Abstract

We report low threshold InAs/AlSb quantum cascade lasers emitting near 15 µm. The devices are based on a vertical design similar to those employed previously in far infrared InAs-based QCLs, whereas the doping level of the active core is considerably decreased. The lasers exhibit a threshold current density as low as 730 A/cm2 in pulsed mode at room temperature and can operate in this regime up to 410K. The continuous wave regime of operation has been achieved in these devices at temperatures up to 20°C. The cw regime is demonstrated for InAs-based QCLs for the first time at room temperature.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Recent advances in mid infrared (3-5µm) Quantum Cascade Lasers

Manijeh Razeghi, Neelanjan Bandyopadhyay, Yanbo Bai, Quanyong Lu, and Steven Slivken
Opt. Mater. Express 3(11) 1872-1884 (2013)

Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm

William W. Bewley, Chadwick L. Canedy, Chul Soo Kim, Mijin Kim, Charles D. Merritt, Joshua Abell, Igor Vurgaftman, and Jerry R. Meyer
Opt. Express 20(3) 3235-3240 (2012)

2.1 THz quantum-cascade laser operating up to 144 K based on a scattering-assisted injection design

Sudeep Khanal, John L. Reno, and Sushil Kumar
Opt. Express 23(15) 19689-19697 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. N. Baranov and R. Teissier, “Quantum cascade lasers in the InAs/AlSb material system,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1200612 (2015).
    [Crossref]
  2. O. Cathabard, R. Teissier, J. Devenson, J. Moreno, and A. N. Baranov, “Quantum cascade lasers emitting near 2.6,” Appl. Phys. Lett. 96(14), 141110 (2010).
    [Crossref]
  3. E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
    [Crossref]
  4. D. Chastanet, G. Lollia, A. Bousseksou, M. Bahriz, P. Laffaille, A. N. Baranov, F. Julien, R. Colombelli, and R. Teissier, “Long-infrared InAs-based quantum cascade lasers operating at 291 K (λ= 19 μm) with metal-metal resonators,” Appl. Phys. Lett. 104(2), 021106 (2014).
    [Crossref]
  5. D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. H. Julien, A. N. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ = 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105(11), 111118 (2014).
    [Crossref]
  6. K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
    [Crossref]
  7. M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ≈16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271–4273 (2001).
    [Crossref]
  8. J. Ulrich, J. Kreuter, W. Schrenk, G. Strasser, and K. Unterrainer, “Long wavelength (15 and 23 μm) GaAs/AlGaAs quantum cascade lasers,” Appl. Phys. Lett. 80(20), 3691–3693 (2002).
    [Crossref]
  9. K. Ohtani, M. Beck, and J. Faist, “Double metal waveguide InGaAs/AlInAs quantum cascade lasers emitting at 24 μm,” Appl. Phys. Lett. 105(12), 121115 (2014).
    [Crossref]
  10. M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108(1), 011109 (2016).
    [Crossref]
  11. M. Bahriz, G. Lollia, A. N. Baranov, and R. Teissier, “High temperature operation of far infrared (λ ≈20 µm) InAs/AlSb quantum cascade lasers with dielectric waveguide,” Opt. Express 23(2), 1523–1528 (2015).
    [Crossref] [PubMed]
  12. R. M. Culpepper and J. R. Dixon, “Free-carrier absorption in n-type indium arsenide,” J. Opt. Soc. Am. 58(1), 96–102 (1968).
    [Crossref]
  13. S. Lee, M. Giehler, R. Hey, T. Ohtsuka, A. A. Wacker, and H. Grahn, “Dependence of lasing properties of GaAs/AlxGa1−xAs quantum cascade lasers on injector doping density: theory and experiment,” Semicond. Sci. Technol. 19(4), S45–S47 (2004).
    [Crossref]
  14. T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs-InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
    [Crossref]
  15. P. Laffaille, J. C. Moreno, R. Teissier, M. Bahriz, and A. N. Baranov, “High temperature operation of short wavelength InAs-based quantum cascade lasers,” AIP Adv. 2(2), 022119 (2012).
    [Crossref]
  16. Y. B. Li, R. A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 8(1), 101–111 (1993).
    [Crossref]
  17. S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 μm,” Appl. Phys. Lett. 90(15), 151115 (2007).
    [Crossref]
  18. C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quant. Electron. 34, 1722 (1998). A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1093 (2008).
  19. A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1093 (2008).
  20. D. Botez, C.-C. Chang, and L. J. Mawst, “Temperature sensitivity of the electro-optical characteristics for mid-infrared ( λ = 3–16 μ m)-emitting quantum cascade lasers,” J. Phys. D Appl. Phys. 49(4), 043001 (2016).
    [Crossref]
  21. K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼15µm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
    [Crossref]
  22. X. Huang, W. O. Charles, and C. Gmachl, “Temperature-insensitive long-wavelength (λ ≈14 µm) Quantum Cascade lasers with low threshold,” Opt. Express 19(9), 8297–8302 (2011).
    [Crossref] [PubMed]
  23. A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, “Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ∼5.25 μm,” Appl. Phys. Lett. 88(5), 051105 (2006).
    [Crossref]
  24. Alpes Lasers, “List of CW-RT-DFB-QC lasers as of 2016-05-08,” http://www.alpeslasers.ch/lasers-on-stock/sbcw6519.pdf

