Abstract

Massively parallel femtosecond laser processing with more than 1000 beams was demonstrated. Parallel beams were generated by a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The key to this technique is to optimize the CGH in the laser processing system using a scheme called in-system optimization. It was analytically demonstrated that the number of beams is determined by the horizontal number of pixels in the SLM NSLM that is imaged at the pupil plane of an objective lens and a distance parameter pd obtained by dividing the distance between adjacent beams by the diffraction-limited beam diameter. A performance limitation of parallel laser processing in our system was estimated at NSLM of 250 and pd of 7.0. Based on these parameters, the maximum number of beams in a hexagonal close-packed structure was calculated to be 1189 by using an analytical equation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Second-harmonic optimization of computer-generated hologram

Satoshi Hasegawa and Yoshio Hayasaki
Opt. Lett. 36(15) 2943-2945 (2011)

Adaptive optimization of a hologram in holographic femtosecond laser processing system

Satoshi Hasegawa and Yoshio Hayasaki
Opt. Lett. 34(1) 22-24 (2009)

Polarization distribution control of parallel femtosecond pulses with spatial light modulators

Satoshi Hasegawa and Yoshio Hayasaki
Opt. Express 21(11) 12987-12995 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
    [Crossref]
  2. N. Sanner, N. Huot, E. Audouard, C. Larat, J. P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett. 30(12), 1479–1481 (2005).
    [Crossref] [PubMed]
  3. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
    [Crossref] [PubMed]
  4. Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. Edwardson, M. Padgett, G. Dearden, and K. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
    [Crossref]
  5. Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13), 6582–6588 (2009).
    [Crossref]
  6. M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
    [Crossref]
  7. M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys. 111(8), 083107 (2012).
    [Crossref]
  8. M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
    [Crossref]
  9. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18(20), 21090–21099 (2010).
    [Crossref] [PubMed]
  10. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express 19(10), 9419–9425 (2011).
    [Crossref] [PubMed]
  11. H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator,” Appl. Opt. 46(23), 5917–5923 (2007).
    [Crossref] [PubMed]
  12. K. Chaen, H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing,” Opt. Commun. 280(1), 165–172 (2007).
    [Crossref]
  13. S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett. 34(1), 22–24 (2009).
    [Crossref] [PubMed]
  14. S. Hasegawa and Y. Hayasaki, “Performance analysis of adaptive optimization of multiplexed phase Fresnel lenses,” Jpn. J. Appl. Phys. 48(9), 09LE03 (2009).
    [Crossref]
  15. S. Hasegawa and Y. Hayasaki, “Second-harmonic optimization of computer-generated hologram,” Opt. Lett. 36(15), 2943–2945 (2011).
    [Crossref] [PubMed]
  16. V. R. Daria, C. Stricker, R. Bowman, S. Redman, and H.-A. Bachor, “Arbitrary multisite two-photon excitation in four dimensions,” Appl. Phys. Lett. 95(9), 093701 (2009).
    [Crossref]
  17. L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express 15(22), 14488–14497 (2007).
    [Crossref] [PubMed]
  18. H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008).
    [PubMed]
  19. K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18(16), 17193–17200 (2010).
    [Crossref] [PubMed]
  20. S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011).
    [Crossref] [PubMed]
  21. Y. C. Li, L. C. Cheng, C. Y. Chang, C. H. Lien, P. J. Campagnola, and S. J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express 20(17), 19030–19038 (2012).
    [Crossref] [PubMed]
  22. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17(5), 3531–3542 (2009).
    [Crossref] [PubMed]
  23. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys. 48(12), 126507 (2009).
    [Crossref]
  24. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Improved phase hologram design for generating symmetric light spots and its application for laser writing of waveguides,” Opt. Lett. 36(7), 1065–1067 (2011).
    [Crossref] [PubMed]
  25. W. Cai, T. J. Reber, and R. Piestun, “Computer-generated volume holograms fabricated by femtosecond laser micromachining,” Opt. Lett. 31(12), 1836–1838 (2006).
    [Crossref] [PubMed]
  26. D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
    [Crossref]
  27. M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J. Biophotonics 3(10-11), 696–705 (2010).
    [Crossref] [PubMed]
  28. S. Hasegawa, K. Shiono, and Y. Hayasaki, “Femtosecond laser processing with a holographic line-shaped beam,” Opt. Express 23(18), 23185–23194 (2015).
    [Crossref] [PubMed]
  29. H. Imamoto, S. Kanehira, X. Wang, K. Kametani, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser,” Opt. Lett. 36(7), 1176–1178 (2011).
    [Crossref] [PubMed]
  30. A. Y. Vorobyev and C. Guo, “Laser turns silicon superwicking,” Opt. Express 18(7), 6455–6460 (2010).
    [Crossref] [PubMed]
  31. A. Y. Vorobyev and C. Guo, “Antireflection effect of femtosecond laser-induced periodic surface structures on silicon,” Opt. Express 19(S5Suppl 5), A1031–A1036 (2011).
    [Crossref] [PubMed]
  32. M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
    [Crossref] [PubMed]
  33. Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process. 107(2), 357–362 (2012).
    [Crossref]
  34. J. Bengtsson, “Kinoform design with an optimal-rotation-angle method,” Appl. Opt. 33(29), 6879–6884 (1994).
    [Crossref] [PubMed]
  35. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1–6), 1–7 (2000).
    [Crossref]
  36. S. Hasegawa and Y. Hayasaki, “Dynamic control of spatial wavelength dispersion in holographic femtosecond laser processing,” Opt. Lett. 39(3), 478–481 (2014).
    [Crossref] [PubMed]

