Abstract

We demonstrate direct modulation of an InAs/GaAs quantum dot (QD) laser on Si. A Fabry–Pérot QD laser was integrated on Si by an ultraviolet-activated direct bonding method, and a cavity was formed using cleaved facets without HR/AR coatings. The bonded laser was operated under continuous-wave pumping at room temperature with a threshold current of 41 mA and a maximum output power of 30 mW (single facet). Even with such a simple device structure and fabrication process, our bonded laser is directly modulated using a 10 Gbps non-return-to-zero signal with an extinction ratio of 1.9 dB at room temperature. Furthermore, 6 Gbps modulation with an extinction ratio of 4.5 dB is achieved at temperatures up to 60 °C without any current or voltage adjustment. These results of device performances indicate an encouraging demonstration on III-V QD lasers on Si for the applications of the photonic integrated circuits.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1.3 μm InAs/GaAs quantum dot lasers on Si rib structures with current injection across direct-bonded GaAs/Si heterointerfaces

Katsuaki Tanabe, Katsuyuki Watanabe, and Yasuhiko Arakawa
Opt. Express 20(26) B315-B321 (2012)

1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates

Ting Wang, Huiyun Liu, Andrew Lee, Francesca Pozzi, and Alwyn Seeds
Opt. Express 19(12) 11381-11386 (2011)

Electrically pumped 1.3 μm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer

Katsuaki Tanabe, Denis Guimard, Damien Bordel, Satoshi Iwamoto, and Yasuhiko Arakawa
Opt. Express 18(10) 10604-10608 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Liu and M. Paniccia, “Advances in silicon photonic devices for silicon-based optoelectronic applications,” Physica E 35(2), 223–228 (2006).
    [Crossref]
  2. Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
    [Crossref]
  3. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
    [Crossref]
  4. K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47(3), 1–2 (2011).
    [Crossref]
  5. Y. Tanaka, M. Ishida, K. Takada, T. Yamamoto, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, M. Sugawara, and Y. Arakawa, “25 Gbps direct modulation in 1.3-μm InAs/GaAs high-density quantum-dot lasers,” Proc. CLEO, 2010, paper CTuZ1.
    [Crossref]
  6. A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
    [Crossref]
  7. M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
    [Crossref] [PubMed]
  8. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
    [Crossref] [PubMed]
  9. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
    [Crossref]
  10. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [Crossref] [PubMed]
  11. A. Yariv and X. Sun, “Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: A proposal and analysis,” Opt. Express 15(15), 9147–9151 (2007).
    [Crossref] [PubMed]
  12. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
    [Crossref]
  13. S. Stanković, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “1310-nm hybrid III–V/Si Fabry–Pérot laser based on adhesive bonding,” IEEE Photonics Technol. Lett. 23(23), 1781–1783 (2011).
    [Crossref]
  14. K. Tanabe, D. Guimard, D. Bordel, S. Iwamoto, and Y. Arakawa, “Electrically pumped 1.3 microm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer,” Opt. Express 18(10), 10604–10608 (2010).
    [Crossref] [PubMed]
  15. K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
    [Crossref] [PubMed]
  16. Y. H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
    [Crossref]
  17. K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(8), 082703 (2013).
    [Crossref]
  18. R. S. Tucker, “Green optical communications – Part I: energy limitations intransport,” IEEE J. Sel. Top. Quantum Electron. 17(2), 245–260 (2011).
    [Crossref]
  19. C. Zhang, S. Srinivasan, Y. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22(9), 10202–10209 (2014).
    [Crossref] [PubMed]
  20. S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated DFB laser on SiO2/Si substrate for datacenter networks,” J. Lightwave Technol. 33(6), 1217–1222 (2015).
    [Crossref]
  21. A. Abbasi, J. Verbist, J. Van Kerrebrouck, F. Lelarge, G.-H. Duan, X. Yin, J. Bauwelinck, G. Roelkens, and G. Morthier, “28 Gb/s direct modulation heterogeneously integrated C-band InP/SOI DFB laser,” Opt. Express 23(20), 26479–26485 (2015).
    [Crossref] [PubMed]
  22. Z. Tang, P. Peng, T. Shi, G. Liao, L. Nie, and S. Liu, “Effect of nanoscale surface topography on low temperature direct wafer bonding process with UV activation,” Sens. Actuator A 151(1), 81–86 (2009).
    [Crossref]
  23. J. Gan, G. Y. Chong, and C. S. Tan, “Study of hydrophilic Si direct bonding with ultraviolet ozone activation for 3D integration,” ECS J. Solid State Sci. Technol. 1(6), 291–296 (2012).
    [Crossref]
  24. Q.-Y. Tong and U. Gosele, Semiconductor Wafer Bonding: Science and Technology, 1st ed. (John Wiley & Sons, 1998).
  25. Y. Mori and N. Watanabe, “A new etching solution system, H3PO4-H2O2-H2O, for GaAs and its kinetics,” J. Electrochem. Soc. 125(9), 1510–1514 (1978).
    [Crossref]
  26. G. C. DeSalvo, W. F. Tseng, and J. Comas, “Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP,” J. Electrochem. Soc. 139(3), 831–835 (1992).
    [Crossref]
  27. C. Carter-Coman, R. Bicknell-Tassius, R. G. Benz, A. S. Brown, and N. M. Jokerst, “Analysis of GaAs substrate removal etching with citric acid:H2O2 and NH4OH:H2O2 for application to compliant substrates,” J. Electrochem. Soc. 144(2), L29–L31 (1997).
    [Crossref]
  28. J. L. Merz and R. A. Logan, “GaAs double heterostructure lasers fabricated by wet chemical etching,” J. Appl. Phys. 47(8), 3503–3509 (1976).
    [Crossref]