2016 (2)

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108(1), 011109 (2016).
[Crossref]

D. Botez, C.-C. Chang, and L. J. Mawst, “Temperature sensitivity of the electro-optical characteristics for mid-infrared ( λ = 3–16 μ m)-emitting quantum cascade lasers,” J. Phys. D Appl. Phys. 49(4), 043001 (2016).
[Crossref]

2015 (2)

2014 (3)

K. Ohtani, M. Beck, and J. Faist, “Double metal waveguide InGaAs/AlInAs quantum cascade lasers emitting at 24 μm,” Appl. Phys. Lett. 105(12), 121115 (2014).
[Crossref]

D. Chastanet, G. Lollia, A. Bousseksou, M. Bahriz, P. Laffaille, A. N. Baranov, F. Julien, R. Colombelli, and R. Teissier, “Long-infrared InAs-based quantum cascade lasers operating at 291 K (λ= 19 μm) with metal-metal resonators,” Appl. Phys. Lett. 104(2), 021106 (2014).
[Crossref]

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. H. Julien, A. N. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ = 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105(11), 111118 (2014).
[Crossref]

2012 (1)

P. Laffaille, J. C. Moreno, R. Teissier, M. Bahriz, and A. N. Baranov, “High temperature operation of short wavelength InAs-based quantum cascade lasers,” AIP Adv. 2(2), 022119 (2012).
[Crossref]

2011 (1)

2010 (2)

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼15µm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[Crossref]

O. Cathabard, R. Teissier, J. Devenson, J. Moreno, and A. N. Baranov, “Quantum cascade lasers emitting near 2.6,” Appl. Phys. Lett. 96(14), 141110 (2010).
[Crossref]

2008 (3)

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[Crossref]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quant. Electron. 34, 1722 (1998). A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1093 (2008).

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1093 (2008).

2007 (1)

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 μm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[Crossref]

2006 (2)

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs-InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, “Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ∼5.25 μm,” Appl. Phys. Lett. 88(5), 051105 (2006).
[Crossref]

2004 (1)

S. Lee, M. Giehler, R. Hey, T. Ohtsuka, A. A. Wacker, and H. Grahn, “Dependence of lasing properties of GaAs/AlxGa1−xAs quantum cascade lasers on injector doping density: theory and experiment,” Semicond. Sci. Technol. 19(4), S45–S47 (2004).
[Crossref]

2002 (2)

J. Ulrich, J. Kreuter, W. Schrenk, G. Strasser, and K. Unterrainer, “Long wavelength (15 and 23 μm) GaAs/AlGaAs quantum cascade lasers,” Appl. Phys. Lett. 80(20), 3691–3693 (2002).
[Crossref]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
[Crossref]

2001 (1)

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ≈16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271–4273 (2001).
[Crossref]

1993 (1)

Y. B. Li, R. A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 8(1), 101–111 (1993).
[Crossref]

1968 (1)

Aellen, T.

