Abstract

Vectorial nature of dissipative solitons (DSs) with high repetition rate is studied for the first time in a normal-dispersion fiber laser. Despite the fact that the formed DSs are strongly chirped and the repetition rate is greater than 100 MHz, polarization locked and polarization rotating group velocity locked vector DSs can be formed under 129.3 MHz fundamental mode-locking and 258.6 MHz harmonic mode-locking of the fiber laser, respectively. The two orthogonally polarized components of these vector DSs possess distinctly different central wavelengths and travel together at the same group velocity in the laser cavity, resulting in a gradual spectral edge and small steps on the optical spectrum, which can be considered as an auxiliary indicator of the group velocity locked vector DSs. Moreover, numerical simulations well confirm the experimental observations and further reveal the impact of the net cavity birefringence on the properties of the formed vector DSs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dissipative soliton trapping in normal dispersion-fiber lasers

L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang
Opt. Lett. 35(11) 1902-1904 (2010)

Observation of dual-wavelength dissipative solitons in a figure-eight erbium-doped fiber laser

Ling Yun, Xueming Liu, and Dong Mao
Opt. Express 20(19) 20992-20997 (2012)

Dual-state dissipative solitons from an all-normal-dispersion erbium-doped fiber laser: continuous wavelength tuning and multi-wavelength emission

Zhichao Wu, Songnian Fu, Changxiu Chen, Ming Tang, Perry Shum, and Deming Liu
Opt. Lett. 40(12) 2684-2687 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  2. N. Akhmediev and A. Ankiewicz, “Dissipative Solitons: From optics to biology and medicine,” in Lecture Notes in Physics (Springer Berlin-Heidelberg, 2008).
  3. B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
    [Crossref]
  4. S. Cundiff, B. Collings, and W. Knox, “Polarization locking in an isotropic, modelocked soliton Er/Yb fiber laser,” Opt. Express 1(1), 12–21 (1997).
    [Crossref] [PubMed]
  5. J. W. Haus, G. Shaulov, E. A. Kuzin, and J. Sanchez-Mondragon, “Vector soliton fiber lasers,” Opt. Lett. 24(6), 376–378 (1999).
    [Crossref] [PubMed]
  6. B. Collings, S. Cundiff, N. Akhmediev, J. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” J. Opt. Soc. Am. B 17(3), 354–365 (2000).
    [Crossref]
  7. D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
    [Crossref] [PubMed]
  8. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
    [Crossref] [PubMed]
  9. T. F. Carruthers, I. N. Duling, M. Horowitz, and C. R. Menyuk, “Dispersion management in a harmonically mode-locked fiber soliton laser,” Opt. Lett. 25(3), 153–155 (2000).
    [Crossref] [PubMed]
  10. J. W. Nicholson and M. Andrejco, “A polarization maintaining, dispersion managed, femtosecond figure-eight fiber laser,” Opt. Express 14(18), 8160–8167 (2006).
    [Crossref] [PubMed]
  11. N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Stable soliton pairs in optical transmission lines and fiber lasers,” J. Opt. Soc. Am. B 15(2), 515–523 (1998).
    [Crossref]
  12. A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Dissipative soliton molecules with independently evolving or flipping phases in mode-locked fiber lasers,” Phys. Rev. A 80(4), 043829 (2009).
    [Crossref]
  13. B. Ortaç, A. Zaviyalov, C. K. Nielsen, O. Egorov, R. Iliew, J. Limpert, F. Lederer, and A. Tünnermann, “Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser,” Opt. Lett. 35(10), 1578–1580 (2010).
    [Crossref] [PubMed]
  14. Y. Y. Luo, Q. Z. Sun, L. M. Zhao, Z. C. Wu, Z. L. Xu, S. N. Fu, and D. M. Liu, “Bound states of group-velocity locked vector solitons in a passively mode-locked fiber laser,” in Asia Communications and Photonics Conference 2015 (Optical Society of America, 2015), paper ASu1C.3.
    [Crossref]
  15. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2009).
    [Crossref]
  16. L. Duan, X. Liu, D. Mao, L. Wang, and G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express 20(1), 265–270 (2012).
    [Crossref] [PubMed]
  17. P. Serena, N. Rossi, and A. Bononi, “PDM-iRZ-QPSK vs. PS-QPSK at 100 Gbit/s over dispersion-managed links,” Opt. Express 20(7), 7895–7900 (2012).
    [Crossref] [PubMed]
  18. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, and N. Xiang, “Soliton trapping in fiber lasers,” Opt. Express 16(13), 9528–9533 (2008).
    [Crossref] [PubMed]
  19. L. Yun, X. Liu, and D. Han, “Observation of vector- and scalar-pulse in a nanotube-mode-locked fiber laser,” Opt. Express 22(5), 5442–5447 (2014).
    [Crossref] [PubMed]
  20. S. V. Sergeyev, C. Mou, A. Rozhin, and S. K. Turitsyn, “Vector solitons with Locked and Precessing States of Polarization,” Opt. Express 20(24), 27434–27440 (2012).
    [Crossref] [PubMed]
  21. C. Mou, S. Sergeyev, A. Rozhin, and S. Turistyn, “All-fiber polarization locked vector soliton laser using carbon nanotubes,” Opt. Lett. 36(19), 3831–3833 (2011).
    [Crossref] [PubMed]
  22. C. Mou, S. V. Sergeyev, A. G. Rozhin, and S. K. Turitsyn, “Bound state vector solitons with locked and precessing states of polarization,” Opt. Express 21(22), 26868–26875 (2013).
    [Crossref] [PubMed]
  23. V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation dynamics of vector soliton molecules in mode locked fibre laser,” Sci. Rep. 3, 3154 (2013).
    [Crossref] [PubMed]
  24. L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
    [Crossref] [PubMed]
  25. L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Gain-guided solitons in dispersion-managed fiber lasers with large net cavity dispersion,” Opt. Lett. 31(20), 2957–2959 (2006).
    [Crossref] [PubMed]
  26. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [Crossref] [PubMed]
  27. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
    [Crossref]
  28. V. L. Kalashnikov and A. Chernykh, “Spectral anomalies and stability of chirped-pulse oscillator,” Phys. Rev. A 75(3), 033820 (2007).
    [Crossref]
  29. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
    [Crossref] [PubMed]
  30. K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34(5), 593–595 (2009).
    [Crossref] [PubMed]
  31. X. Liu, “Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity,” Opt. Express 17(25), 22401–22416 (2009).
    [Crossref] [PubMed]
  32. H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009).
    [Crossref] [PubMed]
  33. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
    [Crossref]
  34. L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Dissipative soliton trapping in normal dispersion-fiber lasers,” Opt. Lett. 35(11), 1902–1904 (2010).
    [Crossref] [PubMed]

