Abstract

we propose and demonstrate a bandpass microwave photonic filter (MPF) with ultrahigh stopband attenuation and skirt selectivity based on a simple signal cancellation technique. By injecting two phase modulated signals located on opposite sides of two resonant gain peaks of a Fabry-Pérot semiconductor optical amplifier (FP-SOA), two microwave frequency responses can be generated by the two input signals, respectively. The two frequency responses will add together within the passband but cancel each other out within the stopband, thus generating a MPF with simultaneous ultrahigh stopband attenuation and skirt selectivity. In the experiment the obtained MPF exhibits single passband in the range from 0 to 18 GHz and is tunable from 4 to 16 GHz by adjusting the laser wavelengths. During the tuning process the maximum stopband attenuation is 76.3 dB and the minimum 30-dB to 3-dB bandwidth shape factor is 3.5.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable multiple-passband microwave photonic filter based on external optical injected Fabry-Pérot laser

Wenxuan Wang, Long Huang, Ji Tao, Huatao Zhu, Xinwei Du, Lijun Hao, Changyuan Yu, and Xiangfei Chen
Opt. Express 27(9) 12491-12503 (2019)

Widely tunable single bandpass microwave photonic filter based on Brillouin-assisted optical carrier recovery

Wen Ting Wang, Jian Guo Liu, Wen Hui Sun, Wei Yu Wang, Sun Long Wang, and Ning Hua Zhu
Opt. Express 22(24) 29304-29313 (2014)

Performance improvements of a tunable bandpass microwave photonic filter based on a notch ring resonator using phase modulation with dual optical carriers

Jing Li, Pengfei Zheng, Guohua Hu, Ruohu Zhang, Binfeng Yun, and Yiping Cui
Opt. Express 27(7) 9705-9715 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Photonics to the rescue: a fresh look at microwave photonic filters,” IEEE Microw. Mag. 16(8), 46–60 (2015).
    [Crossref]
  2. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
    [Crossref]
  3. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(6), 201–229 (2006).
    [Crossref]
  4. Y. Yu, J. Dong, E. Xu, X. Li, L. Zhou, F. Wang, and X. Zhang, “Single passband microwave photonic filter with continuous wideband tunability based on electro-optic phase modulator and fabry-pérot semiconductor optical amplifier,” J. Lightwave Technol. 29(23), 3542–3550 (2011).
    [Crossref]
  5. J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
    [Crossref]
  6. W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
    [Crossref]
  7. X. Han, E. Xu, and J. Yao, “Tunable single bandpass microwave photonic filter with an improved dynamic range,” IEEE Photonics Technol. Lett. 28(1), 11–14 (2016).
    [Crossref]
  8. T. Chen, X. Yi, L. Li, and R. Minasian, “Single passband microwave photonic filter with wideband tunability and adjustable bandwidth,” Opt. Lett. 37(22), 4699–4701 (2012).
    [Crossref] [PubMed]
  9. A. Choudhary, I. Aryanfar, S. Shahnia, B. Morrison, K. Vu, S. Madden, B. Luther-Davies, D. Marpaung, and B. J. Eggleton, “Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters,” Opt. Lett. 41(3), 436–439 (2016).
    [Crossref] [PubMed]
  10. W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
    [Crossref]
  11. D. Marpaung, B. Morrison, R. Pant, C. Roeloffzen, A. Leinse, M. Hoekman, R. Heideman, and B. J. Eggleton, “Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection,” Opt. Express 21(20), 23286–23294 (2013).
    [Crossref] [PubMed]
  12. D. Marpaung, B. Morrison, R. Pant, and B. J. Eggleton, “Frequency agile microwave photonic notch filter with anomalously high stopband rejection,” Opt. Lett. 38(21), 4300–4303 (2013).
    [Crossref] [PubMed]
  13. E. H. W. Chan, K. E. Alameh, and R. A. Minasian, “Photonic bandpass filters with high skirt selectivity and stopband attenuation,” J. Lightwave Technol. 20(10), 1962–1967 (2002).
    [Crossref]
  14. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photonics Technol. Lett. 12(3), 320–322 (2000).
    [Crossref]
  15. E. H. W. Chan, “High-order infinite impulse response microwave photonic filters,” J. Lightwave Technol. 29(12), 1775–1782 (2011).
    [Crossref]
  16. E. H. W. Chan, “Cascaded multiple infinite impulse response optical delay line signal processor without coherent interference,” J. Lightwave Technol. 29(9), 1401–1406 (2011).
    [Crossref]
  17. T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
    [Crossref]

2016 (2)

2015 (1)