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs-InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

Andrews, A. M.

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108(1), 011109 (2016).
[Crossref]

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[Crossref]

Bahriz, M.

M. Bahriz, G. Lollia, A. N. Baranov, and R. Teissier, “High temperature operation of far infrared (λ ≈20 µm) InAs/AlSb quantum cascade lasers with dielectric waveguide,” Opt. Express 23(2), 1523–1528 (2015).
[Crossref] [PubMed]

D. Chastanet, G. Lollia, A. Bousseksou, M. Bahriz, P. Laffaille, A. N. Baranov, F. Julien, R. Colombelli, and R. Teissier, “Long-infrared InAs-based quantum cascade lasers operating at 291 K (λ= 19 μm) with metal-metal resonators,” Appl. Phys. Lett. 104(2), 021106 (2014).
[Crossref]

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. H. Julien, A. N. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ = 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105(11), 111118 (2014).
[Crossref]

P. Laffaille, J. C. Moreno, R. Teissier, M. Bahriz, and A. N. Baranov, “High temperature operation of short wavelength InAs-based quantum cascade lasers,” AIP Adv. 2(2), 022119 (2012).
[Crossref]

Baranov, A.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[Crossref]

Baranov, A. N.

A. N. Baranov and R. Teissier, “Quantum cascade lasers in the InAs/AlSb material system,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1200612 (2015).
[Crossref]

M. Bahriz, G. Lollia, A. N. Baranov, and R. Teissier, “High temperature operation of far infrared (λ ≈20 µm) InAs/AlSb quantum cascade lasers with dielectric waveguide,” Opt. Express 23(2), 1523–1528 (2015).
[Crossref] [PubMed]

D. Chastanet, G. Lollia, A. Bousseksou, M. Bahriz, P. Laffaille, A. N. Baranov, F. Julien, R. Colombelli, and R. Teissier, “Long-infrared InAs-based quantum cascade lasers operating at 291 K (λ= 19 μm) with metal-metal resonators,” Appl. Phys. Lett. 104(2), 021106 (2014).
[Crossref]

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. H. Julien, A. N. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ = 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105(11), 111118 (2014).
[Crossref]

P. Laffaille, J. C. Moreno, R. Teissier, M. Bahriz, and A. N. Baranov, “High temperature operation of short wavelength InAs-based quantum cascade lasers,” AIP Adv. 2(2), 022119 (2012).
[Crossref]

O. Cathabard, R. Teissier, J. Devenson, J. Moreno, and A. N. Baranov, “Quantum cascade lasers emitting near 2.6,” Appl. Phys. Lett. 96(14), 141110 (2010).
[Crossref]

Beck, M.

K. Ohtani, M. Beck, and J. Faist, “Double metal waveguide InGaAs/AlInAs quantum cascade lasers emitting at 24 μm,” Appl. Phys. Lett. 105(12), 121115 (2014).
[Crossref]

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs-InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ≈16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271–4273 (2001).
[Crossref]

Benveniste, E.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[Crossref]

Birch, J. R.

Y. B. Li, R. A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 8(1), 101–111 (1993).
[Crossref]

Botez, D.

D. Botez, C.-C. Chang, and L. J. Mawst, “Temperature sensitivity of the electro-optical characteristics for mid-infrared ( λ = 3–16 μ m)-emitting quantum cascade lasers,” J. Phys. D Appl. Phys. 49(4), 043001 (2016).
[Crossref]

Bousseksou, A.

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. H. Julien, A. N. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ = 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105(11), 111118 (2014).
[Crossref]

D. Chastanet, G. Lollia, A. Bousseksou, M. Bahriz, P. Laffaille, A. N. Baranov, F. Julien, R. Colombelli, and R. Teissier, “Long-infrared InAs-based quantum cascade lasers operating at 291 K (λ= 19 μm) with metal-metal resonators,” Appl. Phys. Lett. 104(2), 021106 (2014).
[Crossref]

Brandstetter, M.