2015 (1)

2014 (1)

2013 (1)

2012 (3)

Y. C. Li, L. C. Cheng, C. Y. Chang, C. H. Lien, P. J. Campagnola, and S. J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express 20(17), 19030–19038 (2012).
[Crossref] [PubMed]

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys. 111(8), 083107 (2012).
[Crossref]

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process. 107(2), 357–362 (2012).
[Crossref]

2011 (6)

2010 (6)

A. Y. Vorobyev and C. Guo, “Laser turns silicon superwicking,” Opt. Express 18(7), 6455–6460 (2010).
[Crossref] [PubMed]

K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18(16), 17193–17200 (2010).
[Crossref] [PubMed]

A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18(20), 21090–21099 (2010).
[Crossref] [PubMed]

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J. Biophotonics 3(10-11), 696–705 (2010).
[Crossref] [PubMed]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

2009 (6)

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13), 6582–6588 (2009).
[Crossref]

V. R. Daria, C. Stricker, R. Bowman, S. Redman, and H.-A. Bachor, “Arbitrary multisite two-photon excitation in four dimensions,” Appl. Phys. Lett. 95(9), 093701 (2009).
[Crossref]

S. Hasegawa and Y. Hayasaki, “Performance analysis of adaptive optimization of multiplexed phase Fresnel lenses,” Jpn. J. Appl. Phys. 48(9), 09LE03 (2009).
[Crossref]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys. 48(12), 126507 (2009).
[Crossref]

S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett. 34(1), 22–24 (2009).
[Crossref] [PubMed]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17(5), 3531–3542 (2009).
[Crossref] [PubMed]

2008 (3)

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008).
[PubMed]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. Edwardson, M. Padgett, G. Dearden, and K. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[Crossref]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
[Crossref]

2007 (3)

2006 (2)

2005 (2)

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

N. Sanner, N. Huot, E. Audouard, C. Larat, J. P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett. 30(12), 1479–1481 (2005).
[Crossref] [PubMed]

2000 (1)

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1–6), 1–7 (2000).
[Crossref]

1994 (1)

Antkowiak, M.

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J. Biophotonics 3(10-11), 696–705 (2010).
[Crossref] [PubMed]

Audouard, E.

Bachor, H.-A.

V. R. Daria, C. Stricker, R. Bowman, S. Redman, and H.-A. Bachor, “Arbitrary multisite two-photon excitation in four dimensions,” Appl. Phys. Lett. 95(9), 093701 (2009).
[Crossref]

Baum, A.

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

Bengtsson, J.

Beresna, M.

Bhuyan, M. K.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

Booth, M. J.

Bowman, R.

