Abstract

Enabled by an enhanced effective index separation (Δneff = 1.7 × 10−4) and low transmission loss (0.8dB/km), OAM states are propagated over 13.4km in an air core fiber using a recirculating fiber loop. We observe that intermodal crosstalk decreases rapidly with increasing effective index separation, Δneff, and an order of magnitude lower crosstalk may be achieved just by doubling Δneff. We find that, in agreement with coupled power theory, our fiber has mode coupling properties analogous to elliptical core PM fibers, which yield ~10 × or more lower crosstalk than for conventional LP fiber mode orders with the same Δneff. This confirms that, for OAM modes, birefringent perturbations rather than shape perturbations matter most. In the process of performing the loop experiment, we demonstrate that OAM states in these fibers can be preserved with low loss (≤ 0.2dB) and low crosstalk (−15dB) while splicing distinct segments of the air-core fiber. For well-designed fibers, we demonstrate that OAM modes can travel distances relevant for large-scale data centers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On the scalability of ring fiber designs for OAM multiplexing

S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich
Opt. Express 23(3) 3721-3730 (2015)

Conservation of orbital angular momentum in air-core optical fibers

P. Gregg, P. Kristensen, and S. Ramachandran
Optica 2(3) 267-270 (2015)

Linearly polarized vector modes: enabling MIMO-free mode-division multiplexing

Lixian Wang, Reza Mirzaei Nejad, Alessandro Corsi, Jiachuan Lin, Younès Messaddeq, Leslie Rusch, and Sophie LaRochelle
Opt. Express 25(10) 11736-11749 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [Crossref] [PubMed]
  2. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
    [Crossref] [PubMed]
  3. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  4. Y. Ren, Z. Wang, P. Liao, L. Li, G. Xie, H. Huang, Z. Zhao, Y. Yan, N. Ahmed, A. Willner, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, R. Bock, M. Tur, I. B. Djordjevic, M. A. Neifeld, and A. E. Willner, “Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m,” Opt. Lett. 41(3), 622–625 (2016).
    [Crossref] [PubMed]
  5. M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
    [Crossref]
  6. L. Wang, P. Vaity, Y. Messaddeq, L. Rusch, and S. LaRochelle, “Orbital-angular-momentum polarization mode dispersion in optical fibers and its measurement technique,” in 2015 European Conference on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2015), paper 0035.
    [Crossref]
  7. P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air-core optical fibers,” Optica 2(3), 267–270 (2015).
    [Crossref]
  8. S. E. Golwich, P. Kristensen, N. Bozinovic, P. Gregg, and S. Ramachandran, “Fibers supporting orbital angular momentum states for information capacity scaling,” in Frontiers in Optics: 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW2D.2.
  9. C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an OAM fiber supporting 36 states,” Opt. Express 22(21), 26117–26127 (2014).
    [Crossref] [PubMed]
  10. G. M. Saridis, D. Alexandropoulos, G. Zervas, and D. Simeonidou, “Survey and evaluation of space division multiplexing: from technologies to optical networks,” IEEE Commun. Surv. Tuts. 17(4), 2136–2156 (2015).
    [Crossref]
  11. C. F. Lam, H. Liu, and R. Urata, “What devices do data centers need?” in Optical Fiber Communication Conference: 2014 OSA Technical Digest (online) (Optical Society of America, 2014), paper M2K.5.
    [Crossref]
  12. N. S. Bergano and C. R. Davidson, “Circulating loop transmission experiments for the study of long-haul transmission systems using erbium-doped fiber amplifiers,” J. Lightwave Technol. 13(5), 879–888 (1995).
    [Crossref]
  13. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).
  14. C. D. Poole, “Measurement of polarization-mode dispersion in single-mode fibers with random mode coupling,” Opt. Lett. 14(10), 523–525 (1989).
    [Crossref] [PubMed]
  15. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
    [Crossref]
  16. S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).
  17. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
    [Crossref] [PubMed]
  18. C. D. Poole, “Statistical treatment of polarization dispersion in single-mode fiber,” Opt. Lett. 13(8), 687–689 (1988).
    [Crossref] [PubMed]
  19. M. Nakazawa, M. Yoshida, and T. Hirooka, “Nondestructive measurement of mode couplings along a multi-core fiber using a synchronous multi-channel OTDR,” Opt. Express 20(11), 12530–12540 (2012).
    [Crossref] [PubMed]
  20. S. Kawakami and M. Ikeda, “Transmission characteristics of a two-mode optical waveguide,” IEEE J. Quantum Electron. 14(8), 608–614 (1978).
    [Crossref]
  21. S. Ramachandran, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Measurement of multipath interference in the coherent crosstalk regime,” IEEE Photonics Technol. Lett. 15(8), 1171–1173 (2003).
    [Crossref]
  22. V. A. J. M. Sleiffer, H. Chen, Y. Jung, M. Kuschnerov, D. J. Richardson, S. U. Alam, Y. Sun, L. Gruner-Nielsen, N. Pavarelli, B. Snyder, P. O’Brien, A. D. Ellis, A. M. J. Koonen, and H. de Waardt, “480km transmission of MDM 576-Gb/s 8QAM using a few-mode re-circulating loop,” in 2013 IEEE Photonics Conference (IEEE, 2013), pp. 1–2.
  23. R. Maruyama, N. Kuwaki, S. Matsuo, and M. Ohashi, “Experimental investigation of relation between mode-coupling and fiber characteristics in few-mode fibers,” in Optical Fiber Communication Conference:2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2C.1.
    [Crossref]
  24. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5(6), 273–275 (1980).
    [Crossref] [PubMed]
  25. L. Wang and S. LaRochelle, “Design of eight-mode polarization-maintaining few-mode fiber for multiple-input multiple-output-free spatial division multiplexing,” Opt. Lett. 40(24), 5846–5849 (2015).
    [Crossref] [PubMed]
  26. B. Ung, P. Vaity, L. Wang, Y. Messaddeq, L. A. Rusch, and S. LaRochelle, “Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes,” Opt. Express 22(15), 18044–18055 (2014).
    [Crossref] [PubMed]
  27. M. E. Lines, “Scattering losses in optic fiber materials I. A new parameterization,” J. Appl. Phys. 55(11), 4052–4057 (1984).
    [Crossref]
  28. See, for instance, OFS TrueWave High Dispersion Optica fiber ( http://fiber-optic-catalog.ofsoptics.com/item/single-mode-optical–fibers ).