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108(1), 011109 (2016).
[Crossref]

Capasso, F.

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quant. Electron. 34, 1722 (1998). A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1093 (2008).

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
[Crossref]

Cathabard, O.

O. Cathabard, R. Teissier, J. Devenson, J. Moreno, and A. N. Baranov, “Quantum cascade lasers emitting near 2.6,” Appl. Phys. Lett. 96(14), 141110 (2010).
[Crossref]

Chang, C.-C.

D. Botez, C.-C. Chang, and L. J. Mawst, “Temperature sensitivity of the electro-optical characteristics for mid-infrared ( λ = 3–16 μ m)-emitting quantum cascade lasers,” J. Phys. D Appl. Phys. 49(4), 043001 (2016).
[Crossref]

Charles, W. O.

Chastanet, D.

D. Chastanet, G. Lollia, A. Bousseksou, M. Bahriz, P. Laffaille, A. N. Baranov, F. Julien, R. Colombelli, and R. Teissier, “Long-infrared InAs-based quantum cascade lasers operating at 291 K (λ= 19 μm) with metal-metal resonators,” Appl. Phys. Lett. 104(2), 021106 (2014).
[Crossref]

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. H. Julien, A. N. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ = 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105(11), 111118 (2014).
[Crossref]

Cho, A. Y.

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quant. Electron. 34, 1722 (1998). A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1093 (2008).

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
[Crossref]

Colombelli, R.

D. Chastanet, G. Lollia, A. Bousseksou, M. Bahriz, P. Laffaille, A. N. Baranov, F. Julien, R. Colombelli, and R. Teissier, “Long-infrared InAs-based quantum cascade lasers operating at 291 K (λ= 19 μm) with metal-metal resonators,” Appl. Phys. Lett. 104(2), 021106 (2014).
[Crossref]

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. H. Julien, A. N. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ = 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105(11), 111118 (2014).
[Crossref]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
[Crossref]

Culpepper, R. M.

Darvish, S. R.

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, “Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ∼5.25 μm,” Appl. Phys. Lett. 88(5), 051105 (2006).
[Crossref]

Delteil, A.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[Crossref]

Detz, H.

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108(1), 011109 (2016).
[Crossref]

Devenson, J.

O. Cathabard, R. Teissier, J. Devenson, J. Moreno, and A. N. Baranov, “Quantum cascade lasers emitting near 2.6,” Appl. Phys. Lett. 96(14), 141110 (2010).
[Crossref]

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[Crossref]

Dixon, J. R.

Edamura, T.

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼15µm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[Crossref]

Evans, A.

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 μm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[Crossref]

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, “Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ∼5.25 μm,” Appl. Phys. Lett. 88(5), 051105 (2006).
[Crossref]

Faist, J.

K. Ohtani, M. Beck, and J. Faist, “Double metal waveguide InGaAs/AlInAs quantum cascade lasers emitting at 24 μm,” Appl. Phys. Lett. 105(12), 121115 (2014).
[Crossref]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quant. Electron. 34, 1722 (1998). A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1093 (2008).

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1093 (2008).

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs-InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ≈16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271–4273 (2001).
[Crossref]

Ferguson, I. T.

Y. B. Li, R. A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 8(1), 101–111 (1993).
[Crossref]

Fujita, K.

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼15µm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[Crossref]

Furuta, S.

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼15µm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[Crossref]

Giehler, M.

S. Lee, M. Giehler, R. Hey, T. Ohtsuka, A. A. Wacker, and H. Grahn, “Dependence of lasing properties of GaAs/AlxGa1−xAs quantum cascade lasers on injector doping density: theory and experiment,” Semicond. Sci. Technol. 19(4), S45–S47 (2004).
[Crossref]

Gini, E.

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1093 (2008).

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs-InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

Giovannini, M.

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs-InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

Gmachl, C.

