Abstract

We investigate the point spread function of a multimode fiber. The distortion of the focal spot created on the fiber output facet is studied for a variety of the parameters. We develop a theoretical model of wavefront shaping through a multimode fiber and use it to confirm our experimental results and analyze the nature of the focal distortions. We show that aberration-free imaging with a large field of view can be achieved by using an appropriate number of segments on the spatial light modulator during the wavefront-shaping procedure. The results describe aberration limits for imaging with multimode fibers as in, e.g., microendoscopy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rotational memory effect of a multimode fiber

Lyubov V. Amitonova, Allard P. Mosk, and Pepijn W. H. Pinkse
Opt. Express 23(16) 20569-20575 (2015)

Widefield lensless imaging through a fiber bundle via speckle correlations

Amir Porat, Esben Ravn Andresen, Hervé Rigneault, Dan Oron, Sylvain Gigan, and Ori Katz
Opt. Express 24(15) 16835-16855 (2016)

Digital confocal microscopy through a multimode fiber

Damien Loterie, Salma Farahi, Ioannis Papadopoulos, Alexandre Goy, Demetri Psaltis, and Christophe Moser
Opt. Express 23(18) 23845-23858 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300(5616), 82–86 (2003).
    [Crossref] [PubMed]
  2. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
    [Crossref] [PubMed]
  3. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  4. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
    [Crossref] [PubMed]
  5. L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microsc. 226(3), 195–206 (2007).
    [Crossref] [PubMed]
  6. L. V. Doronina-Amitonova, I. V. Fedotov, O. Efimova, M. Chernysheva, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Multicolor in vivo brain imaging with a microscope-coupled fiber-bundle microprobe,” Appl. Phys. Lett. 101(23), 233702 (2012).
    [Crossref]
  7. B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
    [Crossref] [PubMed]
  8. L. V. Doronina-Amitonova, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice,” Sci. Rep. 3, 3265 (2013).
    [Crossref] [PubMed]
  9. L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, K. V. Anokhin, M. L. Hu, C. Y. Wang, and A. M. Zheltikov, “Raman detection of cell proliferation probes with antiresonance-guiding hollow fibers,” Opt. Lett. 37(22), 4642–4644 (2012).
    [Crossref] [PubMed]
  10. K. Deisseroth, “Optogenetics,” Nat. Methods 8(1), 26–29 (2011).
    [Crossref] [PubMed]
  11. Y. Ziv, L. D. Burns, E. D. Cocker, E. O. Hamel, K. K. Ghosh, L. J. Kitch, A. El Gamal, and M. J. Schnitzer, “Long-term dynamics of CA1 hippocampal place codes,” Nat. Neurosci. 16(3), 264–266 (2013).
    [Crossref] [PubMed]
  12. K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
    [Crossref] [PubMed]
  13. J. K. Kim, W. M. Lee, P. Kim, M. Choi, K. Jung, S. Kim, and S. H. Yun, “Fabrication and operation of GRIN probes for in vivo fluorescence cellular imaging of internal organs in small animals,” Nat. Protoc. 7(8), 1456–1469 (2012).
    [Crossref] [PubMed]
  14. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
    [Crossref] [PubMed]
  15. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).
  16. J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J.-H. Park, W.-Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
    [Crossref] [PubMed]
  17. T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).
    [Crossref] [PubMed]
  18. T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
    [Crossref] [PubMed]
  19. R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19(1), 247–254 (2011).
    [Crossref] [PubMed]
  20. R. N. Mahalati, R. Y. Gu, and J. M. Kahn, “Resolution limits for imaging through multi-mode fiber,” Opt. Express 21(2), 1656–1668 (2013).
    [Crossref] [PubMed]
  21. L. V. Amitonova, A. Descloux, J. Petschulat, M. H. Frosz, G. Ahmed, F. Babic, X. Jiang, A. P. Mosk, P. S. J. Russell, and P. W. H. Pinkse, “High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging,” Opt. Lett. 41(3), 497–500 (2016).
    [Crossref] [PubMed]
  22. G. P. J. Laporte, N. Stasio, C. Moser, and D. Psaltis, “Enhanced resolution in a multimode fiber imaging system,” Opt. Express 23(21), 27484–27493 (2015).
    [Crossref] [PubMed]
  23. A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21(10), 12881–12887 (2013).
    [Crossref] [PubMed]
  24. L. V. Amitonova, A. P. Mosk, and P. W. H. Pinkse, “Rotational memory effect of a multimode fiber,” Opt. Express 23(16), 20569–20575 (2015).
    [Crossref] [PubMed]
  25. K. Okamoto, Fundamentals of Optical Waveguides, Second Edition, 2 ed. (Academic, 2005).
  26. W.-H. Lee, “III Computer-Generated Holograms: Techniques and Applications,” Prog. Opt. 16, 119–232 (1978).
    [Crossref]
  27. A. W. Snyder and J. D. Love, Optical Waveguide Theory, Science Paperbacks No. 190 (Chapman & Hall, 1983).
  28. V. N. Mahajan, Optical Imaging and Aberrations: Ray Geometrical Optics (SPIE, 1998).

