Abstract

Dynamic control over optical wavefronts enables focusing, diffraction and redirection of light on demand, however, sub-wavelength resolution is required to avoid unwanted diffracted beams that are present in commercial spatial light modulators. Here we propose a realistic metadevice that dynamically controls the optical phase of reflected beams with sub-wavelength pixelation in one dimension. Based on reconfigurable metamaterials and nanomembrane technology, it consists of individually moveable metallic nanowire actuators that control the phase of reflected light by modulating the optical path length. We demonstrate that the metadevice can provide on-demand optical wavefront shaping functionalities of diffraction gratings, beam splitters, phase-gradient metasurfaces, cylindrical mirrors and mirror arrays — with variable focal distance and numerical aperture — without unwanted diffraction.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic nanophotonics [Invited]

Marcello Ferrera, Nathaniel Kinsey, Amr Shaltout, Clayton DeVault, Vladimir Shalaev, and Alexandra Boltasseva
J. Opt. Soc. Am. B 34(1) 95-103 (2017)

Miniature multi-contact MEMS switch for broadband terahertz modulation

Mehmet Unlu and Mona Jarrahi
Opt. Express 22(26) 32245-32260 (2014)

References

  • View by:
  • |
  • |
  • |

  1. U. Efron, ed., Spatial Light Modulator Technology: Materials, Devices, and Applications (CRC, 1994).
  2. G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, Optical Imaging and Metrology: Advanced Technologies (Wiley-VCH Verlag GmbH & Co. KGaA, 2012, Chap. 1. LCOS Spatial Light Modulators: Trends and Applications, pp. 1–29).
    [Crossref]
  3. H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Curr. Appl. Phys. 15, 632–641 (2015).
    [Crossref]
  4. N. I. Zheludev, “Obtaining optical properties on demand,” Science 348, 973–974 (2015).
    [Crossref] [PubMed]
  5. T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
    [Crossref] [PubMed]
  6. Z. L. Sámson, K. F. MacDonald, F. D. Angelis, B. Gholipour, K. Knight, C. C. Huang, E. D. Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
    [Crossref]
  7. D. J. Cho, W. Wu, E. Ponizovskaya, P. Chaturvedi, A. M. Bratkovsky, S.-Y. Wang, X. Zhang, F. Wang, and Y. R. Shen, “Ultrafast modulation of optical metamaterials,” Opt. Express 17, 17652–17657 (2009).
    [Crossref] [PubMed]
  8. K. M. Dani, Z. Ku, P. C. Upadhya, R. P. Prasankumar, S. R. J. Brueck, and A. J. Taylor, “Subpicosecond optical switching with a negative index metamaterial,” Nano Lett. 9, 3565–3569 (2009).
    [Crossref] [PubMed]
  9. A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. D. Angelis, S. A. Boden, E. D. Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
    [Crossref]
  10. J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
    [Crossref]
  11. X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
    [Crossref]
  12. J. Shi, X. Fang, E. T. F. Rogers, E. Plum, K. F. MacDonald, and N. I. Zheludev, “Coherent control of snell’s law at metasurfaces,” Opt. Express 22, 21051–21060 (2014).
    [Crossref] [PubMed]
  13. M. Papaioannou, E. Plum, J. Valente, E. Rogers, and N. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light Sci. Appl. 5, e16070 (2015).
    [Crossref]
  14. M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marqués, and Y. Kivshar, “Structural tunability in metamaterials,” Appl. Phys. Lett. 95, 084105 (2009).
    [Crossref]
  15. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
    [Crossref] [PubMed]
  16. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
    [Crossref] [PubMed]
  17. W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
    [Crossref] [PubMed]
  18. J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
    [Crossref]
  19. J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
    [Crossref] [PubMed]
  20. J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “Reconfiguring photonic metamaterials with currents and magnetic fields,” Appl. Phys. Lett. 106, 111905 (2015).
    [Crossref]
  21. J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
    [Crossref] [PubMed]
  22. R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13, 3293–3297 (2013).
    [Crossref] [PubMed]
  23. R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel transduction of nanomechanical motion using plasmonic resonators,” ACS Photonics 1, 1181–1188 (2014).
    [Crossref]
  24. K. Yamaguchi, M. Fujii, T. Okamoto, and M. Haraguchi, “Electrically driven plasmon chip: Active plasmon filter,” Appl. Phys. Express 7, 012201 (2014).
    [Crossref]
  25. R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical resonators based on dimer nanoantennas,” Nano Lett. 15, 3971–3976 (2015).
    [Crossref]
  26. N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11, 16–22 (2016).
    [Crossref] [PubMed]
  27. S. Prasanna and S. M. Spearing, “Materials selection and design of microelectrothermal bimaterial actuators,” J. Microelectromech. Syst. 16, 248–259 (2007).
    [Crossref]
  28. P. Cencillo-Abad, E. Plum, E. T. F. Rogers, and N. I. Zheludev, “Spatial optical phase-modulating metadevice with subwavelength pixelation,” University of Southampton ePrints research repository (2016), http://dx.doi.org/10.5258/SOTON/384976 .
  29. O. K. Ersoy, Diffraction, Fourier Optics and Imaging (John Wiley & Sons, 2006).
  30. Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008).
    [Crossref]
  31. D. M. Bloom, “Grating light valve: revolutionizing display technology,” Proc. SPIE 3013, 165–171 (1997).
    [Crossref]
  32. O. Solgaard, Photonic Microsystems: Micro and Nanotechnology Applied to Optical Devices and Systems (Springer Science & Business Media, 2009).
  33. E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized pancharatnam-berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
    [Crossref]
  34. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref] [PubMed]
  35. S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
    [Crossref] [PubMed]
  36. T. Roy, A. E. Nikolaenko, and E. T. F. Rogers, “A meta-diffraction-grating for visible light,” J. Opt. 15, 085101 (2013).
    [Crossref]
  37. P. Cencillo-Abad, J. Y. Ou, J. Valente, E. Plum, and N. I. Zheludev, “Randomly addressable reconfigurable photonic metamaterials,” in “5th Int. Topical Meeting on Nanophotonics and Metamaterials, Seefeld in Tirol, Austria,” (2015).