X. Huang, W. O. Charles, and C. Gmachl, “Temperature-insensitive long-wavelength (λ ≈14 µm) Quantum Cascade lasers with low threshold,” Opt. Express 19(9), 8297–8302 (2011).
[Crossref] [PubMed]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
[Crossref]

Grahn, H.

S. Lee, M. Giehler, R. Hey, T. Ohtsuka, A. A. Wacker, and H. Grahn, “Dependence of lasing properties of GaAs/AlxGa1−xAs quantum cascade lasers on injector doping density: theory and experiment,” Semicond. Sci. Technol. 19(4), S45–S47 (2004).
[Crossref]

Hey, R.

S. Lee, M. Giehler, R. Hey, T. Ohtsuka, A. A. Wacker, and H. Grahn, “Dependence of lasing properties of GaAs/AlxGa1−xAs quantum cascade lasers on injector doping density: theory and experiment,” Semicond. Sci. Technol. 19(4), S45–S47 (2004).
[Crossref]

Hofstetter, D.

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ≈16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271–4273 (2001).
[Crossref]

Hoyler, N.

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1093 (2008).

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs-InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

Huang, X.

Hugi, A.

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1093 (2008).

Hutchinson, A. L.

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quant. Electron. 34, 1722 (1998). A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1093 (2008).

Hwang, H. Y.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
[Crossref]

Julien, F.

D. Chastanet, G. Lollia, A. Bousseksou, M. Bahriz, P. Laffaille, A. N. Baranov, F. Julien, R. Colombelli, and R. Teissier, “Long-infrared InAs-based quantum cascade lasers operating at 291 K (λ= 19 μm) with metal-metal resonators,” Appl. Phys. Lett. 104(2), 021106 (2014).
[Crossref]

Julien, F. H.

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. H. Julien, A. N. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ = 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105(11), 111118 (2014).
[Crossref]

Kainz, M. A.

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108(1), 011109 (2016).
[Crossref]

Knight, T.

Y. B. Li, R. A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 8(1), 101–111 (1993).
[Crossref]

Krall, M.

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108(1), 011109 (2016).
[Crossref]

Kreuter, J.

J. Ulrich, J. Kreuter, W. Schrenk, G. Strasser, and K. Unterrainer, “Long wavelength (15 and 23 μm) GaAs/AlGaAs quantum cascade lasers,” Appl. Phys. Lett. 80(20), 3691–3693 (2002).
[Crossref]

Laffaille, P.

D. Chastanet, G. Lollia, A. Bousseksou, M. Bahriz, P. Laffaille, A. N. Baranov, F. Julien, R. Colombelli, and R. Teissier, “Long-infrared InAs-based quantum cascade lasers operating at 291 K (λ= 19 μm) with metal-metal resonators,” Appl. Phys. Lett. 104(2), 021106 (2014).
[Crossref]

P. Laffaille, J. C. Moreno, R. Teissier, M. Bahriz, and A. N. Baranov, “High temperature operation of short wavelength InAs-based quantum cascade lasers,” AIP Adv. 2(2), 022119 (2012).
[Crossref]

Lee, S.

S. Lee, M. Giehler, R. Hey, T. Ohtsuka, A. A. Wacker, and H. Grahn, “Dependence of lasing properties of GaAs/AlxGa1−xAs quantum cascade lasers on injector doping density: theory and experiment,” Semicond. Sci. Technol. 19(4), S45–S47 (2004).
[Crossref]

Li, Y. B.

Y. B. Li, R. A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 8(1), 101–111 (1993).
[Crossref]

Lollia, G.

M. Bahriz, G. Lollia, A. N. Baranov, and R. Teissier, “High temperature operation of far infrared (λ ≈20 µm) InAs/AlSb quantum cascade lasers with dielectric waveguide,” Opt. Express 23(2), 1523–1528 (2015).
[Crossref] [PubMed]

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. H. Julien, A. N. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ = 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105(11), 111118 (2014).
[Crossref]

D. Chastanet, G. Lollia, A. Bousseksou, M. Bahriz, P. Laffaille, A. N. Baranov, F. Julien, R. Colombelli, and R. Teissier, “Long-infrared InAs-based quantum cascade lasers operating at 291 K (λ= 19 μm) with metal-metal resonators,” Appl. Phys. Lett. 104(2), 021106 (2014).
[Crossref]

Mawst, L. J.