V. R. Daria, C. Stricker, R. Bowman, S. Redman, and H.-A. Bachor, “Arbitrary multisite two-photon excitation in four dimensions,” Appl. Phys. Lett. 95(9), 093701 (2009).
[Crossref]

Cai, W.

Campagnola, P. J.

Chaen, K.

K. Chaen, H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing,” Opt. Commun. 280(1), 165–172 (2007).
[Crossref]

Chang, C. Y.

Chen, S. J.

Cheng, G.

Cheng, L. C.

Chichkov, B. N.

Courvoisier, F.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

Cumming, B. P.

Daria, V. R.

V. R. Daria, C. Stricker, R. Bowman, S. Redman, and H.-A. Bachor, “Arbitrary multisite two-photon excitation in four dimensions,” Appl. Phys. Lett. 95(9), 093701 (2009).
[Crossref]

Dearden, G.

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13), 6582–6588 (2009).
[Crossref]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. Edwardson, M. Padgett, G. Dearden, and K. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[Crossref]

Dholakia, K.

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J. Biophotonics 3(10-11), 696–705 (2010).
[Crossref] [PubMed]

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1–6), 1–7 (2000).
[Crossref]

Dudley, J. M.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1–6), 1–7 (2000).
[Crossref]

Edwardson, S.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13), 6582–6588 (2009).
[Crossref]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. Edwardson, M. Padgett, G. Dearden, and K. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[Crossref]

Edwardson, S. P.

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

Fearon, E.

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13), 6582–6588 (2009).
[Crossref]

Furfaro, L.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

Gecevicius, M.

Gittard, S. D.

Glockl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1–6), 1–7 (2000).
[Crossref]

Gu, M.

Gunn-Moore, F.

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J. Biophotonics 3(10-11), 696–705 (2010).
[Crossref] [PubMed]

Guo, C.

Hasegawa, S.

S. Hasegawa, K. Shiono, and Y. Hayasaki, “Femtosecond laser processing with a holographic line-shaped beam,” Opt. Express 23(18), 23185–23194 (2015).
[Crossref] [PubMed]

S. Hasegawa and Y. Hayasaki, “Dynamic control of spatial wavelength dispersion in holographic femtosecond laser processing,” Opt. Lett. 39(3), 478–481 (2014).
[Crossref] [PubMed]

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process. 107(2), 357–362 (2012).
[Crossref]

S. Hasegawa and Y. Hayasaki, “Second-harmonic optimization of computer-generated hologram,” Opt. Lett. 36(15), 2943–2945 (2011).
[Crossref] [PubMed]

S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett. 34(1), 22–24 (2009).
[Crossref] [PubMed]

S. Hasegawa and Y. Hayasaki, “Performance analysis of adaptive optimization of multiplexed phase Fresnel lenses,” Jpn. J. Appl. Phys. 48(9), 09LE03 (2009).
[Crossref]

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008).
[PubMed]

H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator,” Appl. Opt. 46(23), 5917–5923 (2007).
[Crossref] [PubMed]

K. Chaen, H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing,” Opt. Commun. 280(1), 165–172 (2007).
[Crossref]

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
[Crossref] [PubMed]

Hayasaki, Y.

S. Hasegawa, K. Shiono, and Y. Hayasaki, “Femtosecond laser processing with a holographic line-shaped beam,” Opt. Express 23(18), 23185–23194 (2015).
[Crossref] [PubMed]

S. Hasegawa and Y. Hayasaki, “Dynamic control of spatial wavelength dispersion in holographic femtosecond laser processing,” Opt. Lett. 39(3), 478–481 (2014).
[Crossref] [PubMed]

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process. 107(2), 357–362 (2012).
[Crossref]

S. Hasegawa and Y. Hayasaki, “Second-harmonic optimization of computer-generated hologram,” Opt. Lett. 36(15), 2943–2945 (2011).
[Crossref] [PubMed]

S. Hasegawa and Y. Hayasaki, “Performance analysis of adaptive optimization of multiplexed phase Fresnel lenses,” Jpn. J. Appl. Phys. 48(9), 09LE03 (2009).
[Crossref]

S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett. 34(1), 22–24 (2009).
[Crossref] [PubMed]

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008).
[PubMed]

H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator,” Appl. Opt. 46(23), 5917–5923 (2007).
[Crossref] [PubMed]

K. Chaen, H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing,” Opt. Commun. 280(1), 165–172 (2007).
[Crossref]

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
[Crossref] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Hertel, I. V.