2016 (1)

N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11, 16–22 (2016).
[Crossref] [PubMed]

2015 (6)

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical resonators based on dimer nanoantennas,” Nano Lett. 15, 3971–3976 (2015).
[Crossref]

M. Papaioannou, E. Plum, J. Valente, E. Rogers, and N. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light Sci. Appl. 5, e16070 (2015).
[Crossref]

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “Reconfiguring photonic metamaterials with currents and magnetic fields,” Appl. Phys. Lett. 106, 111905 (2015).
[Crossref]

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Curr. Appl. Phys. 15, 632–641 (2015).
[Crossref]

N. I. Zheludev, “Obtaining optical properties on demand,” Science 348, 973–974 (2015).
[Crossref] [PubMed]

2014 (4)

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

J. Shi, X. Fang, E. T. F. Rogers, E. Plum, K. F. MacDonald, and N. I. Zheludev, “Coherent control of snell’s law at metasurfaces,” Opt. Express 22, 21051–21060 (2014).
[Crossref] [PubMed]

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel transduction of nanomechanical motion using plasmonic resonators,” ACS Photonics 1, 1181–1188 (2014).
[Crossref]

K. Yamaguchi, M. Fujii, T. Okamoto, and M. Haraguchi, “Electrically driven plasmon chip: Active plasmon filter,” Appl. Phys. Express 7, 012201 (2014).
[Crossref]

2013 (3)

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13, 3293–3297 (2013).
[Crossref] [PubMed]

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref] [PubMed]

T. Roy, A. E. Nikolaenko, and E. T. F. Rogers, “A meta-diffraction-grating for visible light,” J. Opt. 15, 085101 (2013).
[Crossref]

2012 (3)

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. D. Angelis, S. A. Boden, E. D. Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

2011 (3)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref]

2010 (2)

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref] [PubMed]

Z. L. Sámson, K. F. MacDonald, F. D. Angelis, B. Gholipour, K. Knight, C. C. Huang, E. D. Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

2009 (5)

K. M. Dani, Z. Ku, P. C. Upadhya, R. P. Prasankumar, S. R. J. Brueck, and A. J. Taylor, “Subpicosecond optical switching with a negative index metamaterial,” Nano Lett. 9, 3565–3569 (2009).
[Crossref] [PubMed]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref] [PubMed]

