Abstract

High speed free space optical communication (FSOC) has taken advantages of components developed for fiber-optic communication systems. Recently, with the rapid development of few-mode-fiber based fiber communication systems, few-mode-fiber components might further promote their applications in FSOC system. The coupling efficiency between free space optical beam and few-mode fibers under atmospheric turbulence effect are investigated in this paper. Both simulation and experimental results show that, compared with single-mode fiber, the coupling efficiencies for a 2-mode fiber and a 4-mode fiber are improved by ~4 dB and ~7 dB respectively in the presence of medium moderate and strong turbulence. Compared with single-mode fiber, the relative standard deviation of received power is restrained by 51% and 66% respectively with a 4-mode and 2-mode fiber.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance enhancement of free-space optical communications under atmospheric turbulence using modes diversity coherent receipt

Donghao Zheng, Yan Li, Honghang Zhou, Yiming Bian, Chen Yang, Wei Li, Jifang Qiu, Hongxiang Guo, Xiaobin Hong, Yong Zuo, Ian P. Giles, Weijun Tong, and Jian Wu
Opt. Express 26(22) 28879-28890 (2018)

Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence

Yamaç Dikmelik and Frederic M. Davidson
Appl. Opt. 44(23) 4946-4952 (2005)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
    [Crossref]
  2. E. Leitgeb, M. Gebhart, and U. Birnbacer, “Optical networks, last mile access and applications,” J Opt. Fiber Commun. Res. 2(1), 56–85 (2005).
    [Crossref]
  3. D. Y. Song, Y. S. Hurh, J. W. Cho, J. H. Lim, D. W. Lee, J. S. Lee, and Y. Chung, “4 x 10 Gb/s terrestrial optical free space transmission over 1.2 km using an EDFA preamplifier with 100 GHz channel spacing,” Opt. Express 7(8), 280–284 (2000).
    [Crossref] [PubMed]
  4. G. Nykolak, P. F. Szajowski, G. Tourgee, and H. Presby, “2.5 Gbits free space optical link over 4.4 km,” Electron. Lett. 35(7), 578–579 (1999).
    [Crossref]
  5. M. Abtahi, P. Lemieux, W. Mathlouthi, and L. A. Rusch, “Suppression of turbulence-induced scintillation in free-space optical communication systems using saturated optical amplifiers,” J. Lightwave Technol. 24(12), 4966–4973 (2007).
    [Crossref]
  6. Y. Ren, A. Dang, L. Liu, and H. Guo, “Heterodyne efficiency of a coherent free-space optical communication model through atmospheric turbulence,” Appl. Opt. 51(30), 7246–7254 (2012).
    [Crossref] [PubMed]
  7. R. Zhang, J. Wang, G. Zhao, and J. Lv, “Fiber-based free-space optical coherent receiver with vibration compensation mechanism,” Opt. Express 21(15), 18434–18441 (2013).
    [Crossref] [PubMed]
  8. Y. Dikmelik and F. M. Davidson, “Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence,” Appl. Opt. 44(23), 4946–4952 (2005).
    [Crossref] [PubMed]
  9. J. Ma, F. Zhao, L. Tan, S. Yu, and Y. Yang, “Degradation of single-mode fiber coupling efficiency due to localized wavefront aberrations in free-space laser communications,” Opt. Eng. 49(4), 045004 (2010).
    [Crossref]
  10. I. Ozdur, P. Toliver, A. Agarwal, and T. K. Woodward, “Free-space to single-mode collection efficiency enhancement using photonic lanterns,” Opt. Lett. 38(18), 3554–3557 (2013).
    [Crossref] [PubMed]
  11. P. J. Winzer and W. R. Leeb, “Fiber coupling efficiency for random light and its applications to lidar,” Opt. Lett. 23(13), 986–988 (1998).
    [Crossref] [PubMed]
  12. H. Wu, H. Yan, and X. Li, “Modal correction for fiber-coupling efficiency in free-space optical communication systems through atmospheric turbulence,” Optik-Int. J. Light Electron. Opt. 121(19), 1789–1793 (2010).
    [Crossref]
  13. H. Takenaka, M. Toyoshima, and Y. Takayama, “Experimental verification of fiber-coupling efficiency for satellite-to-ground atmospheric laser downlinks,” Opt. Express 20(14), 15301–15308 (2012).
    [Crossref] [PubMed]
  14. D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51(8), 1767–1783 (1972).
    [Crossref]
  15. F. Yaman, N. Bai, B. Zhu, T. Wang, and G. Li, “Long distance transmission in few-mode fibers,” Opt. Express 18(12), 13250–13257 (2010).
    [Crossref] [PubMed]
  16. G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
    [Crossref]
  17. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  18. T. Xu, Y. Li, W. Du, C. Ma, S. Cai, M. Lan, J. Wu, S. Yu, and J. Lin, “Simulating Atmospheric Turbulence Using a Spatial Light Modulator based on Fourier Transform,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2014), paper SM4J.3.
  19. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005).
  20. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55(11), 1427–1435 (1965).
    [Crossref]
  21. J. D. Schmidt, Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (SPIE, 2010), Ch. 6.