2016 (1)

2015 (3)

2014 (3)

2013 (2)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

2012 (1)

2009 (1)

2004 (1)

2003 (1)

S. Ramachandran, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Measurement of multipath interference in the coherent crosstalk regime,” IEEE Photonics Technol. Lett. 15(8), 1171–1173 (2003).
[Crossref]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

1995 (1)

N. S. Bergano and C. R. Davidson, “Circulating loop transmission experiments for the study of long-haul transmission systems using erbium-doped fiber amplifiers,” J. Lightwave Technol. 13(5), 879–888 (1995).
[Crossref]

1989 (1)

1988 (1)

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

1984 (1)

M. E. Lines, “Scattering losses in optic fiber materials I. A new parameterization,” J. Appl. Phys. 55(11), 4052–4057 (1984).
[Crossref]

1980 (1)

1978 (1)

S. Kawakami and M. Ikeda, “Transmission characteristics of a two-mode optical waveguide,” IEEE J. Quantum Electron. 14(8), 608–614 (1978).
[Crossref]

Ahmed, N.

Alexandropoulos, D.

G. M. Saridis, D. Alexandropoulos, G. Zervas, and D. Simeonidou, “Survey and evaluation of space division multiplexing: from technologies to optical networks,” IEEE Commun. Surv. Tuts. 17(4), 2136–2156 (2015).
[Crossref]

Ashrafi, N.

Ashrafi, S.

Barnett, S.

Bergano, N. S.

N. S. Bergano and C. R. Davidson, “Circulating loop transmission experiments for the study of long-haul transmission systems using erbium-doped fiber amplifiers,” J. Lightwave Technol. 13(5), 879–888 (1995).
[Crossref]

Bock, R.

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Brunet, C.

Courtial, J.

Davidson, C. R.

N. S. Bergano and C. R. Davidson, “Circulating loop transmission experiments for the study of long-haul transmission systems using erbium-doped fiber amplifiers,” J. Lightwave Technol. 13(5), 879–888 (1995).
[Crossref]

Djordjevic, I. B.

Eickhoff, W.

Fickler, R.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Fink, M.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Franke-Arnold, S.

Ghalmi, S.

S. Ramachandran, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Measurement of multipath interference in the coherent crosstalk regime,” IEEE Photonics Technol. Lett. 15(8), 1171–1173 (2003).
[Crossref]

Gibson, G.

Gregg, P.

Handsteiner, J.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Hirooka, T.

Huang, H.

Ikeda, M.