D. J. Cho, W. Wu, E. Ponizovskaya, P. Chaturvedi, A. M. Bratkovsky, S.-Y. Wang, X. Zhang, F. Wang, and Y. R. Shen, “Ultrafast modulation of optical metamaterials,” Opt. Express 17, 17652–17657 (2009).
[Crossref] [PubMed]

M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marqués, and Y. Kivshar, “Structural tunability in metamaterials,” Appl. Phys. Lett. 95, 084105 (2009).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref] [PubMed]

2008 (1)

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008).
[Crossref]

2007 (1)

S. Prasanna and S. M. Spearing, “Materials selection and design of microelectrothermal bimaterial actuators,” J. Microelectromech. Syst. 16, 248–259 (2007).
[Crossref]

2003 (1)

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized pancharatnam-berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

1997 (1)

D. M. Bloom, “Grating light valve: revolutionizing display technology,” Proc. SPIE 3013, 165–171 (1997).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Angelis, F. D.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. D. Angelis, S. A. Boden, E. D. Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

Z. L. Sámson, K. F. MacDonald, F. D. Angelis, B. Gholipour, K. Knight, C. C. Huang, E. D. Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Atmatzakis, E.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. D. Angelis, S. A. Boden, E. D. Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

Atwater, H. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref] [PubMed]

Averitt, R. D.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref] [PubMed]

Aydin, K.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref] [PubMed]

Bakker, R.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008).
[Crossref]

Basov, D. N.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref] [PubMed]

Biener, G.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized pancharatnam-berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

Bloom, D. M.

D. M. Bloom, “Grating light valve: revolutionizing display technology,” Proc. SPIE 3013, 165–171 (1997).
[Crossref]

Boden, S. A.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. D. Angelis, S. A. Boden, E. D. Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

Boltasseva, A.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008).
[Crossref]

Bourouina, T.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref] [PubMed]

Bratkovsky, A. M.

Briggs, R. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref] [PubMed]

Brueck, S. R. J.

K. M. Dani, Z. Ku, P. C. Upadhya, R. P. Prasankumar, S. R. J. Brueck, and A. J. Taylor, “Subpicosecond optical switching with a negative index metamaterial,” Nano Lett. 9, 3565–3569 (2009).
[Crossref] [PubMed]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Cencillo-Abad, P.

P. Cencillo-Abad, J. Y. Ou, J. Valente, E. Plum, and N. I. Zheludev, “Randomly addressable reconfigurable photonic metamaterials,” in “5th Int. Topical Meeting on Nanophotonics and Metamaterials, Seefeld in Tirol, Austria,” (2015).

Chae, B.-G.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref] [PubMed]

Chaturvedi, P.

Chen, W. T.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Cho, D. J.

Dani, K. M.

K. M. Dani, Z. Ku, P. C. Upadhya, R. P. Prasankumar, S. R. J. Brueck, and A. J. Taylor, “Subpicosecond optical switching with a negative index metamaterial,” Nano Lett. 9, 3565–3569 (2009).
[Crossref] [PubMed]

Drachev, V. P.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008).
[Crossref]

Driscoll, T.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref] [PubMed]

Ersoy, O. K.

O. K. Ersoy, Diffraction, Fourier Optics and Imaging (John Wiley & Sons, 2006).

Fabrizio, E. D.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. D. Angelis, S. A. Boden, E. D. Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

Z. L. Sámson, K. F. MacDonald, F. D. Angelis, B. Gholipour, K. Knight, C. C. Huang, E. D. Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Fan, K.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref] [PubMed]

Fang, X.

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

J. Shi, X. Fang, E. T. F. Rogers, E. Plum, K. F. MacDonald, and N. I. Zheludev, “Coherent control of snell’s law at metasurfaces,” Opt. Express 22, 21051–21060 (2014).
[Crossref] [PubMed]

Fujii, M.

K. Yamaguchi, M. Fujii, T. Okamoto, and M. Haraguchi, “Electrically driven plasmon chip: Active plasmon filter,” Appl. Phys. Express 7, 012201 (2014).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Gholipour, B.

Z. L. Sámson, K. F. MacDonald, F. D. Angelis, B. Gholipour, K. Knight, C. C. Huang, E. D. Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Gorkunov, M.