2014 (2)

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

2013 (3)

2012 (2)

2010 (3)

J. Ma, F. Zhao, L. Tan, S. Yu, and Y. Yang, “Degradation of single-mode fiber coupling efficiency due to localized wavefront aberrations in free-space laser communications,” Opt. Eng. 49(4), 045004 (2010).
[Crossref]

H. Wu, H. Yan, and X. Li, “Modal correction for fiber-coupling efficiency in free-space optical communication systems through atmospheric turbulence,” Optik-Int. J. Light Electron. Opt. 121(19), 1789–1793 (2010).
[Crossref]

F. Yaman, N. Bai, B. Zhu, T. Wang, and G. Li, “Long distance transmission in few-mode fibers,” Opt. Express 18(12), 13250–13257 (2010).
[Crossref] [PubMed]

2007 (1)

2005 (2)

Y. Dikmelik and F. M. Davidson, “Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence,” Appl. Opt. 44(23), 4946–4952 (2005).
[Crossref] [PubMed]

E. Leitgeb, M. Gebhart, and U. Birnbacer, “Optical networks, last mile access and applications,” J Opt. Fiber Commun. Res. 2(1), 56–85 (2005).
[Crossref]

2000 (1)

1999 (1)

G. Nykolak, P. F. Szajowski, G. Tourgee, and H. Presby, “2.5 Gbits free space optical link over 4.4 km,” Electron. Lett. 35(7), 578–579 (1999).
[Crossref]

1998 (1)

1972 (1)

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51(8), 1767–1783 (1972).
[Crossref]

1965 (1)

Abtahi, M.

Agarwal, A.

Bai, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

F. Yaman, N. Bai, B. Zhu, T. Wang, and G. Li, “Long distance transmission in few-mode fibers,” Opt. Express 18(12), 13250–13257 (2010).
[Crossref] [PubMed]

Birnbacer, U.

E. Leitgeb, M. Gebhart, and U. Birnbacer, “Optical networks, last mile access and applications,” J Opt. Fiber Commun. Res. 2(1), 56–85 (2005).
[Crossref]

Boroson, D. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Burianek, D. A.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Cho, J. W.

Chung, Y.

Cornwell, D. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Dang, A.

Davidson, F. M.

Dikmelik, Y.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Fried, D. L.

Gebhart, M.

E. Leitgeb, M. Gebhart, and U. Birnbacer, “Optical networks, last mile access and applications,” J Opt. Fiber Commun. Res. 2(1), 56–85 (2005).
[Crossref]

Gloge, D.

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51(8), 1767–1783 (1972).
[Crossref]

Guo, H.

Hurh, Y. S.

Khatri, F.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Kovalik, J. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Lee, D. W.

Lee, J. S.

Leeb, W. R.

Leitgeb, E.

E. Leitgeb, M. Gebhart, and U. Birnbacer, “Optical networks, last mile access and applications,” J Opt. Fiber Commun. Res. 2(1), 56–85 (2005).
[Crossref]

Lemieux, P.

Li, G.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

F. Yaman, N. Bai, B. Zhu, T. Wang, and G. Li, “Long distance transmission in few-mode fibers,” Opt. Express 18(12), 13250–13257 (2010).
[Crossref] [PubMed]

Li, X.

H. Wu, H. Yan, and X. Li, “Modal correction for fiber-coupling efficiency in free-space optical communication systems through atmospheric turbulence,” Optik-Int. J. Light Electron. Opt. 121(19), 1789–1793 (2010).
[Crossref]

Lim, J. H.

Liu, L.

Lv, J.

Ma, J.

J. Ma, F. Zhao, L. Tan, S. Yu, and Y. Yang, “Degradation of single-mode fiber coupling efficiency due to localized wavefront aberrations in free-space laser communications,” Opt. Eng. 49(4), 045004 (2010).
[Crossref]

Mathlouthi, W.

Murphy, D. V.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Nykolak, G.

G. Nykolak, P. F. Szajowski, G. Tourgee, and H. Presby, “2.5 Gbits free space optical link over 4.4 km,” Electron. Lett. 35(7), 578–579 (1999).
[Crossref]

Ozdur, I.

Presby, H.

G. Nykolak, P. F. Szajowski, G. Tourgee, and H. Presby, “2.5 Gbits free space optical link over 4.4 km,” Electron. Lett. 35(7), 578–579 (1999).
[Crossref]

Ren, Y.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Robinson, B. S.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Rusch, L. A.

Sodnik, Z.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Song, D. Y.

Szajowski, P. F.