Hinze, U.

Hirao, K.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys. 111(8), 083107 (2012).
[Crossref]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Improved phase hologram design for generating symmetric light spots and its application for laser writing of waveguides,” Opt. Lett. 36(7), 1065–1067 (2011).
[Crossref] [PubMed]

H. Imamoto, S. Kanehira, X. Wang, K. Kametani, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser,” Opt. Lett. 36(7), 1176–1178 (2011).
[Crossref] [PubMed]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys. 48(12), 126507 (2009).
[Crossref]

Huignard, J. P.

Huot, N.

Imamoto, H.

Jacquot, M.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

Jesacher, A.

Kametani, K.

Kanehira, S.

Kawashima, H.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys. 111(8), 083107 (2012).
[Crossref]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
[Crossref]

Kazansky, P. G.

Kelemen, L.

Koch, J.

Koroleva, A.

Kuang, Z.

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13), 6582–6588 (2009).
[Crossref]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. Edwardson, M. Padgett, G. Dearden, and K. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[Crossref]

Lacourt, P. A.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

Larat, C.

Leach, J.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. Edwardson, M. Padgett, G. Dearden, and K. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[Crossref]

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1–6), 1–7 (2000).
[Crossref]

Li, Y. C.

Lien, C. H.

Liu, D.

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13), 6582–6588 (2009).
[Crossref]

Loiseaux, B.

Mauclair, C.

Miura, K.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys. 111(8), 083107 (2012).
[Crossref]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Improved phase hologram design for generating symmetric light spots and its application for laser writing of waveguides,” Opt. Lett. 36(7), 1065–1067 (2011).
[Crossref] [PubMed]

H. Imamoto, S. Kanehira, X. Wang, K. Kametani, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser,” Opt. Lett. 36(7), 1176–1178 (2011).
[Crossref] [PubMed]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys. 48(12), 126507 (2009).
[Crossref]

Narayan, R. J.

Nguyen, A.

Nishida, N.

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
[Crossref] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Nishitani, M.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process. 107(2), 357–362 (2012).
[Crossref]

Obata, K.

Ormos, P.

Padgett, M.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. Edwardson, M. Padgett, G. Dearden, and K. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[Crossref]

Perrie, W.

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13), 6582–6588 (2009).
[Crossref]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. Edwardson, M. Padgett, G. Dearden, and K. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[Crossref]

Piestun, R.

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1–6), 1–7 (2000).
[Crossref]

Reber, T. J.

Redman, S.

V. R. Daria, C. Stricker, R. Bowman, S. Redman, and H.-A. Bachor, “Arbitrary multisite two-photon excitation in four dimensions,” Appl. Phys. Lett. 95(9), 093701 (2009).
[Crossref]

Rosenfeld, A.

Sakakura, M.

Salut, R.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

Sanner, N.

Sawano, T.

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Improved phase hologram design for generating symmetric light spots and its application for laser writing of waveguides,” Opt. Lett. 36(7), 1065–1067 (2011).
[Crossref] [PubMed]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys. 48(12), 126507 (2009).
[Crossref]

Scully, P. J.

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

Sharp, M.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13), 6582–6588 (2009).
[Crossref]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. Edwardson, M. Padgett, G. Dearden, and K. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[Crossref]

Shimizu, M.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys. 111(8), 083107 (2012).
[Crossref]

Shimotsuma, Y.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys. 111(8), 083107 (2012).
[Crossref]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Improved phase hologram design for generating symmetric light spots and its application for laser writing of waveguides,” Opt. Lett. 36(7), 1065–1067 (2011).
[Crossref] [PubMed]

H. Imamoto, S. Kanehira, X. Wang, K. Kametani, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser,” Opt. Lett. 36(7), 1176–1178 (2011).
[Crossref] [PubMed]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys. 48(12), 126507 (2009).
[Crossref]

Shiono, K.

Stoian, R.

Stricker, C.