D. Botez, C.-C. Chang, and L. J. Mawst, “Temperature sensitivity of the electro-optical characteristics for mid-infrared ( λ = 3–16 μ m)-emitting quantum cascade lasers,” J. Phys. D Appl. Phys. 49(4), 043001 (2016).
[Crossref]

Moreno, J.

O. Cathabard, R. Teissier, J. Devenson, J. Moreno, and A. N. Baranov, “Quantum cascade lasers emitting near 2.6,” Appl. Phys. Lett. 96(14), 141110 (2010).
[Crossref]

Moreno, J. C.

P. Laffaille, J. C. Moreno, R. Teissier, M. Bahriz, and A. N. Baranov, “High temperature operation of short wavelength InAs-based quantum cascade lasers,” AIP Adv. 2(2), 022119 (2012).
[Crossref]

Nguyen, J.

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, “Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ∼5.25 μm,” Appl. Phys. Lett. 88(5), 051105 (2006).
[Crossref]

Ohtani, K.

K. Ohtani, M. Beck, and J. Faist, “Double metal waveguide InGaAs/AlInAs quantum cascade lasers emitting at 24 μm,” Appl. Phys. Lett. 105(12), 121115 (2014).
[Crossref]

Ohtsuka, T.

S. Lee, M. Giehler, R. Hey, T. Ohtsuka, A. A. Wacker, and H. Grahn, “Dependence of lasing properties of GaAs/AlxGa1−xAs quantum cascade lasers on injector doping density: theory and experiment,” Semicond. Sci. Technol. 19(4), S45–S47 (2004).
[Crossref]

Phillips, C. C.

Y. B. Li, R. A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 8(1), 101–111 (1993).
[Crossref]

Razeghi, M.

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 μm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[Crossref]

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, “Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ∼5.25 μm,” Appl. Phys. Lett. 88(5), 051105 (2006).
[Crossref]

Rochat, M.

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ≈16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271–4273 (2001).
[Crossref]

Sagnes, I.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[Crossref]

Schönhuber, S.

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108(1), 011109 (2016).
[Crossref]

Schrenk, W.

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108(1), 011109 (2016).
[Crossref]

J. Ulrich, J. Kreuter, W. Schrenk, G. Strasser, and K. Unterrainer, “Long wavelength (15 and 23 μm) GaAs/AlGaAs quantum cascade lasers,” Appl. Phys. Lett. 80(20), 3691–3693 (2002).
[Crossref]

Sergent, A. M.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
[Crossref]

Sirtori, C.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[Crossref]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quant. Electron. 34, 1722 (1998). A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1093 (2008).

Sivco, D. L.

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quant. Electron. 34, 1722 (1998). A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1093 (2008).

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
[Crossref]

Slivken, S.

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 μm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[Crossref]

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, “Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ∼5.25 μm,” Appl. Phys. Lett. 88(5), 051105 (2006).
[Crossref]

Stradling, R. A.

Y. B. Li, R. A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 8(1), 101–111 (1993).
[Crossref]

Strasser, G.

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108(1), 011109 (2016).
[Crossref]

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[Crossref]

J. Ulrich, J. Kreuter, W. Schrenk, G. Strasser, and K. Unterrainer, “Long wavelength (15 and 23 μm) GaAs/AlGaAs quantum cascade lasers,” Appl. Phys. Lett. 80(20), 3691–3693 (2002).
[Crossref]

Sugiyama, A.

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼15µm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[Crossref]

Teissier, R.