M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marqués, and Y. Kivshar, “Structural tunability in metamaterials,” Appl. Phys. Lett. 95, 084105 (2009).
[Crossref]

Guo, G.-Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Guo, H. C.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref] [PubMed]

Haraguchi, M.

K. Yamaguchi, M. Fujii, T. Okamoto, and M. Haraguchi, “Electrically driven plasmon chip: Active plasmon filter,” Appl. Phys. Express 7, 012201 (2014).
[Crossref]

Hasman, E.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized pancharatnam-berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

He, Q.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Hermerschmidt, A.

G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, Optical Imaging and Metrology: Advanced Technologies (Wiley-VCH Verlag GmbH & Co. KGaA, 2012, Chap. 1. LCOS Spatial Light Modulators: Trends and Applications, pp. 1–29).
[Crossref]

Hewak, D. W.

Z. L. Sámson, K. F. MacDonald, F. D. Angelis, B. Gholipour, K. Knight, C. C. Huang, E. D. Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Huang, C. C.

Z. L. Sámson, K. F. MacDonald, F. D. Angelis, B. Gholipour, K. Knight, C. C. Huang, E. D. Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Jiang, L.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref]

Jokerst, N. M.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref] [PubMed]

Juan, T.-K.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Kelaita, Y. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref] [PubMed]

Kildishev, A. V.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008).
[Crossref]

Kim, B.-J.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref] [PubMed]

Kim, H.-T.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref] [PubMed]

Kim, K.

H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Curr. Appl. Phys. 15, 632–641 (2015).
[Crossref]

Kippenberg, T. J.

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical resonators based on dimer nanoantennas,” Nano Lett. 15, 3971–3976 (2015).
[Crossref]

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel transduction of nanomechanical motion using plasmonic resonators,” ACS Photonics 1, 1181–1188 (2014).
[Crossref]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13, 3293–3297 (2013).
[Crossref] [PubMed]

Kivshar, Y.

M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marqués, and Y. Kivshar, “Structural tunability in metamaterials,” Appl. Phys. Lett. 95, 084105 (2009).
[Crossref]

Kleiner, V.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized pancharatnam-berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

Knight, K.

Z. L. Sámson, K. F. MacDonald, F. D. Angelis, B. Gholipour, K. Knight, C. C. Huang, E. D. Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Krüger, S.

G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, Optical Imaging and Metrology: Advanced Technologies (Wiley-VCH Verlag GmbH & Co. KGaA, 2012, Chap. 1. LCOS Spatial Light Modulators: Trends and Applications, pp. 1–29).
[Crossref]

Ku, Z.

K. M. Dani, Z. Ku, P. C. Upadhya, R. P. Prasankumar, S. R. J. Brueck, and A. J. Taylor, “Subpicosecond optical switching with a negative index metamaterial,” Nano Lett. 9, 3565–3569 (2009).
[Crossref] [PubMed]

Kung, W.-T.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Kwong, D. L.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref] [PubMed]

Lapine, M.

M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marqués, and Y. Kivshar, “Structural tunability in metamaterials,” Appl. Phys. Lett. 95, 084105 (2009).
[Crossref]

Lazarev, G.

G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, Optical Imaging and Metrology: Advanced Technologies (Wiley-VCH Verlag GmbH & Co. KGaA, 2012, Chap. 1. LCOS Spatial Light Modulators: Trends and Applications, pp. 1–29).
[Crossref]

Lee, K.

H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Curr. Appl. Phys. 15, 632–641 (2015).
[Crossref]

Lee, S.

H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Curr. Appl. Phys. 15, 632–641 (2015).
[Crossref]

Lee, Y.-W.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref] [PubMed]

Liao, C. Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Liu, A. Q.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008).
[Crossref]

Lo, G. Q.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref] [PubMed]

Luo, Z.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. D. Angelis, S. A. Boden, E. D. Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

MacDonald, K. F.

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

J. Shi, X. Fang, E. T. F. Rogers, E. Plum, K. F. MacDonald, and N. I. Zheludev, “Coherent control of snell’s law at metasurfaces,” Opt. Express 22, 21051–21060 (2014).
[Crossref] [PubMed]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

Z. L. Sámson, K. F. MacDonald, F. D. Angelis, B. Gholipour, K. Knight, C. C. Huang, E. D. Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Marqués, R.

