Abstract

Universal fiber has an LP01 mode field diameter approximately matched to that of standard single mode fiber, while being a multimode fiber. We analyzed the dependence of the mode field diameter on the core diameter for different core delta values. Guided by the analysis, a universal fiber having a delta of 1.2% was fabricated, showing significantly reduced coupling loss of ~2.3 dB with conventional multimode fiber. We demonstrated that the fiber can transmit with full system reach in both single mode and VCSEL-based multimode transmissions, including 100G SR4, 40G sWDM, and 100G CWDM4 for the first time.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wideband multimode fiber with an optimized core size and fluorine-doped cladding for high-speed SWDM and CWDM transmission

Yinping Liu, Lin Ma, Wufeng Xiao, Runhan Wang, Junjie Xiong, Jie Luo, and Zuyuan He
Opt. Express 27(11) 15433-15443 (2019)

Four 45 Gbps PAM4 VCSEL based transmission through 300 m wideband OM4 fiber over SWDM4 wavelength grid

Reza Motaghiannezam, Ilya Lyubomirsky, Henry Daghighian, Chris Kocot, Timo Gray, Jim Tatum, Adrian Amezcua-Correa, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard
Opt. Express 24(15) 17193-17199 (2016)

Multimode and single-mode fiber compatible graded-index multicore fiber for high density optical interconnect application

Yinping Liu, Lin Ma, Chen Yang, Weijun Tong, and Zuyuan He
Opt. Express 26(9) 11639-11648 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Coleman, “Optical trends in the data center,” ICT Today 36(5), 16–22 (2015).
  2. X. Chen, S. R. Bickham, H.-F. Liu, O. I. Dosunmu, J. E. Hurley, and M.-J. Li, “25 Gb/s Transmission over 820 m of MMF using a multimode launch from an integrated silicon photonics transceiver,” in ECOC 2013 (2013), pd-4-f-5.
  3. T. Kise, T. Suzuki, M. Funabashi, K. Nagashima, R. Lingle, D. S. Vaidya, R. Shubochkin, J. T. Kamino, X. Chen, S. R. Bickham, J. E. Hurley, M.-J. Li, and A. F. Evans, “Development of 1060nm 25 -Gb/s VCSEL and demonstration of 300m and 500m system reach using MMFs and link optimized for 1060nm,” in OFC 2014 (2014), paper Th4G.3.
  4. D. H. Sim, Y. Takushima, and Y. C. Chung, “Transmission of 10-Gb/s and 40-Gb/s signals over 3.7 km of multimode fiber using mode-field matched center launching technique,” in OFC Technical Digest (2007), paper OTuL3.
  5. D. H. Sim, Y. Takushima, and Y. C. Chung, “High speed multimode fiber transmission by using mode-field matched center-launching technique,” J. Lightwave Technol. 27(8), 1018–1026 (2009).
    [Crossref]
  6. W. V. Sorin and M. R. Tan, “Interoperability of single-mode and multimode data links for data center and optical backplane,” in OFC Technical Digest (2007), paper OW1B.6.
  7. W. V. Sorin and M. R. Tan, “Converting a multimode fiber into a single-mode fiber,” in Photonics Society Summer Topical Meeting Series (IEEE, 2013), paper 256–257.
  8. X. Chen, J. E. Hurley, J. Stone, J. D. Downie, I. Roudas, D. Coleman, and M.-J. Li, “Universal fiber for both short-reach VCSEL transmission at 850 nm and single-mode transmission at 1310 nm,” in OFC Technical Digest (2016), paper Th4E.4.
  9. A. Fall, E. Le Cren, K. Lengle, C. Lepers, Y. Gottesman, M. Thual, L. Bramerie, D. Molin, P. Sansonetti, D. Van Ras, M. Gadonna, C. Populaire, G. Martin, L. Valencia, and P. Guignard, “Versatile graded-index multi-mode fiber for high capacity single- and multi-mode optical home network,” in ECOC 2014 (2014), paper Th.1.4.6.
  10. J. A. Tatum, D. Gazula, L. A. Graham, J. K. Guenter, R. H. Johnson, J. King, C. Kocot, G. D. Landry, I. Lyubomirsky, A. N. MacInnes, E. M. Shaw, K. Balemarthy, R. Shubochkin, D. Vaidya, M. Yan, and F. Tang, “VCSEL-based interconnects for current and future data centers,” J. Lightwave Technol. 33(4), 727–732 (2015).
    [Crossref]
  11. http://investor.finisar.com/releasedetail.cfm?releaseid=933294
  12. http://www.cwdm4-msa.org/

2015 (2)

2009 (1)

Balemarthy, K.