V. R. Daria, C. Stricker, R. Bowman, S. Redman, and H.-A. Bachor, “Arbitrary multisite two-photon excitation in four dimensions,” Appl. Phys. Lett. 95(9), 093701 (2009).
[Crossref]

Sugimoto, T.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Suzuki, D.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process. 107(2), 357–362 (2012).
[Crossref]

Suzuki, J.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys. 111(8), 083107 (2012).
[Crossref]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
[Crossref]

Takahashi, H.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process. 107(2), 357–362 (2012).
[Crossref]

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008).
[PubMed]

H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator,” Appl. Opt. 46(23), 5917–5923 (2007).
[Crossref] [PubMed]

K. Chaen, H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing,” Opt. Commun. 280(1), 165–172 (2007).
[Crossref]

Takita, A.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process. 107(2), 357–362 (2012).
[Crossref]

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008).
[PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Tanaka, S.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys. 111(8), 083107 (2012).
[Crossref]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
[Crossref]

Torres-Mapa, M. L.

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J. Biophotonics 3(10-11), 696–705 (2010).
[Crossref] [PubMed]

Valkai, S.

Vorobyev, A. Y.

Wang, X.

Watkins, K.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13), 6582–6588 (2009).
[Crossref]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. Edwardson, M. Padgett, G. Dearden, and K. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[Crossref]

Watkins, K. G.

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

Wilson, T.

Yamaji, M.

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys. 111(8), 083107 (2012).
[Crossref]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
[Crossref]

Yamamoto, H.

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process. 107(2), 357–362 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

D. Liu, Z. Kuang, W. Perrie, P. J. Scully, A. Baum, S. P. Edwardson, E. Fearon, G. Dearden, and K. G. Watkins, “High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings,” Appl. Phys. B 101(4), 817–823 (2010).
[Crossref]

Appl. Phys. Lett. (4)

V. R. Daria, C. Stricker, R. Bowman, S. Redman, and H.-A. Bachor, “Arbitrary multisite two-photon excitation in four dimensions,” Appl. Phys. Lett. 95(9), 093701 (2009).
[Crossref]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97(8), 081102 (2010).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, and S. Hasegawa, “Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing,” Appl. Phys., A Mater. Sci. Process. 107(2), 357–362 (2012).
[Crossref]

Appl. Surf. Sci. (2)

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. Edwardson, M. Padgett, G. Dearden, and K. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[Crossref]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13), 6582–6588 (2009).
[Crossref]

Biomed. Opt. Express (1)

J. Appl. Phys. (1)

M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, M. Shimizu, K. Hirao, Y. Shimotsuma, and K. Miura, “Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram,” J. Appl. Phys. 111(8), 083107 (2012).
[Crossref]

J. Biophotonics (1)

M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J. Biophotonics 3(10-11), 696–705 (2010).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (2)

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel drawing of multiple bent optical waveguides by using a spatial light modulator,” Jpn. J. Appl. Phys. 48(12), 126507 (2009).
[Crossref]

S. Hasegawa and Y. Hayasaki, “Performance analysis of adaptive optimization of multiplexed phase Fresnel lenses,” Jpn. J. Appl. Phys. 48(9), 09LE03 (2009).
[Crossref]

Opt. Commun. (2)

K. Chaen, H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing,” Opt. Commun. 280(1), 165–172 (2007).
[Crossref]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1–6), 1–7 (2000).
[Crossref]

Opt. Express (10)

A. Y. Vorobyev and C. Guo, “Laser turns silicon superwicking,” Opt. Express 18(7), 6455–6460 (2010).
[Crossref] [PubMed]

A. Y. Vorobyev and C. Guo, “Antireflection effect of femtosecond laser-induced periodic surface structures on silicon,” Opt. Express 19(S5Suppl 5), A1031–A1036 (2011).
[Crossref] [PubMed]

Y. C. Li, L. C. Cheng, C. Y. Chang, C. H. Lien, P. J. Campagnola, and S. J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express 20(17), 19030–19038 (2012).
[Crossref] [PubMed]

C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17(5), 3531–3542 (2009).
[Crossref] [PubMed]

S. Hasegawa, K. Shiono, and Y. Hayasaki, “Femtosecond laser processing with a holographic line-shaped beam,” Opt. Express 23(18), 23185–23194 (2015).
[Crossref] [PubMed]