S. Kawakami and M. Ikeda, “Transmission characteristics of a two-mode optical waveguide,” IEEE J. Quantum Electron. 14(8), 608–614 (1978).
[Crossref]

Kawakami, S.

S. Kawakami and M. Ikeda, “Transmission characteristics of a two-mode optical waveguide,” IEEE J. Quantum Electron. 14(8), 608–614 (1978).
[Crossref]

Krenn, M.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Kristensen, P.

P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air-core optical fibers,” Optica 2(3), 267–270 (2015).
[Crossref]

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
[Crossref] [PubMed]

LaRochelle, S.

Lavery, M. P. J.

Li, L.

Liao, P.

Lines, M. E.

M. E. Lines, “Scattering losses in optic fiber materials I. A new parameterization,” J. Appl. Phys. 55(11), 4052–4057 (1984).
[Crossref]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Malik, M.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Messaddeq, Y.

Nakazawa, M.

Neifeld, M. A.

Nicholson, J. W.

S. Ramachandran, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Measurement of multipath interference in the coherent crosstalk regime,” IEEE Photonics Technol. Lett. 15(8), 1171–1173 (2003).
[Crossref]

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Padgett, M.

Pas’ko, V.

Poole, C. D.

Ramachandran, S.

P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air-core optical fibers,” Optica 2(3), 267–270 (2015).
[Crossref]

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
[Crossref] [PubMed]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Measurement of multipath interference in the coherent crosstalk regime,” IEEE Photonics Technol. Lett. 15(8), 1171–1173 (2003).
[Crossref]

Rashleigh, S. C.

Ren, Y.

Rusch, L. A.

Saridis, G. M.

G. M. Saridis, D. Alexandropoulos, G. Zervas, and D. Simeonidou, “Survey and evaluation of space division multiplexing: from technologies to optical networks,” IEEE Commun. Surv. Tuts. 17(4), 2136–2156 (2015).
[Crossref]

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Scheidl, T.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Simeonidou, D.

G. M. Saridis, D. Alexandropoulos, G. Zervas, and D. Simeonidou, “Survey and evaluation of space division multiplexing: from technologies to optical networks,” IEEE Commun. Surv. Tuts. 17(4), 2136–2156 (2015).
[Crossref]

Tur, M.

Ulrich, R.

Ung, B.

Ursin, R.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Vaity, P.

Vasnetsov, M.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Wang, L.

Wang, Z.

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Willner, A.

Willner, A. E.

Xie, G.

Yan, M. F.

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
[Crossref] [PubMed]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Measurement of multipath interference in the coherent crosstalk regime,” IEEE Photonics Technol. Lett. 15(8), 1171–1173 (2003).
[Crossref]

Yan, Y.

Yoshida, M.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Zeilinger, A.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Zervas, G.

G. M. Saridis, D. Alexandropoulos, G. Zervas, and D. Simeonidou, “Survey and evaluation of space division multiplexing: from technologies to optical networks,” IEEE Commun. Surv. Tuts. 17(4), 2136–2156 (2015).
[Crossref]

Zhao, Z.

IEEE Commun. Surv. Tuts. (1)

G. M. Saridis, D. Alexandropoulos, G. Zervas, and D. Simeonidou, “Survey and evaluation of space division multiplexing: from technologies to optical networks,” IEEE Commun. Surv. Tuts. 17(4), 2136–2156 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Kawakami and M. Ikeda, “Transmission characteristics of a two-mode optical waveguide,” IEEE J. Quantum Electron. 14(8), 608–614 (1978).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Ramachandran, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Measurement of multipath interference in the coherent crosstalk regime,” IEEE Photonics Technol. Lett. 15(8), 1171–1173 (2003).
[Crossref]

J. Appl. Phys. (1)

M. E. Lines, “Scattering losses in optic fiber materials I. A new parameterization,” J. Appl. Phys. 55(11), 4052–4057 (1984).
[Crossref]

J. Lightwave Technol. (2)

N. S. Bergano and C. R. Davidson, “Circulating loop transmission experiments for the study of long-haul transmission systems using erbium-doped fiber amplifiers,” J. Lightwave Technol. 13(5), 879–888 (1995).
[Crossref]

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Nanophotonics (1)

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

New J. Phys. (1)

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16(11), 113028 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Optica (1)

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Other (7)

L. Wang, P. Vaity, Y. Messaddeq, L. Rusch, and S. LaRochelle, “Orbital-angular-momentum polarization mode dispersion in optical fibers and its measurement technique,” in 2015 European Conference on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2015), paper 0035.
[Crossref]

S. E. Golwich, P. Kristensen, N. Bozinovic, P. Gregg, and S. Ramachandran, “Fibers supporting orbital angular momentum states for information capacity scaling,” in Frontiers in Optics: 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW2D.2.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).

