Abstract

We report an ultrathin zoom telescopic objective that can achieve continuous zoom change and has reduced compact volume. The objective consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens undertakes the main part of the focal power of the lens system. Due to a multiple-fold design, the optical path is folded in a lens with the thickness of ~1.98mm. The electrowetting liquid lenses constitute a zoom part. Based on the proposed objective, an ultrathin zoom telescopic camera is demonstrated. We analyze the properties of the proposed objective. The aperture of the proposed objective is ~15mm. The total length of the system is ~18mm with a tunable focal length ~48mm to ~65mm. Compared with the conventional zoom telescopic objective, the total length has been largely reduced.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrically optofluidic zoom system with a large zoom range and high-resolution image

Lei Li, Rong-Ying Yuan, Jin-Hui Wang, and Qiong-Hua Wang
Opt. Express 25(19) 22280-22291 (2017)

Zoom microscope objective using electrowetting lenses

Lei Li, Di Wang, Chao Liu, and Qiong-Hua Wang
Opt. Express 24(3) 2931-2940 (2016)

Nonmechanical bifocal zoom telescope

Pouria Valley, Mohammad Reza Dodge, Jim Schwiegerling, Gholam Peyman, and N. Peyghambarian
Opt. Lett. 35(15) 2582-2584 (2010)

References

  • View by:
  • |
  • |
  • |

  1. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
    [Crossref]
  2. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [Crossref]
  3. C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
    [Crossref] [PubMed]
  4. H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
    [Crossref]
  5. L. Li, C. Liu, H. Ren, H. Deng, and Q. H. Wang, “Annular folded electrowetting liquid lens,” Opt. Lett. 40(9), 1968–1971 (2015).
    [Crossref] [PubMed]
  6. C. W. Chiu, Y. C. Lin, P. C. P. Chao, and A. Y. G. Fuh, “Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes,” Opt. Express 16(23), 19277–19284 (2008).
    [Crossref] [PubMed]
  7. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789 (2004).
    [Crossref]
  8. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
    [Crossref] [PubMed]
  9. G. E. Nevskaya and M. G. Tomilin, “Adaptive lenses based on liquid crystals,” J. Opt. Technol. 75(9), 563–573 (2008).
    [Crossref]
  10. S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15(21), 14146–14154 (2007).
    [Crossref] [PubMed]
  11. R. Peng, J. Chen, C. Zhu, and S. Zhuang, “Design of a zoom lens without motorized optical elements,” Opt. Express 15(11), 6664–6669 (2007).
    [Crossref] [PubMed]
  12. S. Lee, M. Choi, E. Lee, K. D. Jung, J. H. Chang, and W. Kim, “Zoom lens design using liquid lens for laparoscope,” Opt. Express 21(2), 1751–1761 (2013).
    [Crossref] [PubMed]
  13. A. Miks and J. Novak, “Analysis of three-element zoom lens based on refractive variable-focus lenses,” Opt. Express 19(24), 23989–23996 (2011).
    [Crossref] [PubMed]
  14. Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
    [Crossref] [PubMed]
  15. Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
    [Crossref] [PubMed]
  16. L. Li, D. Wang, C. Liu, and Q. H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
    [Crossref] [PubMed]
  17. E. J. Tremblay, R. A. Stack, R. L. Morrison, and J. E. Ford, “Ultrathin cameras using annular folded optics,” Appl. Opt. 46(4), 463–471 (2007).
    [Crossref] [PubMed]
  18. E. J. Tremblay, R. A. Stack, R. L. Morrison, J. H. Karp, and J. E. Ford, “Ultrathin four-reflection imager,” Appl. Opt. 48(2), 343–354 (2009).
    [Crossref] [PubMed]
  19. M. Laikin, “Lens Design,” Chap. 15 (2001).
  20. L. Li, C. Liu, and Q. H. Wang, “Ultrathin zoom lens system based on liquid lenses,” Proc. SPIE 9524, 95241B (2015).
    [Crossref]
  21. www.varioptic.com .

2016 (1)

2015 (2)

L. Li, C. Liu, H. Ren, H. Deng, and Q. H. Wang, “Annular folded electrowetting liquid lens,” Opt. Lett. 40(9), 1968–1971 (2015).
[Crossref] [PubMed]

L. Li, C. Liu, and Q. H. Wang, “Ultrathin zoom lens system based on liquid lenses,” Proc. SPIE 9524, 95241B (2015).
[Crossref]

2013 (2)

2011 (2)

2009 (1)

2008 (2)

2007 (4)

2005 (1)

H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

2004 (3)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789 (2004).
[Crossref]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[Crossref] [PubMed]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Chang, J. H.

Chao, P. C. P.

Chen, H. S.

Chen, J.

Chen, M. S.

Cheng, C. C.

Chiu, C. W.

Choi, M.

Deng, H.

Fan, Y. H.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789 (2004).
[Crossref]

Ford, J. E.

Fuh, A. Y. G.

Gauza, S.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789 (2004).
[Crossref]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Jung, K. D.

Karp, J. H.

Kim, W.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Lee, E.

Lee, S.

Li, L.

Lin, H. C.

Lin, Y. C.

Lin, Y. H.