2016 (1)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

2015 (3)

2014 (3)

2013 (3)

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(8), 082703 (2013).
[Crossref]

2012 (2)

J. Gan, G. Y. Chong, and C. S. Tan, “Study of hydrophilic Si direct bonding with ultraviolet ozone activation for 3D integration,” ECS J. Solid State Sci. Technol. 1(6), 291–296 (2012).
[Crossref]

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref] [PubMed]

2011 (3)

K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47(3), 1–2 (2011).
[Crossref]

R. S. Tucker, “Green optical communications – Part I: energy limitations intransport,” IEEE J. Sel. Top. Quantum Electron. 17(2), 245–260 (2011).
[Crossref]

S. Stanković, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “1310-nm hybrid III–V/Si Fabry–Pérot laser based on adhesive bonding,” IEEE Photonics Technol. Lett. 23(23), 1781–1783 (2011).
[Crossref]

2010 (2)

2009 (1)

Z. Tang, P. Peng, T. Shi, G. Liao, L. Nie, and S. Liu, “Effect of nanoscale surface topography on low temperature direct wafer bonding process with UV activation,” Sens. Actuator A 151(1), 81–86 (2009).
[Crossref]

2007 (1)

2006 (2)

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

A. Liu and M. Paniccia, “Advances in silicon photonic devices for silicon-based optoelectronic applications,” Physica E 35(2), 223–228 (2006).
[Crossref]

1997 (1)

C. Carter-Coman, R. Bicknell-Tassius, R. G. Benz, A. S. Brown, and N. M. Jokerst, “Analysis of GaAs substrate removal etching with citric acid:H2O2 and NH4OH:H2O2 for application to compliant substrates,” J. Electrochem. Soc. 144(2), L29–L31 (1997).
[Crossref]

1992 (1)

G. C. DeSalvo, W. F. Tseng, and J. Comas, “Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP,” J. Electrochem. Soc. 139(3), 831–835 (1992).
[Crossref]

1982 (1)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

1978 (1)

Y. Mori and N. Watanabe, “A new etching solution system, H3PO4-H2O2-H2O, for GaAs and its kinetics,” J. Electrochem. Soc. 125(9), 1510–1514 (1978).
[Crossref]

1976 (1)

J. L. Merz and R. A. Logan, “GaAs double heterostructure lasers fabricated by wet chemical etching,” J. Appl. Phys. 47(8), 3503–3509 (1976).
[Crossref]

Abbasi, A.