2016 (1)

2015 (2)

2013 (5)

R. N. Mahalati, R. Y. Gu, and J. M. Kahn, “Resolution limits for imaging through multi-mode fiber,” Opt. Express 21(2), 1656–1668 (2013).
[Crossref] [PubMed]

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J.-H. Park, W.-Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
[Crossref] [PubMed]

A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21(10), 12881–12887 (2013).
[Crossref] [PubMed]

L. V. Doronina-Amitonova, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice,” Sci. Rep. 3, 3265 (2013).
[Crossref] [PubMed]

Y. Ziv, L. D. Burns, E. D. Cocker, E. O. Hamel, K. K. Ghosh, L. J. Kitch, A. El Gamal, and M. J. Schnitzer, “Long-term dynamics of CA1 hippocampal place codes,” Nat. Neurosci. 16(3), 264–266 (2013).
[Crossref] [PubMed]

2012 (4)

J. K. Kim, W. M. Lee, P. Kim, M. Choi, K. Jung, S. Kim, and S. H. Yun, “Fabrication and operation of GRIN probes for in vivo fluorescence cellular imaging of internal organs in small animals,” Nat. Protoc. 7(8), 1456–1469 (2012).
[Crossref] [PubMed]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

L. V. Doronina-Amitonova, I. V. Fedotov, O. Efimova, M. Chernysheva, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Multicolor in vivo brain imaging with a microscope-coupled fiber-bundle microprobe,” Appl. Phys. Lett. 101(23), 233702 (2012).
[Crossref]

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, K. V. Anokhin, M. L. Hu, C. Y. Wang, and A. M. Zheltikov, “Raman detection of cell proliferation probes with antiresonance-guiding hollow fibers,” Opt. Lett. 37(22), 4642–4644 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (2)

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

2008 (1)

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

2007 (2)

2005 (2)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

2003 (1)

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300(5616), 82–86 (2003).
[Crossref] [PubMed]

1978 (1)

W.-H. Lee, “III Computer-Generated Holograms: Techniques and Applications,” Prog. Opt. 16, 119–232 (1978).
[Crossref]

Ahmed, G.

Allan, V. J.

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300(5616), 82–86 (2003).
[Crossref] [PubMed]

Amitonova, L. V.

Anokhin, K. V.

L. V. Doronina-Amitonova, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice,” Sci. Rep. 3, 3265 (2013).
[Crossref] [PubMed]

L. V. Doronina-Amitonova, I. V. Fedotov, O. Efimova, M. Chernysheva, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Multicolor in vivo brain imaging with a microscope-coupled fiber-bundle microprobe,” Appl. Phys. Lett. 101(23), 233702 (2012).
[Crossref]

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, K. V. Anokhin, M. L. Hu, C. Y. Wang, and A. M. Zheltikov, “Raman detection of cell proliferation probes with antiresonance-guiding hollow fibers,” Opt. Lett. 37(22), 4642–4644 (2012).
[Crossref] [PubMed]

Babic, F.

Barretto, R. P. J.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

Bianchi, S.

Burns, L. D.

Y. Ziv, L. D. Burns, E. D. Cocker, E. O. Hamel, K. K. Ghosh, L. J. Kitch, A. El Gamal, and M. J. Schnitzer, “Long-term dynamics of CA1 hippocampal place codes,” Nat. Neurosci. 16(3), 264–266 (2013).
[Crossref] [PubMed]

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

Caravaca-Aguirre, A. M.