M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marqués, and Y. Kivshar, “Structural tunability in metamaterials,” Appl. Phys. Lett. 95, 084105 (2009).
[Crossref]

Mei, T.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref] [PubMed]

Nikolaenko, A. E.

T. Roy, A. E. Nikolaenko, and E. T. F. Rogers, “A meta-diffraction-grating for visible light,” J. Opt. 15, 085101 (2013).
[Crossref]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. D. Angelis, S. A. Boden, E. D. Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

Niv, A.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized pancharatnam-berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

Okamoto, T.

K. Yamaguchi, M. Fujii, T. Okamoto, and M. Haraguchi, “Electrically driven plasmon chip: Active plasmon filter,” Appl. Phys. Express 7, 012201 (2014).
[Crossref]

Osten, S.

G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, Optical Imaging and Metrology: Advanced Technologies (Wiley-VCH Verlag GmbH & Co. KGaA, 2012, Chap. 1. LCOS Spatial Light Modulators: Trends and Applications, pp. 1–29).
[Crossref]

Ou, J. Y.

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “Reconfiguring photonic metamaterials with currents and magnetic fields,” Appl. Phys. Lett. 106, 111905 (2015).
[Crossref]

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref]

P. Cencillo-Abad, J. Y. Ou, J. Valente, E. Plum, and N. I. Zheludev, “Randomly addressable reconfigurable photonic metamaterials,” in “5th Int. Topical Meeting on Nanophotonics and Metamaterials, Seefeld in Tirol, Austria,” (2015).

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref] [PubMed]

Palit, S.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref] [PubMed]

Papaioannou, M.

M. Papaioannou, E. Plum, J. Valente, E. Rogers, and N. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light Sci. Appl. 5, e16070 (2015).
[Crossref]

Papasimakis, N.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. D. Angelis, S. A. Boden, E. D. Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

Park, J.

H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Curr. Appl. Phys. 15, 632–641 (2015).
[Crossref]

Park, Y.

H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Curr. Appl. Phys. 15, 632–641 (2015).
[Crossref]

Pedersen, R. H.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008).
[Crossref]

Plum, E.

N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11, 16–22 (2016).
[Crossref] [PubMed]

M. Papaioannou, E. Plum, J. Valente, E. Rogers, and N. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light Sci. Appl. 5, e16070 (2015).
[Crossref]

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “Reconfiguring photonic metamaterials with currents and magnetic fields,” Appl. Phys. Lett. 106, 111905 (2015).
[Crossref]

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

J. Shi, X. Fang, E. T. F. Rogers, E. Plum, K. F. MacDonald, and N. I. Zheludev, “Coherent control of snell’s law at metasurfaces,” Opt. Express 22, 21051–21060 (2014).
[Crossref] [PubMed]

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref]

P. Cencillo-Abad, J. Y. Ou, J. Valente, E. Plum, and N. I. Zheludev, “Randomly addressable reconfigurable photonic metamaterials,” in “5th Int. Topical Meeting on Nanophotonics and Metamaterials, Seefeld in Tirol, Austria,” (2015).

Polman, A.

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical resonators based on dimer nanoantennas,” Nano Lett. 15, 3971–3976 (2015).
[Crossref]

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel transduction of nanomechanical motion using plasmonic resonators,” ACS Photonics 1, 1181–1188 (2014).
[Crossref]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13, 3293–3297 (2013).
[Crossref] [PubMed]

Ponizovskaya, E.

Powell, D.

M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marqués, and Y. Kivshar, “Structural tunability in metamaterials,” Appl. Phys. Lett. 95, 084105 (2009).
[Crossref]

Prasankumar, R. P.

K. M. Dani, Z. Ku, P. C. Upadhya, R. P. Prasankumar, S. R. J. Brueck, and A. J. Taylor, “Subpicosecond optical switching with a negative index metamaterial,” Nano Lett. 9, 3565–3569 (2009).
[Crossref] [PubMed]

Prasanna, S.

S. Prasanna and S. M. Spearing, “Materials selection and design of microelectrothermal bimaterial actuators,” J. Microelectromech. Syst. 16, 248–259 (2007).
[Crossref]

Pryce, I. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref] [PubMed]

Rogers, E.

M. Papaioannou, E. Plum, J. Valente, E. Rogers, and N. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light Sci. Appl. 5, e16070 (2015).
[Crossref]

Rogers, E. T. F.