M. Bahriz, G. Lollia, A. N. Baranov, and R. Teissier, “High temperature operation of far infrared (λ ≈20 µm) InAs/AlSb quantum cascade lasers with dielectric waveguide,” Opt. Express 23(2), 1523–1528 (2015).
[Crossref] [PubMed]

A. N. Baranov and R. Teissier, “Quantum cascade lasers in the InAs/AlSb material system,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1200612 (2015).
[Crossref]

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. H. Julien, A. N. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ = 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105(11), 111118 (2014).
[Crossref]

D. Chastanet, G. Lollia, A. Bousseksou, M. Bahriz, P. Laffaille, A. N. Baranov, F. Julien, R. Colombelli, and R. Teissier, “Long-infrared InAs-based quantum cascade lasers operating at 291 K (λ= 19 μm) with metal-metal resonators,” Appl. Phys. Lett. 104(2), 021106 (2014).
[Crossref]

P. Laffaille, J. C. Moreno, R. Teissier, M. Bahriz, and A. N. Baranov, “High temperature operation of short wavelength InAs-based quantum cascade lasers,” AIP Adv. 2(2), 022119 (2012).
[Crossref]

O. Cathabard, R. Teissier, J. Devenson, J. Moreno, and A. N. Baranov, “Quantum cascade lasers emitting near 2.6,” Appl. Phys. Lett. 96(14), 141110 (2010).
[Crossref]

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[Crossref]

Thomas, R. H.

Y. B. Li, R. A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 8(1), 101–111 (1993).
[Crossref]

Ulrich, J.

J. Ulrich, J. Kreuter, W. Schrenk, G. Strasser, and K. Unterrainer, “Long wavelength (15 and 23 μm) GaAs/AlGaAs quantum cascade lasers,” Appl. Phys. Lett. 80(20), 3691–3693 (2002).
[Crossref]

Unterrainer, K.

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108(1), 011109 (2016).
[Crossref]

J. Ulrich, J. Kreuter, W. Schrenk, G. Strasser, and K. Unterrainer, “Long wavelength (15 and 23 μm) GaAs/AlGaAs quantum cascade lasers,” Appl. Phys. Lett. 80(20), 3691–3693 (2002).
[Crossref]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
[Crossref]

Vasanelli, A.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[Crossref]

Wacker, A. A.

S. Lee, M. Giehler, R. Hey, T. Ohtsuka, A. A. Wacker, and H. Grahn, “Dependence of lasing properties of GaAs/AlxGa1−xAs quantum cascade lasers on injector doping density: theory and experiment,” Semicond. Sci. Technol. 19(4), S45–S47 (2004).
[Crossref]

Wittmann, A.

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1093 (2008).

Yamanishi, M.

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼15µm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[Crossref]

Yu, J. S.

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, “Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ∼5.25 μm,” Appl. Phys. Lett. 88(5), 051105 (2006).
[Crossref]

Zederbauer, T.

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108(1), 011109 (2016).
[Crossref]

Zhang, W.

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 μm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[Crossref]

AIP Adv. (1)

P. Laffaille, J. C. Moreno, R. Teissier, M. Bahriz, and A. N. Baranov, “High temperature operation of short wavelength InAs-based quantum cascade lasers,” AIP Adv. 2(2), 022119 (2012).
[Crossref]

Appl. Phys. Lett. (12)

S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 μm,” Appl. Phys. Lett. 90(15), 151115 (2007).
[Crossref]

O. Cathabard, R. Teissier, J. Devenson, J. Moreno, and A. N. Baranov, “Quantum cascade lasers emitting near 2.6,” Appl. Phys. Lett. 96(14), 141110 (2010).
[Crossref]

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93(13), 131108 (2008).
[Crossref]

D. Chastanet, G. Lollia, A. Bousseksou, M. Bahriz, P. Laffaille, A. N. Baranov, F. Julien, R. Colombelli, and R. Teissier, “Long-infrared InAs-based quantum cascade lasers operating at 291 K (λ= 19 μm) with metal-metal resonators,” Appl. Phys. Lett. 104(2), 021106 (2014).
[Crossref]