Chernysheva, M.

L. V. Doronina-Amitonova, I. V. Fedotov, O. Efimova, M. Chernysheva, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Multicolor in vivo brain imaging with a microscope-coupled fiber-bundle microprobe,” Appl. Phys. Lett. 101(23), 233702 (2012).
[Crossref]

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Choi, H.

Choi, M.

J. K. Kim, W. M. Lee, P. Kim, M. Choi, K. Jung, S. Kim, and S. H. Yun, “Fabrication and operation of GRIN probes for in vivo fluorescence cellular imaging of internal organs in small animals,” Nat. Protoc. 7(8), 1456–1469 (2012).
[Crossref] [PubMed]

Cižmár, T.

Cocker, E. D.

Y. Ziv, L. D. Burns, E. D. Cocker, E. O. Hamel, K. K. Ghosh, L. J. Kitch, A. El Gamal, and M. J. Schnitzer, “Long-term dynamics of CA1 hippocampal place codes,” Nat. Neurosci. 16(3), 264–266 (2013).
[Crossref] [PubMed]

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Conkey, D. B.

Deisseroth, K.

K. Deisseroth, “Optogenetics,” Nat. Methods 8(1), 26–29 (2011).
[Crossref] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Descloux, A.

Dholakia, K.

Di Leonardo, R.

Doronina-Amitonova, L. V.

L. V. Doronina-Amitonova, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice,” Sci. Rep. 3, 3265 (2013).
[Crossref] [PubMed]

L. V. Doronina-Amitonova, I. V. Fedotov, O. Efimova, M. Chernysheva, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Multicolor in vivo brain imaging with a microscope-coupled fiber-bundle microprobe,” Appl. Phys. Lett. 101(23), 233702 (2012).
[Crossref]

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, K. V. Anokhin, M. L. Hu, C. Y. Wang, and A. M. Zheltikov, “Raman detection of cell proliferation probes with antiresonance-guiding hollow fibers,” Opt. Lett. 37(22), 4642–4644 (2012).
[Crossref] [PubMed]

Efimova, O.

L. V. Doronina-Amitonova, I. V. Fedotov, O. Efimova, M. Chernysheva, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Multicolor in vivo brain imaging with a microscope-coupled fiber-bundle microprobe,” Appl. Phys. Lett. 101(23), 233702 (2012).
[Crossref]

El Gamal, A.

Y. Ziv, L. D. Burns, E. D. Cocker, E. O. Hamel, K. K. Ghosh, L. J. Kitch, A. El Gamal, and M. J. Schnitzer, “Long-term dynamics of CA1 hippocampal place codes,” Nat. Neurosci. 16(3), 264–266 (2013).
[Crossref] [PubMed]

Fedotov, A. B.

L. V. Doronina-Amitonova, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice,” Sci. Rep. 3, 3265 (2013).
[Crossref] [PubMed]

L. V. Doronina-Amitonova, I. V. Fedotov, O. Efimova, M. Chernysheva, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Multicolor in vivo brain imaging with a microscope-coupled fiber-bundle microprobe,” Appl. Phys. Lett. 101(23), 233702 (2012).
[Crossref]

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, K. V. Anokhin, M. L. Hu, C. Y. Wang, and A. M. Zheltikov, “Raman detection of cell proliferation probes with antiresonance-guiding hollow fibers,” Opt. Lett. 37(22), 4642–4644 (2012).
[Crossref] [PubMed]

Fedotov, I. V.

L. V. Doronina-Amitonova, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice,” Sci. Rep. 3, 3265 (2013).
[Crossref] [PubMed]

L. V. Doronina-Amitonova, I. V. Fedotov, O. Efimova, M. Chernysheva, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Multicolor in vivo brain imaging with a microscope-coupled fiber-bundle microprobe,” Appl. Phys. Lett. 101(23), 233702 (2012).
[Crossref]

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, K. V. Anokhin, M. L. Hu, C. Y. Wang, and A. M. Zheltikov, “Raman detection of cell proliferation probes with antiresonance-guiding hollow fibers,” Opt. Lett. 37(22), 4642–4644 (2012).
[Crossref] [PubMed]

Flusberg, B. A.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Frosz, M. H.