Roy, T.

T. Roy, A. E. Nikolaenko, and E. T. F. Rogers, “A meta-diffraction-grating for visible light,” J. Opt. 15, 085101 (2013).
[Crossref]

Sámson, Z. L.

Z. L. Sámson, K. F. MacDonald, F. D. Angelis, B. Gholipour, K. Knight, C. C. Huang, E. D. Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Shadrivov, I.

M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marqués, and Y. Kivshar, “Structural tunability in metamaterials,” Appl. Phys. Lett. 95, 084105 (2009).
[Crossref]

Shalaev, V. M.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008).
[Crossref]

Shen, Y. R.

Shen, Z. X.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. D. Angelis, S. A. Boden, E. D. Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

Shi, J.

Smith, D. R.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref] [PubMed]

Solgaard, O.

O. Solgaard, Photonic Microsystems: Micro and Nanotechnology Applied to Optical Devices and Systems (Springer Science & Business Media, 2009).

Spearing, S. M.

S. Prasanna and S. M. Spearing, “Materials selection and design of microelectrothermal bimaterial actuators,” J. Microelectromech. Syst. 16, 248–259 (2007).
[Crossref]

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref] [PubMed]

Sun, S.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Tanoto, H.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref] [PubMed]

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref] [PubMed]

Taylor, A. J.

K. M. Dani, Z. Ku, P. C. Upadhya, R. P. Prasankumar, S. R. J. Brueck, and A. J. Taylor, “Subpicosecond optical switching with a negative index metamaterial,” Nano Lett. 9, 3565–3569 (2009).
[Crossref] [PubMed]

Teng, J. H.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref] [PubMed]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Thijssen, R.

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical resonators based on dimer nanoantennas,” Nano Lett. 15, 3971–3976 (2015).
[Crossref]

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel transduction of nanomechanical motion using plasmonic resonators,” ACS Photonics 1, 1181–1188 (2014).
[Crossref]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13, 3293–3297 (2013).
[Crossref] [PubMed]

Tsai, D. P.

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref] [PubMed]

Tseng, M. L.

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

Upadhya, P. C.

K. M. Dani, Z. Ku, P. C. Upadhya, R. P. Prasankumar, S. R. J. Brueck, and A. J. Taylor, “Subpicosecond optical switching with a negative index metamaterial,” Nano Lett. 9, 3565–3569 (2009).
[Crossref] [PubMed]

Valente, J.

M. Papaioannou, E. Plum, J. Valente, E. Rogers, and N. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light Sci. Appl. 5, e16070 (2015).
[Crossref]

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “Reconfiguring photonic metamaterials with currents and magnetic fields,” Appl. Phys. Lett. 106, 111905 (2015).
[Crossref]

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

P. Cencillo-Abad, J. Y. Ou, J. Valente, E. Plum, and N. I. Zheludev, “Randomly addressable reconfigurable photonic metamaterials,” in “5th Int. Topical Meeting on Nanophotonics and Metamaterials, Seefeld in Tirol, Austria,” (2015).

Ventra, M. D.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref] [PubMed]

Verhagen, E.

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical resonators based on dimer nanoantennas,” Nano Lett. 15, 3971–3976 (2015).
[Crossref]

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel transduction of nanomechanical motion using plasmonic resonators,” ACS Photonics 1, 1181–1188 (2014).
[Crossref]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13, 3293–3297 (2013).
[Crossref] [PubMed]

Wang, C.-M.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Wang, F.

Wang, S.-Y.

Wu, W.

Xiao, S.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Yamaguchi, K.

K. Yamaguchi, M. Fujii, T. Okamoto, and M. Haraguchi, “Electrically driven plasmon chip: Active plasmon filter,” Appl. Phys. Express 7, 012201 (2014).
[Crossref]

Yang, K.-Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Yoon, J.

H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Curr. Appl. Phys. 15, 632–641 (2015).
[Crossref]

Youngs, I. J.

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “Reconfiguring photonic metamaterials with currents and magnetic fields,” Appl. Phys. Lett. 106, 111905 (2015).
[Crossref]

Yu, H.

H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Curr. Appl. Phys. 15, 632–641 (2015).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Zhang, J.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref] [PubMed]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

Zhang, X.

