Abstract

A scheme for photonic generation of linearly chirped microwave waveforms (LCMWs) with a large time-bandwidth product (TBWP) is proposed and demonstrated based on an optically injected semiconductor laser. In the proposed system, the optically injected semiconductor laser is operated in period-one (P1) oscillation state. After optical-to-electrical conversion, a microwave signal can be generated with its frequency determined by the injection strength. By properly controlling the injection strength, an LCMW with a large TBWP can be generated. The proposed system has a simple and compact structure. Besides, the center frequency, bandwidth, as well as the temporal duration of the generated LCMWs can be easily adjusted. An experiment is carried out. LCMWs with TBWPs as large as 1.2x105 (bandwidth 12 GHz; temporal duration 10 μs) are successfully generated. The flexibility for tuning the center frequency, bandwidth and temporal duration is also demonstrated.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

15 August 2016: A correction was made to the author affiliations.


OSA Recommended Articles
A simple photonic generation of linearly chirped microwave pulse with large time-bandwidth product and high compression ratio

Hongbiao Gao, Cheng Lei, Minghua Chen, Fangjian Xing, Hongwei Chen, and Shizhong Xie
Opt. Express 21(20) 23107-23115 (2013)

Photonic generation of low phase noise arbitrary chirped microwave waveforms with large time-bandwidth product

Weilin Xie, Zongyang Xia, Qian Zhou, Hongxiao Shi, Yi Dong, and Weisheng Hu
Opt. Express 23(14) 18070-18079 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. K. Barton, Radar System Analysis and Modeling (Artech House, 2005).
  2. M. I. Skolnik, Radar Handbook (McGraw-Hill, 2008).
  3. H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
    [Crossref]
  4. E. D. Adler, E. A. Viveiros, T. Ton, J. L. Kurtz, and M. C. Bartlett, “Direct digital synthesis applications for radar development,” in Proceedings of International Radar Conference (IEEE, 1995), pp. 224–226.
    [Crossref]
  5. J. D. McKinney, D. Seo, D. E. Leaird, and A. M. Weiner, “Photonically assisted generation of arbitrary millimeter-wave and microwave electromagnetic waveforms via direct space-to-time optical pulse shaping,” J. Lightwave Technol. 21(12), 3020–3028 (2003).
    [Crossref]
  6. S. Xiao, J. D. McKinney, and A. M. Weiner, “Photonic microwave arbitrary waveform generation using a virtually-imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photonics Technol. Lett. 16(8), 1936–1938 (2004).
    [Crossref]
  7. A. Vega, D. E. Leaird, and A. M. Weiner, “High-speed direct space-to-time pulse shaping with 1 ns reconfiguration,” Opt. Lett. 35(10), 1554–1556 (2010).
    [Crossref] [PubMed]
  8. C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 20(11), 882–884 (2008).
    [Crossref]
  9. F. Zhang, X. Ge, and S. Pan, “Background-free pulsed microwave signal generation based on spectral shaping and frequency-to-time mapping,” Photon. Res. 2(4), B5–B10 (2014).
    [Crossref]
  10. H. Chi and J. P. Yao, “Chirped RF pulse generation based on optical spectral shaping and wavelength-to-time mapping using a nonlinearly chirped fiber Bragg grating,” J. Lightwave Technol. 26(10), 1282–1287 (2008).
    [Crossref]
  11. Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett. 38(5), 766–768 (2013).
    [Crossref] [PubMed]
  12. W. Li, F. Kong, and J. P. Yao, “Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator,” J. Lightwave Technol. 31(23), 3780–3786 (2013).
    [Crossref]
  13. W. Li and J. P. Yao, “Generation of linearly chirped microwave waveform with an increased time-bandwidth product based on a tunable optoelectronic oscillator,” J. Lightwave Technol. 32(20), 3573–3579 (2014).
    [Crossref]
  14. Y. Zhang, X. Ye, and S. Pan, “Photonic generation of linear frequency-modulated waveform with improved time-bandwidth product,” in Proceedings of International Topical Meeting on Microwave Photonics (MWP), (IEEE, 2015), pp. 1–4.
    [Crossref]
  15. H. Gao, C. Lei, M. Chen, F. Xing, H. Chen, and S. Xie, “A simple photonic generation of linearly chirped microwave pulse with large time-bandwidth product and high compression ratio,” Opt. Express 21(20), 23107–23115 (2013).
    [Crossref] [PubMed]
  16. H. Zhang, W. Zou, and J. Chen, “Generation of a widely tunable linearly chirped microwave waveform based on spectral filtering and unbalanced dispersion,” Opt. Lett. 40(6), 1085–1088 (2015).
    [Crossref] [PubMed]
  17. A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
    [Crossref]
  18. J. M. Wun, C. C. Wei, J. Chen, C. S. Goh, S. Y. Set, and J. W. Shi, “Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range,” Opt. Express 21(9), 11475–11481 (2013).
    [Crossref] [PubMed]
  19. J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photonics J. 4(1), 215–223 (2012).
    [Crossref]
  20. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
    [Crossref]
  21. S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
    [Crossref]
  22. S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46(3), 421–428 (2010).
    [Crossref]