Arakawa, Y.

Y. H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(8), 082703 (2013).
[Crossref]

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref] [PubMed]

K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47(3), 1–2 (2011).
[Crossref]

K. Tanabe, D. Guimard, D. Bordel, S. Iwamoto, and Y. Arakawa, “Electrically pumped 1.3 microm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer,” Opt. Express 18(10), 10604–10608 (2010).
[Crossref] [PubMed]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Bauwelinck, J.

Benamara, M.

Benz, R. G.

C. Carter-Coman, R. Bicknell-Tassius, R. G. Benz, A. S. Brown, and N. M. Jokerst, “Analysis of GaAs substrate removal etching with citric acid:H2O2 and NH4OH:H2O2 for application to compliant substrates,” J. Electrochem. Soc. 144(2), L29–L31 (1997).
[Crossref]

Bicknell-Tassius, R.

C. Carter-Coman, R. Bicknell-Tassius, R. G. Benz, A. S. Brown, and N. M. Jokerst, “Analysis of GaAs substrate removal etching with citric acid:H2O2 and NH4OH:H2O2 for application to compliant substrates,” J. Electrochem. Soc. 144(2), L29–L31 (1997).
[Crossref]

Bordel, D.

Bowers, J. E.

C. Zhang, S. Srinivasan, Y. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22(9), 10202–10209 (2014).
[Crossref] [PubMed]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

Brown, A. S.

C. Carter-Coman, R. Bicknell-Tassius, R. G. Benz, A. S. Brown, and N. M. Jokerst, “Analysis of GaAs substrate removal etching with citric acid:H2O2 and NH4OH:H2O2 for application to compliant substrates,” J. Electrochem. Soc. 144(2), L29–L31 (1997).
[Crossref]

Carter-Coman, C.

C. Carter-Coman, R. Bicknell-Tassius, R. G. Benz, A. S. Brown, and N. M. Jokerst, “Analysis of GaAs substrate removal etching with citric acid:H2O2 and NH4OH:H2O2 for application to compliant substrates,” J. Electrochem. Soc. 144(2), L29–L31 (1997).
[Crossref]

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Chong, G. Y.

J. Gan, G. Y. Chong, and C. S. Tan, “Study of hydrophilic Si direct bonding with ultraviolet ozone activation for 3D integration,” ECS J. Solid State Sci. Technol. 1(6), 291–296 (2012).
[Crossref]

Cohen, O.

Comas, J.

G. C. DeSalvo, W. F. Tseng, and J. Comas, “Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP,” J. Electrochem. Soc. 139(3), 831–835 (1992).
[Crossref]

Davenport, M. L.

DeSalvo, G. C.

G. C. DeSalvo, W. F. Tseng, and J. Comas, “Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP,” J. Electrochem. Soc. 139(3), 831–835 (1992).
[Crossref]

Dorogan, V. G.

Duan, G.-H.

Ekawa, M.

K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47(3), 1–2 (2011).
[Crossref]

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Fang, A. W.

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Fujii, T.

Fujita, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Gan, J.

J. Gan, G. Y. Chong, and C. S. Tan, “Study of hydrophilic Si direct bonding with ultraviolet ozone activation for 3D integration,” ECS J. Solid State Sci. Technol. 1(6), 291–296 (2012).
[Crossref]

Gossard, A. C.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Guimard, D.

Hasebe, K.

Heck, J. M.

S. Stanković, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “1310-nm hybrid III–V/Si Fabry–Pérot laser based on adhesive bonding,” IEEE Photonics Technol. Lett. 23(23), 1781–1783 (2011).
[Crossref]

Heck, M. J. R.

Iwamoto, S.