Liu, C.

Miks, A.

Morrison, R. L.

Nevskaya, G. E.

Novak, J.

Peng, R.

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Reichelt, S.

Ren, H.

L. Li, C. Liu, H. Ren, H. Deng, and Q. H. Wang, “Annular folded electrowetting liquid lens,” Opt. Lett. 40(9), 1968–1971 (2015).
[Crossref] [PubMed]

H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789 (2004).
[Crossref]

Sato, S.

Stack, R. A.

Tomilin, M. G.

Tremblay, E. J.

Wang, B.

Wang, D.

Wang, Q. H.

Wu, S. T.

H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789 (2004).
[Crossref]

Ye, M.

Yeh, J. A.

Zappe, H.

Zhu, C.

Zhuang, S.

Appl. Opt. (3)

Appl. Phys. Lett. (3)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789 (2004).
[Crossref]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

J. Opt. Technol. (1)

Opt. Express (9)

C. W. Chiu, Y. C. Lin, P. C. P. Chao, and A. Y. G. Fuh, “Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes,” Opt. Express 16(23), 19277–19284 (2008).
[Crossref] [PubMed]

Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19(5), 4714–4721 (2011).
[Crossref] [PubMed]

A. Miks and J. Novak, “Analysis of three-element zoom lens based on refractive variable-focus lenses,” Opt. Express 19(24), 23989–23996 (2011).
[Crossref] [PubMed]

S. Lee, M. Choi, E. Lee, K. D. Jung, J. H. Chang, and W. Kim, “Zoom lens design using liquid lens for laparoscope,” Opt. Express 21(2), 1751–1761 (2013).
[Crossref] [PubMed]

Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[Crossref] [PubMed]

R. Peng, J. Chen, C. Zhu, and S. Zhuang, “Design of a zoom lens without motorized optical elements,” Opt. Express 15(11), 6664–6669 (2007).
[Crossref] [PubMed]

C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[Crossref] [PubMed]

S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15(21), 14146–14154 (2007).
[Crossref] [PubMed]

L. Li, D. Wang, C. Liu, and Q. H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
[Crossref] [PubMed]

Opt. Lett. (1)

Proc. SPIE (1)

L. Li, C. Liu, and Q. H. Wang, “Ultrathin zoom lens system based on liquid lenses,” Proc. SPIE 9524, 95241B (2015).
[Crossref]

Other (2)

www.varioptic.com .

M. Laikin, “Lens Design,” Chap. 15 (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic cross-sectional structure of the ultrathin zoom telescopic objective. (a) Cross-sectional of the zoom objective. (b) Side view of the objective. (c) Zemax layout of the objective
Fig. 2
Fig. 2 Fabricated annular folded lens. (a) Folded lens without coating. (b) Back view of folded lens coated with silver film. (c) Front view of folded lens coated with silver film.
Fig. 3
Fig. 3 Fabricated ultrathin zoom telescopic objective. (a) Whole view of the objective. (b) Side view of the objective. (c) Front view of the objective. (c) Back view of the objective.
Fig. 4
Fig. 4 FFT (Fast Fourier Transformation) PSF of the proposed objective. (a) f = 48mm. (b) f = 57mm. (c) f = 65mm.
Fig. 5
Fig. 5 Ray aberration of the proposed objective. (a) f = 48mm. (b) f = 57mm. (c) f = 65mm.
Fig. 6
Fig. 6 MTF and total length of the proposed objective and conventional telescope objectives. (a) MTF at f = 48mm. (b) Total length for f = 48mm. (c) MTF at f = 57mm. (d) Total length for f = 57mm. (e) MTF at f = 65mm. (f) Total length for f = 65mm.
Fig. 7
Fig. 7 Resolution testing setup.
Fig. 8
Fig. 8 Captured image using a resolution target. (a) Setup. (b) f = 65mm. (c) f = 57mm. (d) f = 48mm.
Fig. 9
Fig. 9 Captured images. (a) Whole scene. (b) Total length of the two objectives. (c) Captured by conventional objective with f = 48mm. (d) Captured by the proposed objective with f = 65mm. (e) Captured by the proposed objective with f = 60 mm. (f) Captured by the proposed objective with f = 53 mm. (g) Captured by the proposed objective with f = 48 mm.

Tables (2)

Tables Icon

Table 1 Refractive index and Abbe number of the materials we used

Tables Icon

Table 2 Detailed parameters of the proposed objective

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

cos θ = γ 1 γ 2 γ 12 + ε 2 γ 12 d U 2 ,
1 f = ϕ = ϕ f + ϕ z d ϕ f ϕ z
ϕ z = ϕ 1 + ϕ 2 + ϕ 3 d 1 ϕ 1 ϕ 2 d 1 ϕ 1 ϕ 3 d 2 ϕ 1 ϕ 3 d 2 ϕ 2 ϕ 3 + d 1 d 2 ϕ 1 ϕ 2 ϕ 3 ,
ϕ 1 = ( n 1 n 2 ) r 1 ,
ϕ 2 = ( n 1 n 2 ) r 2 ,
ϕ 3 = ( n 1 n 2 ) r 3 ,
d e f f = d o u t 2 d i n 2 ,

Metrics