2015 (1)

2014 (2)

2013 (4)

2012 (1)

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

2010 (2)

A. Vega, D. E. Leaird, and A. M. Weiner, “High-speed direct space-to-time pulse shaping with 1 ns reconfiguration,” Opt. Lett. 35(10), 1554–1556 (2010).
[Crossref] [PubMed]

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46(3), 421–428 (2010).
[Crossref]

2008 (2)

C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 20(11), 882–884 (2008).
[Crossref]

H. Chi and J. P. Yao, “Chirped RF pulse generation based on optical spectral shaping and wavelength-to-time mapping using a nonlinearly chirped fiber Bragg grating,” J. Lightwave Technol. 26(10), 1282–1287 (2008).
[Crossref]

2005 (2)

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

2004 (2)

S. Xiao, J. D. McKinney, and A. M. Weiner, “Photonic microwave arbitrary waveform generation using a virtually-imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photonics Technol. Lett. 16(8), 1936–1938 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

2003 (1)

1997 (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
[Crossref]

Adler, E. D.

E. D. Adler, E. A. Viveiros, T. Ton, J. L. Kurtz, and M. C. Bartlett, “Direct digital synthesis applications for radar development,” in Proceedings of International Radar Conference (IEEE, 1995), pp. 224–226.
[Crossref]

Bartlett, M. C.

E. D. Adler, E. A. Viveiros, T. Ton, J. L. Kurtz, and M. C. Bartlett, “Direct digital synthesis applications for radar development,” in Proceedings of International Radar Conference (IEEE, 1995), pp. 224–226.
[Crossref]

Bowers, J. E.

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

Chan, S. C.

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46(3), 421–428 (2010).
[Crossref]

Chen, H.

Chen, J.

Chen, M.

Chen, N. W.

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

Chi, H.

Gao, H.

Ge, X.

Goh, C. S.

Horowitz, M.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

Huang, C. B.

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
[Crossref]

Hwang, S. K.

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

Kang, B.

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

Kong, F.

Kuo, F. M.

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

Kurtz, J. L.

E. D. Adler, E. A. Viveiros, T. Ton, J. L. Kurtz, and M. C. Bartlett, “Direct digital synthesis applications for radar development,” in Proceedings of International Radar Conference (IEEE, 1995), pp. 224–226.
[Crossref]

Kwon, H.

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

Leaird, D. E.

Lei, C.

Levinson, O.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

Li, W.

Liu, J. M.

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
[Crossref]

McKinney, J. D.

S. Xiao, J. D. McKinney, and A. M. Weiner, “Photonic microwave arbitrary waveform generation using a virtually-imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photonics Technol. Lett. 16(8), 1936–1938 (2004).
[Crossref]

J. D. McKinney, D. Seo, D. E. Leaird, and A. M. Weiner, “Photonically assisted generation of arbitrary millimeter-wave and microwave electromagnetic waveforms via direct space-to-time optical pulse shaping,” J. Lightwave Technol. 21(12), 3020–3028 (2003).
[Crossref]

Pan, S.

Seo, D.

Set, S. Y.

J. M. Wun, C. C. Wei, J. Chen, C. S. Goh, S. Y. Set, and J. W. Shi, “Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range,” Opt. Express 21(9), 11475–11481 (2013).
[Crossref] [PubMed]

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

Shi, J. W.

J. M. Wun, C. C. Wei, J. Chen, C. S. Goh, S. Y. Set, and J. W. Shi, “Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range,” Opt. Express 21(9), 11475–11481 (2013).
[Crossref] [PubMed]

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

Simpson, T. B.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
[Crossref]

Stepanov, S.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
[Crossref]

Ton, T.

E. D. Adler, E. A. Viveiros, T. Ton, J. L. Kurtz, and M. C. Bartlett, “Direct digital synthesis applications for radar development,” in Proceedings of International Radar Conference (IEEE, 1995), pp. 224–226.
[Crossref]

Vega, A.

Viveiros, E. A.