2014 (1)

2013 (2)

C. Mou, S. V. Sergeyev, A. G. Rozhin, and S. K. Turitsyn, “Bound state vector solitons with locked and precessing states of polarization,” Opt. Express 21(22), 26868–26875 (2013).
[Crossref] [PubMed]

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation dynamics of vector soliton molecules in mode locked fibre laser,” Sci. Rep. 3, 3154 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (1)

2010 (4)

2009 (5)

2008 (3)

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, and N. Xiang, “Soliton trapping in fiber lasers,” Opt. Express 16(13), 9528–9533 (2008).
[Crossref] [PubMed]

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
[Crossref] [PubMed]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

2007 (2)

V. L. Kalashnikov and A. Chernykh, “Spectral anomalies and stability of chirped-pulse oscillator,” Phys. Rev. A 75(3), 033820 (2007).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
[Crossref] [PubMed]

2006 (4)

2000 (2)

1999 (1)

1998 (1)

1997 (1)

1993 (1)

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2009).
[Crossref]

B. Collings, S. Cundiff, N. Akhmediev, J. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” J. Opt. Soc. Am. B 17(3), 354–365 (2000).
[Crossref]

Akhmediev, N. N.

Andrejco, M.

Ankiewicz, A.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2009).
[Crossref]

N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Stable soliton pairs in optical transmission lines and fiber lasers,” J. Opt. Soc. Am. B 15(2), 515–523 (1998).
[Crossref]

Bao, Q. L.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[Crossref]

Bergman, K.

Bononi, A.

Buckley, J.

Carruthers, T. F.

Chang, W.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2009).
[Crossref]

Cheng, T. H.

Chernykh, A.

V. L. Kalashnikov and A. Chernykh, “Spectral anomalies and stability of chirped-pulse oscillator,” Phys. Rev. A 75(3), 033820 (2007).
[Crossref]

Chong, A.

Collings, B.

Cundiff, S.

Duan, L.

Duling, I. N.

Egorov, O.

B. Ortaç, A. Zaviyalov, C. K. Nielsen, O. Egorov, R. Iliew, J. Limpert, F. Lederer, and A. Tünnermann, “Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser,” Opt. Lett. 35(10), 1578–1580 (2010).
[Crossref] [PubMed]

A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Dissipative soliton molecules with independently evolving or flipping phases in mode-locked fiber lasers,” Phys. Rev. A 80(4), 043829 (2009).
[Crossref]

Grelu, P.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Han, D.

Haus, H. A.

Haus, J. W.

Horowitz, M.

Ilday, F. Ö.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Iliew, R.