Fu, L.

L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microsc. 226(3), 195–206 (2007).
[Crossref] [PubMed]

Gamal, A. E.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

Ghosh, K. K.

Y. Ziv, L. D. Burns, E. D. Cocker, E. O. Hamel, K. K. Ghosh, L. J. Kitch, A. El Gamal, and M. J. Schnitzer, “Long-term dynamics of CA1 hippocampal place codes,” Nat. Neurosci. 16(3), 264–266 (2013).
[Crossref] [PubMed]

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

Gu, M.

L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microsc. 226(3), 195–206 (2007).
[Crossref] [PubMed]

Gu, R. Y.

Ha, J.

Hamel, E. O.

Y. Ziv, L. D. Burns, E. D. Cocker, E. O. Hamel, K. K. Ghosh, L. J. Kitch, A. El Gamal, and M. J. Schnitzer, “Long-term dynamics of CA1 hippocampal place codes,” Nat. Neurosci. 16(3), 264–266 (2013).
[Crossref] [PubMed]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Hu, M. L.

Ivashkina, O. I.

L. V. Doronina-Amitonova, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice,” Sci. Rep. 3, 3265 (2013).
[Crossref] [PubMed]

Jang, J.

Jang, W.

Jiang, X.

Jung, J. C.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Jung, K.

J. K. Kim, W. M. Lee, P. Kim, M. Choi, K. Jung, S. Kim, and S. H. Yun, “Fabrication and operation of GRIN probes for in vivo fluorescence cellular imaging of internal organs in small animals,” Nat. Protoc. 7(8), 1456–1469 (2012).
[Crossref] [PubMed]

Kahn, J. M.

Kim, J. K.

J. K. Kim, W. M. Lee, P. Kim, M. Choi, K. Jung, S. Kim, and S. H. Yun, “Fabrication and operation of GRIN probes for in vivo fluorescence cellular imaging of internal organs in small animals,” Nat. Protoc. 7(8), 1456–1469 (2012).
[Crossref] [PubMed]

Kim, P.

J. K. Kim, W. M. Lee, P. Kim, M. Choi, K. Jung, S. Kim, and S. H. Yun, “Fabrication and operation of GRIN probes for in vivo fluorescence cellular imaging of internal organs in small animals,” Nat. Protoc. 7(8), 1456–1469 (2012).
[Crossref] [PubMed]

Kim, S.

J. K. Kim, W. M. Lee, P. Kim, M. Choi, K. Jung, S. Kim, and S. H. Yun, “Fabrication and operation of GRIN probes for in vivo fluorescence cellular imaging of internal organs in small animals,” Nat. Protoc. 7(8), 1456–1469 (2012).
[Crossref] [PubMed]

Kitch, L. J.

Y. Ziv, L. D. Burns, E. D. Cocker, E. O. Hamel, K. K. Ghosh, L. J. Kitch, A. El Gamal, and M. J. Schnitzer, “Long-term dynamics of CA1 hippocampal place codes,” Nat. Neurosci. 16(3), 264–266 (2013).
[Crossref] [PubMed]

Ko, T. H.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

Lagendijk, A.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

Laporte, G. P. J.

Lee, S.

Lee, W. M.

J. K. Kim, W. M. Lee, P. Kim, M. Choi, K. Jung, S. Kim, and S. H. Yun, “Fabrication and operation of GRIN probes for in vivo fluorescence cellular imaging of internal organs in small animals,” Nat. Protoc. 7(8), 1456–1469 (2012).
[Crossref] [PubMed]

Lee, W.-H.

W.-H. Lee, “III Computer-Generated Holograms: Techniques and Applications,” Prog. Opt. 16, 119–232 (1978).
[Crossref]

Lim, J.

Mahalati, R. N.

Moser, C.

Mosk, A. P.

Mukamel, E. A.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

Nimmerjahn, A.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

Niv, E.

Ntziachristos, V.

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

Oh, W.-Y.

Park, J.-H.

Park, Y.

Petschulat, J.

Piestun, R.

Pinkse, P. W. H.