Zhang, X. H.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref] [PubMed]

Zhang, X. M.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref] [PubMed]

Zheludev, N.

M. Papaioannou, E. Plum, J. Valente, E. Rogers, and N. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light Sci. Appl. 5, e16070 (2015).
[Crossref]

Zheludev, N. I.

N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11, 16–22 (2016).
[Crossref] [PubMed]

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “Reconfiguring photonic metamaterials with currents and magnetic fields,” Appl. Phys. Lett. 106, 111905 (2015).
[Crossref]

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

N. I. Zheludev, “Obtaining optical properties on demand,” Science 348, 973–974 (2015).
[Crossref] [PubMed]

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

J. Shi, X. Fang, E. T. F. Rogers, E. Plum, K. F. MacDonald, and N. I. Zheludev, “Coherent control of snell’s law at metasurfaces,” Opt. Express 22, 21051–21060 (2014).
[Crossref] [PubMed]

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref] [PubMed]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. D. Angelis, S. A. Boden, E. D. Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref]

Z. L. Sámson, K. F. MacDonald, F. D. Angelis, B. Gholipour, K. Knight, C. C. Huang, E. D. Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

P. Cencillo-Abad, J. Y. Ou, J. Valente, E. Plum, and N. I. Zheludev, “Randomly addressable reconfigurable photonic metamaterials,” in “5th Int. Topical Meeting on Nanophotonics and Metamaterials, Seefeld in Tirol, Austria,” (2015).

Zhou, L.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Zhu, W. M.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel transduction of nanomechanical motion using plasmonic resonators,” ACS Photonics 1, 1181–1188 (2014).
[Crossref]

Adv. Mater. (1)

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref] [PubMed]

Appl. Phys. Express (1)

K. Yamaguchi, M. Fujii, T. Okamoto, and M. Haraguchi, “Electrically driven plasmon chip: Active plasmon filter,” Appl. Phys. Express 7, 012201 (2014).
[Crossref]

Appl. Phys. Lett. (6)

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “Reconfiguring photonic metamaterials with currents and magnetic fields,” Appl. Phys. Lett. 106, 111905 (2015).
[Crossref]

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized pancharatnam-berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marqués, and Y. Kivshar, “Structural tunability in metamaterials,” Appl. Phys. Lett. 95, 084105 (2009).
[Crossref]

X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

Z. L. Sámson, K. F. MacDonald, F. D. Angelis, B. Gholipour, K. Knight, C. C. Huang, E. D. Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. D. Angelis, S. A. Boden, E. D. Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

Curr. Appl. Phys. (1)

H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications,” Curr. Appl. Phys. 15, 632–641 (2015).
[Crossref]

J. Microelectromech. Syst. (1)

S. Prasanna and S. M. Spearing, “Materials selection and design of microelectrothermal bimaterial actuators,” J. Microelectromech. Syst. 16, 248–259 (2007).
[Crossref]

J. Opt. (1)

T. Roy, A. E. Nikolaenko, and E. T. F. Rogers, “A meta-diffraction-grating for visible light,” J. Opt. 15, 085101 (2013).
[Crossref]

Light Sci. Appl. (2)

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

M. Papaioannou, E. Plum, J. Valente, E. Rogers, and N. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light Sci. Appl. 5, e16070 (2015).
[Crossref]

Metamaterials (1)

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008).
[Crossref]

Nano Lett. (6)

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref] [PubMed]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13, 3293–3297 (2013).
[Crossref] [PubMed]

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical resonators based on dimer nanoantennas,” Nano Lett. 15, 3971–3976 (2015).
[Crossref]

K. M. Dani, Z. Ku, P. C. Upadhya, R. P. Prasankumar, S. R. J. Brueck, and A. J. Taylor, “Subpicosecond optical switching with a negative index metamaterial,” Nano Lett. 9, 3565–3569 (2009).
[Crossref] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11, 2142–2144 (2011).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11, 16–22 (2016).
[Crossref] [PubMed]

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. Lett. (1)

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref] [PubMed]

Proc. SPIE (1)

D. M. Bloom, “Grating light valve: revolutionizing display technology,” Proc. SPIE 3013, 165–171 (1997).
[Crossref]

Science (3)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

N. I. Zheludev, “Obtaining optical properties on demand,” Science 348, 973–974 (2015).
[Crossref] [PubMed]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref] [PubMed]