J. Yao, “Photonics to the rescue: a fresh look at microwave photonic filters,” IEEE Microw. Mag. 16(8), 46–60 (2015).
[Crossref]

2013 (2)

2012 (2)

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

T. Chen, X. Yi, L. Li, and R. Minasian, “Single passband microwave photonic filter with wideband tunability and adjustable bandwidth,” Opt. Lett. 37(22), 4699–4701 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (1)

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

2006 (2)

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[Crossref]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(6), 201–229 (2006).
[Crossref]

2002 (1)

2000 (1)

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photonics Technol. Lett. 12(3), 320–322 (2000).
[Crossref]

1996 (1)

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Absil, P. P.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photonics Technol. Lett. 12(3), 320–322 (2000).
[Crossref]

Alameh, K. E.

Aryanfar, I.

Capmany, J.

Chan, E. H. W.

Chen, T.

Choudhary, A.

Dong, J.

Durhuus, T.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Eggleton, B. J.

Galan, J. V.

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Han, X.

X. Han, E. Xu, and J. Yao, “Tunable single bandpass microwave photonic filter with an improved dynamic range,” IEEE Photonics Technol. Lett. 28(1), 11–14 (2016).
[Crossref]

Heideman, R.

Ho, P. T.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photonics Technol. Lett. 12(3), 320–322 (2000).
[Crossref]

Hoekman, M.

Hryniewicz, J. V.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photonics Technol. Lett. 12(3), 320–322 (2000).
[Crossref]

Joergensen, C.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Leinse, A.

Li, L.

Li, M.

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Li, W.

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Li, X.

Little, B. E.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photonics Technol. Lett. 12(3), 320–322 (2000).
[Crossref]

Luther-Davies, B.

Lykke Danielsen, S.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Madden, S.

Marpaung, D.

Marti, J.

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Mikkelsen, B.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Minasian, R.

Minasian, R. A.

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[Crossref]

E. H. W. Chan, K. E. Alameh, and R. A. Minasian, “Photonic bandpass filters with high skirt selectivity and stopband attenuation,” J. Lightwave Technol. 20(10), 1962–1967 (2002).
[Crossref]

Morrison, B.

Ortega, B.

Palaci, J.

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Pant, R.

Pastor, D.

Roeloffzen, C.

Shahnia, S.

Stubkjaer, K. E.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Vidal, B.

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Villanueva, G. E.

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Vu, K.

Wang, F.

Wilson, R. A.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photonics Technol. Lett. 12(3), 320–322 (2000).
[Crossref]

Xu, E.

Yao, J.

X. Han, E. Xu, and J. Yao, “Tunable single bandpass microwave photonic filter with an improved dynamic range,” IEEE Photonics Technol. Lett. 28(1), 11–14 (2016).
[Crossref]

J. Yao, “Photonics to the rescue: a fresh look at microwave photonic filters,” IEEE Microw. Mag. 16(8), 46–60 (2015).
[Crossref]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Yi, X.

Yu, Y.

Zhang, W.

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

Zhang, X.

Zhou, L.

IEEE Microw. Mag. (1)

J. Yao, “Photonics to the rescue: a fresh look at microwave photonic filters,” IEEE Microw. Mag. 16(8), 46–60 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (4)

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

X. Han, E. Xu, and J. Yao, “Tunable single bandpass microwave photonic filter with an improved dynamic range,” IEEE Photonics Technol. Lett. 28(1), 11–14 (2016).
[Crossref]

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photonics Technol. Lett. 12(3), 320–322 (2000).
[Crossref]

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[Crossref]