Chung, Y. C.

Coleman, D.

D. Coleman, “Optical trends in the data center,” ICT Today 36(5), 16–22 (2015).

Gazula, D.

Graham, L. A.

Guenter, J. K.

Johnson, R. H.

King, J.

Kocot, C.

Landry, G. D.

Lyubomirsky, I.

MacInnes, A. N.

Shaw, E. M.

Shubochkin, R.

Sim, D. H.

Takushima, Y.

Tang, F.

Tatum, J. A.

Vaidya, D.

Yan, M.

ICT Today (1)

D. Coleman, “Optical trends in the data center,” ICT Today 36(5), 16–22 (2015).

J. Lightwave Technol. (2)

Other (9)

http://investor.finisar.com/releasedetail.cfm?releaseid=933294

http://www.cwdm4-msa.org/

W. V. Sorin and M. R. Tan, “Interoperability of single-mode and multimode data links for data center and optical backplane,” in OFC Technical Digest (2007), paper OW1B.6.

W. V. Sorin and M. R. Tan, “Converting a multimode fiber into a single-mode fiber,” in Photonics Society Summer Topical Meeting Series (IEEE, 2013), paper 256–257.

X. Chen, J. E. Hurley, J. Stone, J. D. Downie, I. Roudas, D. Coleman, and M.-J. Li, “Universal fiber for both short-reach VCSEL transmission at 850 nm and single-mode transmission at 1310 nm,” in OFC Technical Digest (2016), paper Th4E.4.

A. Fall, E. Le Cren, K. Lengle, C. Lepers, Y. Gottesman, M. Thual, L. Bramerie, D. Molin, P. Sansonetti, D. Van Ras, M. Gadonna, C. Populaire, G. Martin, L. Valencia, and P. Guignard, “Versatile graded-index multi-mode fiber for high capacity single- and multi-mode optical home network,” in ECOC 2014 (2014), paper Th.1.4.6.

X. Chen, S. R. Bickham, H.-F. Liu, O. I. Dosunmu, J. E. Hurley, and M.-J. Li, “25 Gb/s Transmission over 820 m of MMF using a multimode launch from an integrated silicon photonics transceiver,” in ECOC 2013 (2013), pd-4-f-5.

T. Kise, T. Suzuki, M. Funabashi, K. Nagashima, R. Lingle, D. S. Vaidya, R. Shubochkin, J. T. Kamino, X. Chen, S. R. Bickham, J. E. Hurley, M.-J. Li, and A. F. Evans, “Development of 1060nm 25 -Gb/s VCSEL and demonstration of 300m and 500m system reach using MMFs and link optimized for 1060nm,” in OFC 2014 (2014), paper Th4G.3.

D. H. Sim, Y. Takushima, and Y. C. Chung, “Transmission of 10-Gb/s and 40-Gb/s signals over 3.7 km of multimode fiber using mode-field matched center launching technique,” in OFC Technical Digest (2007), paper OTuL3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The LP01 MFD for the UF at 1310 nm (a) and 1550 nm (b).
Fig. 2
Fig. 2 (a) Insertion loss between standard single mode fiber and UF as a function of MFD of UF; (b) Insertion loss between a standard 50 μm MMF and UF as a function of relative etendue of UF.
Fig. 3
Fig. 3 (a). The DMD chart from 2.7km of the UF; (b) The DMD centroid for different offsets.
Fig. 4
Fig. 4 The BER vs. received power for back to back, 60 m, and 110 m system configurations.
Fig. 5
Fig. 5 Optical eye diagrams for back to back (B2B), 60 m, and 110 m system configurations.
Fig. 6
Fig. 6 The optical spectrum of 40G sWDM transceiver.
Fig. 7
Fig. 7 BER vs. received power for four wavelength channels.
Fig. 8
Fig. 8 Optical spectrum of the CWDM4 transceiver.
Fig. 9
Fig. 9 The BER versus received power for each wavelength channel.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n(r)= n 0 12Δ (r/a) α

Metrics