Y. H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

K. Tanabe, D. Guimard, D. Bordel, S. Iwamoto, and Y. Arakawa, “Electrically pumped 1.3 microm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer,” Opt. Express 18(10), 10604–10608 (2010).
[Crossref] [PubMed]

Jhang, Y. H.

Y. H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

Jokerst, N. M.

C. Carter-Coman, R. Bicknell-Tassius, R. G. Benz, A. S. Brown, and N. M. Jokerst, “Analysis of GaAs substrate removal etching with citric acid:H2O2 and NH4OH:H2O2 for application to compliant substrates,” J. Electrochem. Soc. 144(2), L29–L31 (1997).
[Crossref]

Jones, R.

S. Stanković, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “1310-nm hybrid III–V/Si Fabry–Pérot laser based on adhesive bonding,” IEEE Photonics Technol. Lett. 23(23), 1781–1783 (2011).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

Kakitsuka, T.

Lee, A. D.

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

Lelarge, F.

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Liao, G.

Z. Tang, P. Peng, T. Shi, G. Liao, L. Nie, and S. Liu, “Effect of nanoscale surface topography on low temperature direct wafer bonding process with UV activation,” Sens. Actuator A 151(1), 81–86 (2009).
[Crossref]

Liu, A.

A. Liu and M. Paniccia, “Advances in silicon photonic devices for silicon-based optoelectronic applications,” Physica E 35(2), 223–228 (2006).
[Crossref]

Liu, A. W. K.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Liu, A. Y.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

Liu, S.

Z. Tang, P. Peng, T. Shi, G. Liao, L. Nie, and S. Liu, “Effect of nanoscale surface topography on low temperature direct wafer bonding process with UV activation,” Sens. Actuator A 151(1), 81–86 (2009).
[Crossref]

Logan, R. A.

J. L. Merz and R. A. Logan, “GaAs double heterostructure lasers fabricated by wet chemical etching,” J. Appl. Phys. 47(8), 3503–3509 (1976).
[Crossref]

Lubyshev, D.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Matsumoto, T.

K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47(3), 1–2 (2011).
[Crossref]

Matsuo, S.

Mazur, Y. I.

Merz, J. L.

J. L. Merz and R. A. Logan, “GaAs double heterostructure lasers fabricated by wet chemical etching,” J. Appl. Phys. 47(8), 3503–3509 (1976).
[Crossref]

Mori, Y.

Y. Mori and N. Watanabe, “A new etching solution system, H3PO4-H2O2-H2O, for GaAs and its kinetics,” J. Electrochem. Soc. 125(9), 1510–1514 (1978).
[Crossref]

Morthier, G.

Nakamura, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Nakata, Y.

K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47(3), 1–2 (2011).
[Crossref]

Nie, L.

Z. Tang, P. Peng, T. Shi, G. Liao, L. Nie, and S. Liu, “Effect of nanoscale surface topography on low temperature direct wafer bonding process with UV activation,” Sens. Actuator A 151(1), 81–86 (2009).
[Crossref]

Nishi, K.

K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47(3), 1–2 (2011).
[Crossref]

Norman, J.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Paniccia, M.

A. Liu and M. Paniccia, “Advances in silicon photonic devices for silicon-based optoelectronic applications,” Physica E 35(2), 223–228 (2006).
[Crossref]

Paniccia, M. J.

Park, H.

Peng, P.

Z. Tang, P. Peng, T. Shi, G. Liao, L. Nie, and S. Liu, “Effect of nanoscale surface topography on low temperature direct wafer bonding process with UV activation,” Sens. Actuator A 151(1), 81–86 (2009).
[Crossref]

Rae, T.

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(8), 082703 (2013).
[Crossref]

Roelkens, G.

A. Abbasi, J. Verbist, J. Van Kerrebrouck, F. Lelarge, G.-H. Duan, X. Yin, J. Bauwelinck, G. Roelkens, and G. Morthier, “28 Gb/s direct modulation heterogeneously integrated C-band InP/SOI DFB laser,” Opt. Express 23(20), 26479–26485 (2015).
[Crossref] [PubMed]

S. Stanković, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “1310-nm hybrid III–V/Si Fabry–Pérot laser based on adhesive bonding,” IEEE Photonics Technol. Lett. 23(23), 1781–1783 (2011).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Salamo, G. J.