B. Ortaç, A. Zaviyalov, C. K. Nielsen, O. Egorov, R. Iliew, J. Limpert, F. Lederer, and A. Tünnermann, “Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser,” Opt. Lett. 35(10), 1578–1580 (2010).
[Crossref] [PubMed]

A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Dissipative soliton molecules with independently evolving or flipping phases in mode-locked fiber lasers,” Phys. Rev. A 80(4), 043829 (2009).
[Crossref]

Ippen, E. P.

Kalashnikov, V. L.

V. L. Kalashnikov and A. Chernykh, “Spectral anomalies and stability of chirped-pulse oscillator,” Phys. Rev. A 75(3), 033820 (2007).
[Crossref]

Kieu, K.

Knox, W.

Knox, W. H.

Kuzin, E. A.

Lederer, F.

B. Ortaç, A. Zaviyalov, C. K. Nielsen, O. Egorov, R. Iliew, J. Limpert, F. Lederer, and A. Tünnermann, “Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser,” Opt. Lett. 35(10), 1578–1580 (2010).
[Crossref] [PubMed]

A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Dissipative soliton molecules with independently evolving or flipping phases in mode-locked fiber lasers,” Phys. Rev. A 80(4), 043829 (2009).
[Crossref]

Limpert, J.

Liu, X.

Loh, K. P.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[Crossref]

Lu, C.

Mao, D.

Menyuk, C. R.

Mikhailov, V.

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation dynamics of vector soliton molecules in mode locked fibre laser,” Sci. Rep. 3, 3154 (2013).
[Crossref] [PubMed]

Mou, C.

Nelson, L. E.

Nicholson, J. W.

Nielsen, C. K.

Oktem, B.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Ortaç, B.

Rabin, B.

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation dynamics of vector soliton molecules in mode locked fibre laser,” Sci. Rep. 3, 3154 (2013).
[Crossref] [PubMed]

Renninger, W.

Renninger, W. H.

Rossi, N.

Rozhin, A.

Rozhin, A. G.

Sanchez-Mondragon, J.

Serena, P.

Sergeyev, S.

Sergeyev, S. V.

Shaulov, G.

Soto-Crespo, J.

Soto-Crespo, J. M.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2009).
[Crossref]

N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Stable soliton pairs in optical transmission lines and fiber lasers,” J. Opt. Soc. Am. B 15(2), 515–523 (1998).
[Crossref]

Tam, H. Y.

Tamura, K.

Tang, D. Y.

Tsatourian, V.

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation dynamics of vector soliton molecules in mode locked fibre laser,” Sci. Rep. 3, 3154 (2013).
[Crossref] [PubMed]

Tünnermann, A.

Turistyn, S.

Turitsyn, S. K.

Ülgüdür, C.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Wang, G.

Wang, L.

Westbrook, P. S.

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation dynamics of vector soliton molecules in mode locked fibre laser,” Sci. Rep. 3, 3154 (2013).
[Crossref] [PubMed]

Wise, F.

Wise, F. W.

Wu, J.

Wu, X.

Xiang, N.

Yun, L.

Zaviyalov, A.

Zavyalov, A.

A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Dissipative soliton molecules with independently evolving or flipping phases in mode-locked fiber lasers,” Phys. Rev. A 80(4), 043829 (2009).
[Crossref]

Zhang, H.

Zhao, L. M.

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

Nat. Photonics (2)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Opt. Commun. (1)

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[Crossref]

Opt. Express (11)

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
[Crossref] [PubMed]

X. Liu, “Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity,” Opt. Express 17(25), 22401–22416 (2009).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009).
[Crossref] [PubMed]

J. W. Nicholson and M. Andrejco, “A polarization maintaining, dispersion managed, femtosecond figure-eight fiber laser,” Opt. Express 14(18), 8160–8167 (2006).
[Crossref] [PubMed]

C. Mou, S. V. Sergeyev, A. G. Rozhin, and S. K. Turitsyn, “Bound state vector solitons with locked and precessing states of polarization,” Opt. Express 21(22), 26868–26875 (2013).
[Crossref] [PubMed]

S. Cundiff, B. Collings, and W. Knox, “Polarization locking in an isotropic, modelocked soliton Er/Yb fiber laser,” Opt. Express 1(1), 12–21 (1997).
[Crossref] [PubMed]

L. Duan, X. Liu, D. Mao, L. Wang, and G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express 20(1), 265–270 (2012).
[Crossref] [PubMed]

P. Serena, N. Rossi, and A. Bononi, “PDM-iRZ-QPSK vs. PS-QPSK at 100 Gbit/s over dispersion-managed links,” Opt. Express 20(7), 7895–7900 (2012).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, and N. Xiang, “Soliton trapping in fiber lasers,” Opt. Express 16(13), 9528–9533 (2008).
[Crossref] [PubMed]