G. Nykolak, P. F. Szajowski, G. Tourgee, and H. Presby, “2.5 Gbits free space optical link over 4.4 km,” Electron. Lett. 35(7), 578–579 (1999).
[Crossref]

Takayama, Y.

Takenaka, H.

Tan, L.

J. Ma, F. Zhao, L. Tan, S. Yu, and Y. Yang, “Degradation of single-mode fiber coupling efficiency due to localized wavefront aberrations in free-space laser communications,” Opt. Eng. 49(4), 045004 (2010).
[Crossref]

Toliver, P.

Tourgee, G.

G. Nykolak, P. F. Szajowski, G. Tourgee, and H. Presby, “2.5 Gbits free space optical link over 4.4 km,” Electron. Lett. 35(7), 578–579 (1999).
[Crossref]

Toyoshima, M.

Wang, J.

Wang, T.

Winzer, P. J.

Woodward, T. K.

Wu, H.

H. Wu, H. Yan, and X. Li, “Modal correction for fiber-coupling efficiency in free-space optical communication systems through atmospheric turbulence,” Optik-Int. J. Light Electron. Opt. 121(19), 1789–1793 (2010).
[Crossref]

Xia, C.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Yaman, F.

Yan, H.

H. Wu, H. Yan, and X. Li, “Modal correction for fiber-coupling efficiency in free-space optical communication systems through atmospheric turbulence,” Optik-Int. J. Light Electron. Opt. 121(19), 1789–1793 (2010).
[Crossref]

Yang, Y.

J. Ma, F. Zhao, L. Tan, S. Yu, and Y. Yang, “Degradation of single-mode fiber coupling efficiency due to localized wavefront aberrations in free-space laser communications,” Opt. Eng. 49(4), 045004 (2010).
[Crossref]

Yu, S.

J. Ma, F. Zhao, L. Tan, S. Yu, and Y. Yang, “Degradation of single-mode fiber coupling efficiency due to localized wavefront aberrations in free-space laser communications,” Opt. Eng. 49(4), 045004 (2010).
[Crossref]

Zhang, R.

Zhao, F.

J. Ma, F. Zhao, L. Tan, S. Yu, and Y. Yang, “Degradation of single-mode fiber coupling efficiency due to localized wavefront aberrations in free-space laser communications,” Opt. Eng. 49(4), 045004 (2010).
[Crossref]

Zhao, G.

Zhao, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Zhu, B.

Adv. Opt. Photonics (1)

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51(8), 1767–1783 (1972).
[Crossref]

Electron. Lett. (1)

G. Nykolak, P. F. Szajowski, G. Tourgee, and H. Presby, “2.5 Gbits free space optical link over 4.4 km,” Electron. Lett. 35(7), 578–579 (1999).
[Crossref]

J Opt. Fiber Commun. Res. (1)

E. Leitgeb, M. Gebhart, and U. Birnbacer, “Optical networks, last mile access and applications,” J Opt. Fiber Commun. Res. 2(1), 56–85 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Eng. (1)

J. Ma, F. Zhao, L. Tan, S. Yu, and Y. Yang, “Degradation of single-mode fiber coupling efficiency due to localized wavefront aberrations in free-space laser communications,” Opt. Eng. 49(4), 045004 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optik-Int. J. Light Electron. Opt. (1)

H. Wu, H. Yan, and X. Li, “Modal correction for fiber-coupling efficiency in free-space optical communication systems through atmospheric turbulence,” Optik-Int. J. Light Electron. Opt. 121(19), 1789–1793 (2010).
[Crossref]

Proc. SPIE (1)

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Other (3)

T. Xu, Y. Li, W. Du, C. Ma, S. Cai, M. Lan, J. Wu, S. Yu, and J. Lin, “Simulating Atmospheric Turbulence Using a Spatial Light Modulator based on Fourier Transform,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2014), paper SM4J.3.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005).

J. D. Schmidt, Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (SPIE, 2010), Ch. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic modeling for free-space to FMF coupling.
Fig. 2
Fig. 2 Experimental setup. SLM: spatial light modulation, BS: 50:50 beam splitter, CCD: infrared camera, PM: power meter. The focal length for collimator is 37.13 mm, 18 mm for collimator 2 and 8,18 mm for collimator 3. Point A is next to the front of collimator 2, and point B is at the output end of fiber.
Fig. 3
Fig. 3 Phase screens with various value of D/r0 and the corresponding beam spots.
Fig. 4
Fig. 4 (a) Average receiving power of each fiber in different turbulent strength; (b) Relative standard deviation (RSD) of received power in both simulation and experiment.
Fig. 5
Fig. 5 Experimental power distribution for 100 random phase-screens with (a) D/r0 = 1.03, (b) D/r0 = 4.12, and (b) D/r0 = 16.4.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η = ( 1 - α ) i = 1 m η i
η i = | U 0 ( x , y ) U i * ( x , y ) d x d y | 2 | U 0 ( x , y ) | 2 d x d y

Metrics