Sato, T.

Seeds, A.

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

Shi, T.

Z. Tang, P. Peng, T. Shi, G. Liao, L. Nie, and S. Liu, “Effect of nanoscale surface topography on low temperature direct wafer bonding process with UV activation,” Sens. Actuator A 151(1), 81–86 (2009).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Snyder, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Song, H. Z.

K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47(3), 1–2 (2011).
[Crossref]

Srinivasan, S.

Stankovic, S.

S. Stanković, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “1310-nm hybrid III–V/Si Fabry–Pérot laser based on adhesive bonding,” IEEE Photonics Technol. Lett. 23(23), 1781–1783 (2011).
[Crossref]

Sugawara, M.

K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47(3), 1–2 (2011).
[Crossref]

Sun, X.

Sysak, M. N.

S. Stanković, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “1310-nm hybrid III–V/Si Fabry–Pérot laser based on adhesive bonding,” IEEE Photonics Technol. Lett. 23(23), 1781–1783 (2011).
[Crossref]

Takada, K.

K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47(3), 1–2 (2011).
[Crossref]

Takeda, K.

Tan, C. S.

J. Gan, G. Y. Chong, and C. S. Tan, “Study of hydrophilic Si direct bonding with ultraviolet ozone activation for 3D integration,” ECS J. Solid State Sci. Technol. 1(6), 291–296 (2012).
[Crossref]

Tanabe, K.

Y. H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(8), 082703 (2013).
[Crossref]

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref] [PubMed]

K. Tanabe, D. Guimard, D. Bordel, S. Iwamoto, and Y. Arakawa, “Electrically pumped 1.3 microm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer,” Opt. Express 18(10), 10604–10608 (2010).
[Crossref] [PubMed]

Tanaka, Y.

K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47(3), 1–2 (2011).
[Crossref]

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

Tang, Y.

Tang, Z.

Z. Tang, P. Peng, T. Shi, G. Liao, L. Nie, and S. Liu, “Effect of nanoscale surface topography on low temperature direct wafer bonding process with UV activation,” Sens. Actuator A 151(1), 81–86 (2009).
[Crossref]

Tseng, W. F.

G. C. DeSalvo, W. F. Tseng, and J. Comas, “Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP,” J. Electrochem. Soc. 139(3), 831–835 (1992).
[Crossref]

Tucker, R. S.

R. S. Tucker, “Green optical communications – Part I: energy limitations intransport,” IEEE J. Sel. Top. Quantum Electron. 17(2), 245–260 (2011).
[Crossref]

Urino, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Van Kerrebrouck, J.

Van Thourhout, D.

S. Stanković, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “1310-nm hybrid III–V/Si Fabry–Pérot laser based on adhesive bonding,” IEEE Photonics Technol. Lett. 23(23), 1781–1783 (2011).
[Crossref]

Verbist, J.

Watanabe, K.

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(8), 082703 (2013).
[Crossref]

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref] [PubMed]

Watanabe, N.

Y. Mori and N. Watanabe, “A new etching solution system, H3PO4-H2O2-H2O, for GaAs and its kinetics,” J. Electrochem. Soc. 125(9), 1510–1514 (1978).
[Crossref]

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Yamaguchi, M.

K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47(3), 1–2 (2011).
[Crossref]

Yamamoto, T.

K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47(3), 1–2 (2011).
[Crossref]

Yariv, A.

Yin, X.

Zhang, C.

C. Zhang, S. Srinivasan, Y. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22(9), 10202–10209 (2014).
[Crossref] [PubMed]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Zhang, Y.