L. Yun, X. Liu, and D. Han, “Observation of vector- and scalar-pulse in a nanotube-mode-locked fiber laser,” Opt. Express 22(5), 5442–5447 (2014).
[Crossref] [PubMed]

S. V. Sergeyev, C. Mou, A. Rozhin, and S. K. Turitsyn, “Vector solitons with Locked and Precessing States of Polarization,” Opt. Express 20(24), 27434–27440 (2012).
[Crossref] [PubMed]

Opt. Lett. (10)

C. Mou, S. Sergeyev, A. Rozhin, and S. Turistyn, “All-fiber polarization locked vector soliton laser using carbon nanotubes,” Opt. Lett. 36(19), 3831–3833 (2011).
[Crossref] [PubMed]

B. Ortaç, A. Zaviyalov, C. K. Nielsen, O. Egorov, R. Iliew, J. Limpert, F. Lederer, and A. Tünnermann, “Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser,” Opt. Lett. 35(10), 1578–1580 (2010).
[Crossref] [PubMed]

J. W. Haus, G. Shaulov, E. A. Kuzin, and J. Sanchez-Mondragon, “Vector soliton fiber lasers,” Opt. Lett. 24(6), 376–378 (1999).
[Crossref] [PubMed]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
[Crossref] [PubMed]

T. F. Carruthers, I. N. Duling, M. Horowitz, and C. R. Menyuk, “Dispersion management in a harmonically mode-locked fiber soliton laser,” Opt. Lett. 25(3), 153–155 (2000).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Gain-guided solitons in dispersion-managed fiber lasers with large net cavity dispersion,” Opt. Lett. 31(20), 2957–2959 (2006).
[Crossref] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
[Crossref] [PubMed]

K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34(5), 593–595 (2009).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Dissipative soliton trapping in normal dispersion-fiber lasers,” Opt. Lett. 35(11), 1902–1904 (2010).
[Crossref] [PubMed]

Phys. Rev. A (3)

V. L. Kalashnikov and A. Chernykh, “Spectral anomalies and stability of chirped-pulse oscillator,” Phys. Rev. A 75(3), 033820 (2007).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2009).
[Crossref]

A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Dissipative soliton molecules with independently evolving or flipping phases in mode-locked fiber lasers,” Phys. Rev. A 80(4), 043829 (2009).
[Crossref]

Phys. Rev. Lett. (1)

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
[Crossref] [PubMed]

Sci. Rep. (1)

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation dynamics of vector soliton molecules in mode locked fibre laser,” Sci. Rep. 3, 3154 (2013).
[Crossref] [PubMed]

Other (2)

N. Akhmediev and A. Ankiewicz, “Dissipative Solitons: From optics to biology and medicine,” in Lecture Notes in Physics (Springer Berlin-Heidelberg, 2008).

Y. Y. Luo, Q. Z. Sun, L. M. Zhao, Z. C. Wu, Z. L. Xu, S. N. Fu, and D. M. Liu, “Bound states of group-velocity locked vector solitons in a passively mode-locked fiber laser,” in Asia Communications and Photonics Conference 2015 (Optical Society of America, 2015), paper ASu1C.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the passively mode-locked fiber laser.
Fig. 2
Fig. 2 (a) Optical spectrum, (b) autocorrelation trace, (c) oscilloscope trace and (d) RF spectrum of the fundamental mode-locked DSs.
Fig. 3
Fig. 3 (a) Polarization resolved optical spectra of the fundamental mode-locked GVLVDSs; (b) oscilloscope traces of these GVLVDSs along the two orthogonal polarizaiton axes.
Fig. 4
Fig. 4 (a) Optical spectrum and (b) oscilloscope trace of the 2nd-order harmonic mode-locked GVLVDSs (insets of Fig. 4(a) and (b) are respectively the corresponding autocorrelation trace and the RF spectrum); (c) polarization resolved optical spectra of the GVLVDSs; (d) oscilloscope trace of the GVLVDSs after passing through the PBS.
Fig. 5
Fig. 5 Optical spectra of the numerically simulated VDSs: (a) Lb = 1.6 m, (b) Lb = 0.8 m, (c) Lb = 0.4 m, and (d) Lb = 0.3 m.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ u z =iβuδ u t i k '' 2 2 u t 2 + i k ''' 6 3 u t 3 +iγ( | u | 2 + 2 3 | v | 2 )u+ iγ 3 v 2 u + g 2 u+ g 2 Ω g 2 2 u t 2 v z =iβv+δ v t i k '' 2 2 v t 2 + i k ''' 6 3 v t 3 +iγ( | v | 2 + 2 3 | u | 2 )v+ iγ 3 u 2 v + g 2 v+ g 2 Ω g 2 2 v t 2
g=Gexp[ ( | u | 2 + | v | 2 )dt P sat ]

Metrics