L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express 15(22), 14488–14497 (2007).
[Crossref] [PubMed]

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008).
[PubMed]

K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18(16), 17193–17200 (2010).
[Crossref] [PubMed]

A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18(20), 21090–21099 (2010).
[Crossref] [PubMed]

B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express 19(10), 9419–9425 (2011).
[Crossref] [PubMed]

Opt. Lett. (9)

N. Sanner, N. Huot, E. Audouard, C. Larat, J. P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett. 30(12), 1479–1481 (2005).
[Crossref] [PubMed]

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
[Crossref] [PubMed]

S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett. 34(1), 22–24 (2009).
[Crossref] [PubMed]

S. Hasegawa and Y. Hayasaki, “Second-harmonic optimization of computer-generated hologram,” Opt. Lett. 36(15), 2943–2945 (2011).
[Crossref] [PubMed]

H. Imamoto, S. Kanehira, X. Wang, K. Kametani, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser,” Opt. Lett. 36(7), 1176–1178 (2011).
[Crossref] [PubMed]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Improved phase hologram design for generating symmetric light spots and its application for laser writing of waveguides,” Opt. Lett. 36(7), 1065–1067 (2011).
[Crossref] [PubMed]

W. Cai, T. J. Reber, and R. Piestun, “Computer-generated volume holograms fabricated by femtosecond laser micromachining,” Opt. Lett. 31(12), 1836–1838 (2006).
[Crossref] [PubMed]

M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
[Crossref] [PubMed]

S. Hasegawa and Y. Hayasaki, “Dynamic control of spatial wavelength dispersion in holographic femtosecond laser processing,” Opt. Lett. 39(3), 478–481 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Diffraction beams in a two-dimensional hexagonal close-packed structure arranged with Dspot and Ra.
Fig. 2
Fig. 2 Nparallel versus αNSLM for two-dimensional hexagonal close-packed diffraction spots with different values of pd. The filled circles, the open circles, and the solid curves indicate the computer simulation results, experimental results, and curves fitted using Eq. (7), respectively
Fig. 3
Fig. 3 Holographic femtosecond laser processing system.
Fig. 4
Fig. 4 Optical reconstructions of CGH optimized (a) only in the computer and (b) by the computational reconstruction with the spatial response characteristic of SLM, and (c) the in-system optimization. (d) Change of the uniformity in the reconstruction for iteration in the optimization of Fig. 4(b)(solid line) and Fig. 4(c)(filled circles), respectively.
Fig. 5
Fig. 5 (a)-(c) Optical microscope images of the structure processed using the reconstruction of Fig. 4(a), Fig, 4(b), and Fig. 4(c), respectively. (d) Number of fabricated pits Npit versus the average pulse energy Esample in the case using the reconstruction without (Figs. 4 (a) and 4(b)) and with (Fig. 4 (c)) the in-system optimization, respectively.
Fig. 6
Fig. 6 Optical reconstructions of CGH and optical microscope images of the structure fabricated using the reconstruction with Nparallel = (a) (b) 379, (c) (d) 700, (e) (f) 1088, (g) (h) 1125 and (i) (j) 1317, respectively. Upper and bottom row images mean the result without and with the in-system optimization, respectively.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

T p = f rep N parallel N pulse ,
D spot = p d d Airy p d λ F OL W pupil ,
R= F OL λ ν M ,
R SLM = F OL λ ν SLM M = F OL λ N SLM 2 W pupil ,
n= R a D spot = α R SLM D spot = α N SLM 2 p d .
3 n 2 +3n< N parallel <4 n 2 +2 3 n.
N parallel = C 2 n 2 + C 1 n.
U r (i) = w r (i) h a h exp[i( ϕ hr + ϕ h (i) )] ,
Δ ϕ h (i) = tan 1 ( S 2 / S 1 ) S 1 = r w r (i) a h cos[ ϕ r ( ϕ hr + ϕ h (i) )] , S 2 = r w r (i) a h sin[ ϕ r ( ϕ hr + ϕ h (i) )]
ϕ h (i+1) = ϕ h (i) +Δ ϕ h (i) .
w r (i+1) = w r (i) ( I r d I r (i) ) α ORA ,

Metrics