C. F. Lam, H. Liu, and R. Urata, “What devices do data centers need?” in Optical Fiber Communication Conference: 2014 OSA Technical Digest (online) (Optical Society of America, 2014), paper M2K.5.
[Crossref]

V. A. J. M. Sleiffer, H. Chen, Y. Jung, M. Kuschnerov, D. J. Richardson, S. U. Alam, Y. Sun, L. Gruner-Nielsen, N. Pavarelli, B. Snyder, P. O’Brien, A. D. Ellis, A. M. J. Koonen, and H. de Waardt, “480km transmission of MDM 576-Gb/s 8QAM using a few-mode re-circulating loop,” in 2013 IEEE Photonics Conference (IEEE, 2013), pp. 1–2.

R. Maruyama, N. Kuwaki, S. Matsuo, and M. Ohashi, “Experimental investigation of relation between mode-coupling and fiber characteristics in few-mode fibers,” in Optical Fiber Communication Conference:2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2C.1.
[Crossref]

See, for instance, OFS TrueWave High Dispersion Optica fiber ( http://fiber-optic-catalog.ofsoptics.com/item/single-mode-optical–fibers ).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Optical microscope image and measured refractive index profile of the air core fiber. (b) Transmission loss for each OAM mode order measured at 1550nm via fiber cutback. (c) neff versus wavelength for higher order OAM modes. Grey curve corresponds to parasitic EH1,2 and HE3,2 modes which become “accidentally” degenerate with OAM |L| = 6 around 1500nm, leading to severe mode coupling. Insets are experimentally measured images after ~2m of fiber propagation at 1550nm, except for the left-most image at 1500nm. (d) and (e) Group index and dispersion of OAM modes in the air core fiber. For accurate time of flight measurements, pulse spread due to dispersion must be significantly smaller than possible pulse spread due to differential time of flight between adjacent OAM modes.

Fig. 2
Fig. 2

Time of flight measurements after 1.2km of fiber propagation. (a) impulse response on linear scale when |L| = 7 spin-orbit aligned and spin-orbit anti-aligned are launched separately. (b) Impulse response of |L| = 7 spin-orbit aligned on log scale. Oscillations occuring after peak are electrical noise. Shoulder with average local power −31dB created by intermodal coupling between spin-orbit aligned and spin-orbit anti-aligned modes over fiber length. Integration of the shoulder (red region) divided by integration of the main pulse (green) yields fraction of power depleted from desired state and manifest as crosstalk, −17dB here. (c) and (d) Impulse response for |L| = 5 and |L| = 6 after 1.2km.

Fig. 3
Fig. 3

(a) Picosecond pulses (70GHz bandwidth) at 1558nm from a passively mode-locked fiber laser source with variable repetition rate are shaped into free space OAM states by a spatial light modulator (SLM). They are then passed through a quarter-wave plate and coupled into the recirculating loop via a 3dB beam splitter. Fiber-to-fiber coupling loss is 1.2dB for both |L| = 5 and |L| = 7. Output passes through an acousto-optic modulator (AOM) and is sent to a fast detector and oscilloscope. “x” indicates fiber splice, loss 0.2dB or better and mode purity ~15dB. Inset illustrates quality of splice. (b) Schematic diagram of laser source block. A pulsed laser of fixed repetition rate is passed through an electro-optic modulator (EOM) driver by a digital delay generator (DDG) to selectively pass pulses, thus controlling the repetition rate. Rates used vary from 20MHz to ~100kHz. A 1% tap is taken as a trigger signal for the wide bandwidth oscilloscope, while 99% is fed to the system in (a). For some measurements, an erbium doped fiber amplifier (EDFA) is used to partially compensate system losses.

Fig. 4
Fig. 4

(a) Measured crosstalk for |L| = 5 and |L| = 7 from loop experiment. Dashed lines are theoretical crosstalk, for given h values determined by minimization of mean-squared error from data. Inset images become progressively beadier at longer lengths, indicating stronger crosstalk. (b) Measured crosstalk for |L| = 6 from cutback from 1km to 500m. Insets are experimental images of dominant circular polarization component at fiber output.

Tables (1)

Tables Icon

Table 1 Coupling rates and Δneff.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

V L ± = σ ± exp(±iLφ) F L (r)exp(i β V z)
W L ± = σ exp(±iLφ) F L (r)exp(i β W z)

Metrics