Other (6)

U. Efron, ed., Spatial Light Modulator Technology: Materials, Devices, and Applications (CRC, 1994).

G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, Optical Imaging and Metrology: Advanced Technologies (Wiley-VCH Verlag GmbH & Co. KGaA, 2012, Chap. 1. LCOS Spatial Light Modulators: Trends and Applications, pp. 1–29).
[Crossref]

P. Cencillo-Abad, J. Y. Ou, J. Valente, E. Plum, and N. I. Zheludev, “Randomly addressable reconfigurable photonic metamaterials,” in “5th Int. Topical Meeting on Nanophotonics and Metamaterials, Seefeld in Tirol, Austria,” (2015).

O. Solgaard, Photonic Microsystems: Micro and Nanotechnology Applied to Optical Devices and Systems (Springer Science & Business Media, 2009).

P. Cencillo-Abad, E. Plum, E. T. F. Rogers, and N. I. Zheludev, “Spatial optical phase-modulating metadevice with subwavelength pixelation,” University of Southampton ePrints research repository (2016), http://dx.doi.org/10.5258/SOTON/384976 .

O. K. Ersoy, Diffraction, Fourier Optics and Imaging (John Wiley & Sons, 2006).

Supplementary Material (1)

NameDescription
» Dataset 1       Spatial optical phase-modulating

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Phase modulation by nanomechanical actuation. (a) Scanning electron microscope image of freestanding nanowires suitable for thermal and magnetic actuation. The nanowires consist of 50 nm of gold on 50 nm of silicon nitride, their overall length is 20 μm including 3 μm elastic springs at either end and their period is about 600 nm. (b) Out-of-plane nanowire displacement Δz changes the phase of the reflected wave by Δ φ = 4 π λ Δ z. (c) Electrothermal actuation: resistive heating by electrical currents induces nanowire displacement by differential thermal expansion [20]. (d) Magnetic actuation: The magnetic Lorentz force displaces current-carrying wires placed in a magnetic field directed perpendicular to the current flow [21]. Magnetic actuation does not require the silicon nitride layer (red dotted line).
Fig. 2
Fig. 2 Reconfigurable gratings are formed by spatially periodic vertical displacement of the nanowires. (a) Grating light valve (beam splitter) of period pg = 800 nm realized by λ/4 actuation of every second nanowire. (b) Grating of period pg = 1200 nm resulting from λ/8 displacement of every third nanowire. (c) Blazed grating (pg = 1200 nm) and (d) phase-gradient surface (pg = 1600 nm) based on a sawtooth configuration of the nanowires that are displaced in steps of λ/8. The magnitude of the only non-zero reflected electric field component |Ey| is shown and the metadevice, that is located at z = +2 μm, is illuminated by a y-polarized plane wave of 550 nm wavelength and electric field amplitude |E0| propagating along the positive z-axis. The diffraction orders are labelled and marked by arrows.
Fig. 3
Fig. 3 Reconfigurable mirrors. (a) Focusing and (b) defocusing mirrors with 38.5 μm focal length formed by arranging the nanowires to form concave and convex cylindrical segments, respectively. (c) Multifocal mirror array, where each mirror of 3.3 μm focal length is formed by a concave cylindrical arrangement of 11 nanowires. The maximum nanowire displacement is 250 nm in all cases. The magnitude of the only non-zero reflected electric field component |Ey| is shown and the metadevice, that is located at z = 0, is illuminated by a y-polarized plane wave of 550 nm wavelength and electric field amplitude |E0| propagating along the positive z-axis.
Fig. 4
Fig. 4 Metadevices with and without sub-wavelength nanowire actuator pitch. (a) Flat continuous mirror of 12.7 μm width. (b) Flat mirror configuration of the nanowire metadevice with sub-wavelength period of 400 nm and overall width of 12.7 μm. (c) Flat mirror configuration of a coarser metadevice, where the period is doubled to 800 nm. (d) The metadevice with 800 nm periodicity in the same focusing mirror configuration as presented in Fig. 3(a) for the metadevice of period 400 nm. The magnitude of the only non-zero reflected electric field component |Ey| is shown and the structures, that are located at z = +2 μm, are illuminated by a y-polarized plane wave of 550 nm wavelength and electric field amplitude |E0| propagating along the positive z-axis.

Metrics