D. Chastanet, A. Bousseksou, G. Lollia, M. Bahriz, F. H. Julien, A. N. Baranov, R. Teissier, and R. Colombelli, “High temperature, single mode, long infrared (λ = 17.8 μm) InAs-based quantum cascade lasers,” Appl. Phys. Lett. 105(11), 111118 (2014).
[Crossref]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
[Crossref]

M. Rochat, D. Hofstetter, M. Beck, and J. Faist, “Long-wavelength (λ≈16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 79(26), 4271–4273 (2001).
[Crossref]

J. Ulrich, J. Kreuter, W. Schrenk, G. Strasser, and K. Unterrainer, “Long wavelength (15 and 23 μm) GaAs/AlGaAs quantum cascade lasers,” Appl. Phys. Lett. 80(20), 3691–3693 (2002).
[Crossref]

K. Ohtani, M. Beck, and J. Faist, “Double metal waveguide InGaAs/AlInAs quantum cascade lasers emitting at 24 μm,” Appl. Phys. Lett. 105(12), 121115 (2014).
[Crossref]

M. Brandstetter, M. A. Kainz, T. Zederbauer, M. Krall, S. Schönhuber, H. Detz, W. Schrenk, A. M. Andrews, G. Strasser, and K. Unterrainer, “InAs based terahertz quantum cascade lasers,” Appl. Phys. Lett. 108(1), 011109 (2016).
[Crossref]

K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T0-values (∼15µm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97, 201109 (2010).
[Crossref]

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, “Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ∼5.25 μm,” Appl. Phys. Lett. 88(5), 051105 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quant. Electron. 34, 1722 (1998). A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1093 (2008).

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1093 (2008).

IEEE J. Sel. Top. Quantum Electron. (1)

A. N. Baranov and R. Teissier, “Quantum cascade lasers in the InAs/AlSb material system,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1200612 (2015).
[Crossref]

J. Appl. Phys. (1)

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs-InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. D Appl. Phys. (1)

D. Botez, C.-C. Chang, and L. J. Mawst, “Temperature sensitivity of the electro-optical characteristics for mid-infrared ( λ = 3–16 μ m)-emitting quantum cascade lasers,” J. Phys. D Appl. Phys. 49(4), 043001 (2016).
[Crossref]

Opt. Express (2)

Semicond. Sci. Technol. (2)

Y. B. Li, R. A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, and I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 8(1), 101–111 (1993).
[Crossref]

S. Lee, M. Giehler, R. Hey, T. Ohtsuka, A. A. Wacker, and H. Grahn, “Dependence of lasing properties of GaAs/AlxGa1−xAs quantum cascade lasers on injector doping density: theory and experiment,” Semicond. Sci. Technol. 19(4), S45–S47 (2004).
[Crossref]

Other (1)

Alpes Lasers, “List of CW-RT-DFB-QC lasers as of 2016-05-08,” http://www.alpeslasers.ch/lasers-on-stock/sbcw6519.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Pulsed voltage-current and light-current characteristics of a a 20-µm-wide laser at different temperatures.

Fig. 2
Fig. 2

Threshold current density (circles) and initial slope of light-current curves (squares) in pulsed mode as a function of temperature for two lasers with different width (w): Full symbols: w = 16 µm. Open symbols: w = 20 µm. Insets show emission spectra of the 16-µm-wide laser at RT and at 400K.

Fig. 3
Fig. 3

Voltage-current and light-current characteristics of a 16-µm-wide laser in the continuous wave regime at different temperatures. Output power at temperatures expressed in °C is multiplied by 10.

Fig. 4
Fig. 4

Threshold current density (circles) and initial slope of light-current curves (squares) of a 16-µm-wide laser in the cw regime as a function of temperature. The dotted line indicates a slope corresponding to the T0 = 140K for the threshold current.. The line connecting data points for the slope efficiency is only a guide for the eye. Insets display emission spectra of the laser measured at 80K and 20°C.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J th = J tr + ( α w + α m ) Γg = J leak + α AR g + α w Γg ln( R ) Γg   1 L

Metrics