E. D. Adler, E. A. Viveiros, T. Ton, J. L. Kurtz, and M. C. Bartlett, “Direct digital synthesis applications for radar development,” in Proceedings of International Radar Conference (IEEE, 1995), pp. 224–226.
[Crossref]

Wang, C.

C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 20(11), 882–884 (2008).
[Crossref]

Wei, C. C.

Weiner, A. M.

White, J. K.

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

Wun, J. M.

Xiao, S.

S. Xiao, J. D. McKinney, and A. M. Weiner, “Photonic microwave arbitrary waveform generation using a virtually-imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photonics Technol. Lett. 16(8), 1936–1938 (2004).
[Crossref]

Xie, S.

Xing, F.

Yao, J. P.

Ye, X.

Y. Zhang, X. Ye, and S. Pan, “Photonic generation of linear frequency-modulated waveform with improved time-bandwidth product,” in Proceedings of International Topical Meeting on Microwave Photonics (MWP), (IEEE, 2015), pp. 1–4.
[Crossref]

Zeitouny, A.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

Zhang, F.

Zhang, H.

Zhang, Y.

Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett. 38(5), 766–768 (2013).
[Crossref] [PubMed]

Y. Zhang, X. Ye, and S. Pan, “Photonic generation of linear frequency-modulated waveform with improved time-bandwidth product,” in Proceedings of International Topical Meeting on Microwave Photonics (MWP), (IEEE, 2015), pp. 1–4.
[Crossref]

Zou, W.

IEEE J. Quantum Electron. (1)

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46(3), 421–428 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

IEEE Photonics J. (1)

J. W. Shi, F. M. Kuo, N. W. Chen, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (3)

S. Xiao, J. D. McKinney, and A. M. Weiner, “Photonic microwave arbitrary waveform generation using a virtually-imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photonics Technol. Lett. 16(8), 1936–1938 (2004).
[Crossref]

C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 20(11), 882–884 (2008).
[Crossref]

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (2)

Opt. Lett. (3)

Photon. Res. (1)

Quantum Semiclass. Opt. (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(5), 765–784 (1997).
[Crossref]

Other (4)

E. D. Adler, E. A. Viveiros, T. Ton, J. L. Kurtz, and M. C. Bartlett, “Direct digital synthesis applications for radar development,” in Proceedings of International Radar Conference (IEEE, 1995), pp. 224–226.
[Crossref]

D. K. Barton, Radar System Analysis and Modeling (Artech House, 2005).

M. I. Skolnik, Radar Handbook (McGraw-Hill, 2008).

Y. Zhang, X. Ye, and S. Pan, “Photonic generation of linear frequency-modulated waveform with improved time-bandwidth product,” in Proceedings of International Topical Meeting on Microwave Photonics (MWP), (IEEE, 2015), pp. 1–4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic diagram and (b) illustration of the operation principle of the proposed photonic LCMW generator. ML: master laser, ATT: optical attenuator; IM: intensity modulator, PC: polarization controller, SL: slave laser, PD: photo-detector.

Fig. 2
Fig. 2

(a) Optical spectra of the injection light (blue dot curve), free-running slave laser (red dashed curve) and the injected slave laser (ξ = 1.19, green solid curve), (b) measured output frequency as a function of the injection parameter.

Fig. 3
Fig. 3

(a) The measured control signal S(t), (b) measured temporal waveform, (c) the recovered instantaneous frequency (the red dashed curve is the sine fitting curve).

Fig. 4
Fig. 4

(a) The measured control signal S’(t), (b) measured LCMW (Insets: zoom-in views in temporal duration of 1ns), (c) the recovered instantaneous frequency (the red dashed curve is a linear fitting curve).

Fig. 5
Fig. 5

(a) The calculated autocorrelation result, (b) zoom-in view of the autocorrelation peak (the red dashed curve is the fitted envelope).

Fig. 6
Fig. 6

(a) The measured LCMW, (b) the recovered instantaneous frequency (red dashed curve is the linear fitting curve).

Fig. 7
Fig. 7

(a) The measured LCMW, (b) the recovered instantaneous frequency (red dashed curve is the linear fitting curve).

Fig. 8
Fig. 8

(a) The measured LCMW, (b) the recovered instantaneous frequency (red dashed curve is the linear fitting curve).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S ( t ) = V p t T , 0 t T .
ξ = E i n j ( t ) E S L = H [ S ( t ) ] E S L .
f o ( t ) = k ξ = k H [ S ( t ) ] E S L = k H [ V p t T ] E S L , 0 t T .
f o ( t ) = k ξ = k H [ S ( t ) ] E S L = C t , 0 t T .

Metrics