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Psaltis, D.

Russell, P. S. J.

Schnitzer, M. J.

Y. Ziv, L. D. Burns, E. D. Cocker, E. O. Hamel, K. K. Ghosh, L. J. Kitch, A. El Gamal, and M. J. Schnitzer, “Long-term dynamics of CA1 hippocampal place codes,” Nat. Neurosci. 16(3), 264–266 (2013).
[Crossref] [PubMed]

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Stasio, N.

Stephens, D. J.

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300(5616), 82–86 (2003).
[Crossref] [PubMed]

Vellekoop, I. M.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref] [PubMed]

Wang, C. Y.

Yu, H.

Yun, S. H.

J. K. Kim, W. M. Lee, P. Kim, M. Choi, K. Jung, S. Kim, and S. H. Yun, “Fabrication and operation of GRIN probes for in vivo fluorescence cellular imaging of internal organs in small animals,” Nat. Protoc. 7(8), 1456–1469 (2012).
[Crossref] [PubMed]

Zheltikov, A. M.

L. V. Doronina-Amitonova, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice,” Sci. Rep. 3, 3265 (2013).
[Crossref] [PubMed]

L. V. Doronina-Amitonova, I. V. Fedotov, O. Efimova, M. Chernysheva, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Multicolor in vivo brain imaging with a microscope-coupled fiber-bundle microprobe,” Appl. Phys. Lett. 101(23), 233702 (2012).
[Crossref]

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, K. V. Anokhin, M. L. Hu, C. Y. Wang, and A. M. Zheltikov, “Raman detection of cell proliferation probes with antiresonance-guiding hollow fibers,” Opt. Lett. 37(22), 4642–4644 (2012).
[Crossref] [PubMed]

Ziv, Y.

Y. Ziv, L. D. Burns, E. D. Cocker, E. O. Hamel, K. K. Ghosh, L. J. Kitch, A. El Gamal, and M. J. Schnitzer, “Long-term dynamics of CA1 hippocampal place codes,” Nat. Neurosci. 16(3), 264–266 (2013).
[Crossref] [PubMed]

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

Zots, M. A.

L. V. Doronina-Amitonova, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice,” Sci. Rep. 3, 3265 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

L. V. Doronina-Amitonova, I. V. Fedotov, O. Efimova, M. Chernysheva, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Multicolor in vivo brain imaging with a microscope-coupled fiber-bundle microprobe,” Appl. Phys. Lett. 101(23), 233702 (2012).
[Crossref]

J. Microsc. (1)

L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microsc. 226(3), 195–206 (2007).
[Crossref] [PubMed]

Nat. Commun. (1)

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Nat. Methods (6)

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[Crossref] [PubMed]

K. Deisseroth, “Optogenetics,” Nat. Methods 8(1), 26–29 (2011).
[Crossref] [PubMed]

Nat. Neurosci. (1)

Y. Ziv, L. D. Burns, E. D. Cocker, E. O. Hamel, K. K. Ghosh, L. J. Kitch, A. El Gamal, and M. J. Schnitzer, “Long-term dynamics of CA1 hippocampal place codes,” Nat. Neurosci. 16(3), 264–266 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010).

Nat. Protoc. (1)

J. K. Kim, W. M. Lee, P. Kim, M. Choi, K. Jung, S. Kim, and S. H. Yun, “Fabrication and operation of GRIN probes for in vivo fluorescence cellular imaging of internal organs in small animals,” Nat. Protoc. 7(8), 1456–1469 (2012).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (3)

Prog. Opt. (1)

W.-H. Lee, “III Computer-Generated Holograms: Techniques and Applications,” Prog. Opt. 16, 119–232 (1978).
[Crossref]

Sci. Rep. (1)

L. V. Doronina-Amitonova, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice,” Sci. Rep. 3, 3265 (2013).
[Crossref] [PubMed]

Science (1)

D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300(5616), 82–86 (2003).
[Crossref] [PubMed]

Other (3)