J. Lightwave Technol. (6)

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup of the proposed dual-wavelength MPF.
Fig. 2
Fig. 2 Wavelength relationship between the input phase-modulated signals and the resonant gain peaks of the FP-SOA.
Fig. 3
Fig. 3 Simulated MPF responses with dual-wavelength injection and single-wavelength injection: (a) phase responses; (b) amplitude responses.
Fig. 4
Fig. 4 Measured optical spectra before the PD and corresponding MPF responses: (a)-(c) the optical spectra when λ1, λ2 and both λ1 and λ2 are injected, respectively; (d)-(f) the MPF responses corresponding to (a)-(c), respectively.
Fig. 5
Fig. 5 Enlarged view of the filter passbands.
Fig. 6
Fig. 6 Center frequency tuning of the MPF with dual-wavelength injection.
Fig. 7
Fig. 7 Measured stopband attenuation and 30-dB to 3-dB bandwidth shape factor when the proposed MPF is tuned at 4, 6, 8, 10, 12, 14 and 16 GHz, respectively.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E P M , 1 ( t ) = P 1 J 0 ( m P M ) cos ( ω 1 t ) + P 1 J 1 ( m P M ) cos [ ( ω 1 + ω m ) t + π / 2 ] + P 1 J 1 ( m P M ) cos [ ( ω 1 ω m ) t + π / 2 ] ,
E k ( ω o ) = E i n ( ω o ) ( 1 R ) 2 R 2 k 1 [ G exp ( j ω o n e f f L c ) ] 2 k , k = 1 , 2 , 3 , ... ,
E o u t ( ω o ) = R E i n ( ω o ) + k = 1 E k ( ω o ) = E i n ( ω o ) R 1 + ( 1 2 R ) G exp ( j 2 ω o n e f f L / c ) 1 R 2 G exp ( j 2 ω o n e f f L / c ) .
G ( ω o ) = | E o u t ( ω o ) E i n ( ω o ) | 2 = R 1 + ( 1 2 R ) 2 G 2 2 ( 1 2 R ) G cos ( 2 ω o n e f f L / 2 ) 1 + ( R 2 G ) 2 2 R 2 G cos ( 2 ω o n e f f L / 2 ) ,
φ ( ω o ) = tan 1 [ ( 1 2 R ) G sin ( 2 ω o n e f f L / c ) 1 + ( 1 2 R ) G cos ( 2 ω o n e f f L / c ) ] + tan 1 [ R 2 G sin ( 2 ω o n e f f L / c ) 1 R 2 G cos ( 2 ω o n e f f L / c ) ] .
E o u t , 1 ( t ) = γ P 1 G ( ω 1 ) J 0 ( m P M ) cos [ ω 1 t + φ ( ω 1 ) ] + γ P 1 G ( ω 1 + ω m ) J 1 ( m P M ) cos [ ( ω 1 + ω m ) t + π / 2 + φ ( ω 1 + ω m ) ] + γ P 1 G ( ω 1 ω m ) J 1 ( m P M ) cos [ ( ω 1 ω m ) t + π / 2 + φ ( ω 1 ω m ) ] ,
I 1 ( t ) α l i n k G ( ω 1 ) G ( ω 1 + ω m ) cos [ ω m t + π / 2 + φ ( ω 1 + ω m ) φ ( ω 1 ) ] + α l i n k G ( ω 1 ) G ( ω 1 ω m ) cos [ ω m t π / 2 + φ ( ω 1 ) φ ( ω 1 ω m ) ] = α l i n k G ( ω 1 ) × { G ( ω 1 + ω m ) cos [ ω m t + π / 2 + φ ( ω 1 + ω m ) φ ( ω 1 ) ] G ( ω 1 ω m ) cos [ ω m t + π / 2 + φ ( ω 1 ) φ ( ω 1 ω m ) ] } ,
I 2 ( t ) α l i n k G ( ω 2 ) G ( ω 2 + ω m ) cos [ ω m t + π / 2 + φ ( ω 2 + ω m ) φ ( ω 2 ) ] + α l i n k G ( ω 2 ) G ( ω 2 ω m ) cos [ ω m t π / 2 + φ ( ω 2 ) φ ( ω 2 ω m ) ] = α l i n k G ( ω 2 ) × { G ( ω 2 + ω m ) cos [ ω m t + π / 2 + φ ( ω 2 + ω m ) φ ( ω 2 ) ] G ( ω 2 ω m ) cos [ ω m t + π / 2 + φ ( ω 2 ) φ ( ω 2 ω m ) ] } ,
I 1 + 2 ( t ) I 1 ( t ) + I 2 ( t ) = α l i n k G ( ω 1 ) × { G ( ω 1 + ω m ) cos [ ω m t + π / 2 + φ ( ω 1 + ω m ) φ ( ω 1 ) ] G ( ω 1 ω m ) cos [ ω m t + π / 2 + φ ( ω 1 ) φ ( ω 1 ω m ) ] } + α l i n k G ( ω 2 ) × { G ( ω 2 + ω m ) cos [ ω m t + π / 2 + φ ( ω 2 + ω m ) φ ( ω 2 ) ] G ( ω 2 ω m ) cos [ ω m t + π / 2 + φ ( ω 2 ) φ ( ω 2 ω m ) ] } .
G ( ω 1 ω m ) > > G ( ω 1 ) G ( ω 1 + ω m ) .
I 1 + 2 ( t ) G o p t { sin [ ω m t + φ ( ω 1 ) φ ( ω 1 ω m ) ] sin [ ω m t + φ ( ω 2 + ω m ) φ ( ω 2 ) ] } = 2 G o p t sin ( φ 1 φ 2 2 ) cos ( ω m t + φ 1 + φ 2 2 ) ,

Metrics