curve was obtained by normalizing the voltage output of the sensor at different incident sound angle to that at zero incident angle. (c) Temporal response of the sensor at 80 kHz. The inset shows the output sound pressure pulse from the transducer. (d) Sensitivity frequency response of the sensor. The distance to the acoustic source is 65 mm and the input acoustic azimuth angle is θ = 0 °. The experimental results were overlaid with the simulation curve shown in Fig. 2(b) for η = 1 × 10−4 Ns/m.

Fig. 5
Fig. 5

Tracking of sensor working point. (a) Scenario 1 when the acoustic source is present. (b) Scenario 2 when the acoustic source is absent. (c) Output of the photodetector as a function of the DC bias voltage applied to the tunable FPI obtained for the two scenarios.

Fig. 6
Fig. 6

Comparison of the white-light interferometric system and a tunable laser based interferometric system. (a) Schematic of the tunable laser based system with the same FP hydrophone. (b) Time domain output of the sensor in response to a harmonic sound input at 80 kHz. (c) Zoom-in time response in the highlighted time window of (b).

Tables (1)

Tables Icon

Table 1 Comparison of acoustic impedance, mechanical sensitivity, and fundamental natural frequency obtained with different materialsa. v, E, ρ, c, are the Poisson’s ratio, Young’s modulus, density, and speed of sound, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V(λ, δ 1 , δ 2 )=γR I 0 [ exp( ( δ 1 2 2 σ ) 2 )cos( 2π λ ( δ 1 2 ) ) ],
δ 1 2 =( 2m1 ) 1 4 λ,m=0,±1,±2,.
δ Φ λ (laser)= 2 πδ 1 δλ λ 2 .
δ Φ λ (whitelight)= 2π( δ 1 δ 2 )δλ λ 2 .

Metrics