A. W. Snyder and J. D. Love, Optical Waveguide Theory, Science Paperbacks No. 190 (Chapman & Hall, 1983).

V. N. Mahajan, Optical Imaging and Aberrations: Ray Geometrical Optics (SPIE, 1998).

K. Okamoto, Fundamentals of Optical Waveguides, Second Edition, 2 ed. (Academic, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Scheme of the light propagation in our theoretical model: a wavefront-shaped field Epupil(x,y) is focused onto the fiber core in a 2f configuration. The field Ein(x,y) is decomposed into modes and propagates independently through the fiber to form the field Eout(x,y).
Fig. 2
Fig. 2 Experimental setup (MM, multimode fiber; DMD, digital micromirror device; SM, single mode fiber; M, mirror; L, lenses; Obj, objectives; C, collimators; P, pinhole).
Fig. 3
Fig. 3 Incoherent sum of the intensity images of 65 independently optimized foci at the distal end of the fiber by using 300 segments on the DMD: (a) experimental results; (b) computation using the theoretical model. The scale bars are 10µm and the incoherent sum has been normalized to the highest intensity.
Fig. 4
Fig. 4 Simulated (a, b) and experimentally obtained (c, d) pupil phase patterns required for diffraction-limited focusing at a radial position of 8 µm (a, c) and 14.5 µm (b, d). The radius of the phase distribution circle is equal to NAk0. Comparing the images, we can see that making a diffraction-limited spot requires higher spatial frequencies if the target spot is further away from the center.
Fig. 5
Fig. 5 Fraction of the power in the focus, γ2 (a) and the focus FHWM in the tangential direction (b) versus the focus position along a radial line for 78 (blue curve), 300 (green curve) and 1200 (red curve) effective number of segments controlled by the DMD during wavefront shaping. Solid lines present experimental data, dashed lines the computation.
Fig. 6
Fig. 6 (a) The number of segments required for aberration-free focusing in the area with a given radius for fibers with a core diameter of 50 µm and a NA equal to 0.05 (green open circles), 0.1 (green filled circles), 0.15 (red open circles), 0.2 (red filled circles), 0.25 (blue open circles) and 0.3 (blue filled circles); (b) The number of segments required for aberration-free focusing on all positions at the fiber core output facet for different fibers characterized by the V-parameter. The circles represent the calculation results, the line is a parabolic fit (0.236 ± 0.002).
Fig. 7
Fig. 7 (a) Intensity distribution at the distal end of the multimode fiber computed with our theoretical model for a focus optimized at a distance of 18 µm from the fiber core axis by wavefront shaping with 78 segments. (b) Cross sections of the focal spot in (a) in radial (black solid line) and tangential (blue solid line) directions. The red dashed line represents a cross section of a diffraction-limited focal spot near the fiber core axis. (c) Theoretically calculated intensity distribution of an aberration-free focus at a distance of 18 µm from the optical axis with a Z 2 2 Zernike mode added, showing the focal distortion typical for primary astigmatism. (d) Intensity distribution of the LP5,11 guided fiber mode. The red circle has a diameter 50 µm and depicts the boundary of the fiber core. The white square shows the area on the output fiber facet presented in (a). Scale bars are 2.5 µm in (a) and (d).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E out (x,y)=P{ E in (x,y) } | z=L = n=1 nModes α n E n (x,y) e i β n L ,
α n = x,y E in (x,y) E n * (x,y)dydx .
E out (x,y)=P{ F{ b( k x , k y ) e iφ( k x , k y ) } } | z=L ,
E pupil ideal = F 1 { P{ E target (x,y) } | z=-L },
E pupil = n=1 nMode E n * ( x 0 , y 0 ) e i β n L F 1 { E n (x,y)} .
e iφ( k x , k y ) = j=1 nSe g 2 e i φ j rect( NA k 0 / nSeg , NA k 0 / nSeg ) δ(k k j ),
E in (x)= j=1 nSe g 2 e i φ j sinc ( nSeg NA x 2π ) e i2πx k j = j=1 nSe g 2 e i φ j E in,j (x) .
α n = x,y j=1 nSe g 2 e i φ j E in,j (x,y) E n * (x,y)dydx= j=1 nSe g 2 e i φ j γ n,j
E out (x,y)= n=1 nMode j=1 nSe g 2 e i φ j γ n,j E n (x,y) e i β n L = j=1 nSe g 2 e i φ j S j (x,y,L) ,

Metrics