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

Appl. Phys. Express (1)

K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “High-temperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6(8), 082703 (2013).
[Crossref]

Appl. Phys. Lett. (2)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

ECS J. Solid State Sci. Technol. (1)

J. Gan, G. Y. Chong, and C. S. Tan, “Study of hydrophilic Si direct bonding with ultraviolet ozone activation for 3D integration,” ECS J. Solid State Sci. Technol. 1(6), 291–296 (2012).
[Crossref]

Electron. Lett. (1)

K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers,” Electron. Lett. 47(3), 1–2 (2011).
[Crossref]

IEEE Commun. Mag. (1)

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

R. S. Tucker, “Green optical communications – Part I: energy limitations intransport,” IEEE J. Sel. Top. Quantum Electron. 17(2), 245–260 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Y. H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

S. Stanković, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, and D. Van Thourhout, “1310-nm hybrid III–V/Si Fabry–Pérot laser based on adhesive bonding,” IEEE Photonics Technol. Lett. 23(23), 1781–1783 (2011).
[Crossref]

J. Appl. Phys. (1)

J. L. Merz and R. A. Logan, “GaAs double heterostructure lasers fabricated by wet chemical etching,” J. Appl. Phys. 47(8), 3503–3509 (1976).
[Crossref]

J. Electrochem. Soc. (3)

Y. Mori and N. Watanabe, “A new etching solution system, H3PO4-H2O2-H2O, for GaAs and its kinetics,” J. Electrochem. Soc. 125(9), 1510–1514 (1978).
[Crossref]

G. C. DeSalvo, W. F. Tseng, and J. Comas, “Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP,” J. Electrochem. Soc. 139(3), 831–835 (1992).
[Crossref]

C. Carter-Coman, R. Bicknell-Tassius, R. G. Benz, A. S. Brown, and N. M. Jokerst, “Analysis of GaAs substrate removal etching with citric acid:H2O2 and NH4OH:H2O2 for application to compliant substrates,” J. Electrochem. Soc. 144(2), L29–L31 (1997).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (2)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Opt. Express (6)

Physica E (1)

A. Liu and M. Paniccia, “Advances in silicon photonic devices for silicon-based optoelectronic applications,” Physica E 35(2), 223–228 (2006).
[Crossref]

Sci. Rep. (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref] [PubMed]

Sens. Actuator A (1)

Z. Tang, P. Peng, T. Shi, G. Liao, L. Nie, and S. Liu, “Effect of nanoscale surface topography on low temperature direct wafer bonding process with UV activation,” Sens. Actuator A 151(1), 81–86 (2009).
[Crossref]

Other (2)

Q.-Y. Tong and U. Gosele, Semiconductor Wafer Bonding: Science and Technology, 1st ed. (John Wiley & Sons, 1998).

Y. Tanaka, M. Ishida, K. Takada, T. Yamamoto, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, M. Sugawara, and Y. Arakawa, “25 Gbps direct modulation in 1.3-μm InAs/GaAs high-density quantum-dot lasers,” Proc. CLEO, 2010, paper CTuZ1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic flow diagram, and (b) the device structure (left) and the corresponding cross-sectional SEM image (right) of the direct-bonded QD laser on Si, where the inset shows another cross-sectional image indicating a continuous top metal layer.

Fig. 2
Fig. 2

Room-temperature light-current-voltage characteristics of the direct-bonded InAs/GaAs QD laser on Si under CW operation.

Fig. 3
Fig. 3

(a) Light-current curves at varied temperatures, and (b) temperature dependence of threshold current of the direct-bonded QD laser on Si.

Fig. 4
Fig. 4

(a) Electroluminescence spectra under CW pumping at room temperature, and (b) at varied temperatures for the direct-bonded QD laser on Si.

Fig. 5
Fig. 5

Eye diagrams of the optical signals for the direct-bonded QD laser on Si at various modulation speeds from 2.5 Gbps to 10 Gbps at room temperature.

Fig. 6
Fig. 6

Eye diagrams of the optical signal for 6-Gbps modulation of the direct-bonded QD laser on Si at 40 °C (left), and 60 °C (right).

Metrics