Abstract

We present a new concept for the optical interfacing between vertical III-As nanowires and planar Si waveguides. The nanowires are arranged in a two-dimensional array which forms a grating structure on top of the waveguide. This grating enables light coupling in both directions between the components made from the two different material classes. Numerical simulations show that this concept permits a light extraction efficiency from the waveguide larger than 45% and a light insertion efficiency larger than 35%. This new approach would allow the monolithic integration of nanowire-based active optoelectronics devices, like photodetectors and light sources, on the Si photonics platform.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monolithic integration of III-V nanowire with photonic crystal microcavity for vertical light emission

Alexandre Larrue, Christophe Wilhelm, Gwenaelle Vest, Sylvain Combrié, Alfredo De Rossi, and Cesare Soci
Opt. Express 20(7) 7758-7770 (2012)

Heterogeneous Si/III-V integration and the optical vertical interconnect access

Qian Wang, Doris Keh Ting Ng, Yadong Wang, Yongqiang Wei, Jing Pu, Payam Rabiei, and Seng Tiong Ho
Opt. Express 20(15) 16745-16756 (2012)

Monolithically integrated InGaN/GaN light-emitting diodes, photodetectors, and waveguides on Si substrate

K. H. Li, W. Y. Fu, Y. F. Cheung, K. K. Y. Wong, Y. Wang, K. M. Lau, and H. W. Choi
Optica 5(5) 564-569 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
    [Crossref]
  2. K. Gallo and G. Assanto, “All-optical diode based on second-harmonic generation in an asymmetric waveguide,” J. Opt. Soc. Am. B 16(2), 267–269 (1999).
    [Crossref]
  3. M. Lipson, “Guiding, modulating, and emitting light on Silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [Crossref]
  4. Y. Furukawa, H. Yonezu, and A. Wakahara, “Monolithic integration of III-V active devices into silicon platform for optoelectronic circuits,” IEICE Trans. Electron. E91–C(2), 145–149 (2008).
    [Crossref]
  5. S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99(7), 071109 (2011).
    [Crossref]
  6. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
    [Crossref]
  7. D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
    [Crossref]
  8. S. R. Jain, Y. Tang, H.-W. Chen, M. N. Sysak, and J. E. Bowers, “Integrated hybrid silicon transmitters,” J. Lightwave Technol. 30(5), 671–678 (2012).
    [Crossref]
  9. L. Zimmermann, G. B. Preve, K. Voigt, G. Winzer, J. Kreissl, L. Moerl, C. Stamatiadis, L. Stampoulidis, and H. Avramopoulos, “High-precision flip-chip technology for alloptical wavelength conversion using SOI photonic circuit,” in IEEE/LEOS Group IV Photonics Conf. (2011), pp. 237.
    [Crossref]
  10. B. Snyder, B. Corbett, and P. O’Brien, “Hybrid integration of wavelength-tunable laser with silicon photonic integrated circuit,” J. Lightwave Technol. 31(24), 3934–3942 (2013).
    [Crossref]
  11. T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
    [Crossref]
  12. Y. Zhang, J. Wu, M. Aagesen, and H. Liu, “III-V nanowires and nanowire optoelectronic devices,” J. Phys. D Appl. Phys. 48(46), 463001 (2015).
    [Crossref]
  13. X. Zhang, V. G. Dubrovskii, N. V. Sibirev, and X. Ren, “Analytical study of elastic relaxation and plastic deformation in nanostructures on lattice mismatched substrates,” Cryst. Growth Des. 11(12), 5441–5448 (2011).
    [Crossref]
  14. S. D. Hersee, A. K. Rishinaramangalam, M. N. Fairchild, L. Zhang, and P. Varangis, “Threading defect elimination in GaN nanowires,” J. Mater. Res. 26(17), 2293–2298 (2011).
    [Crossref]
  15. K. Tomioka, T. Tanaka, S. Hara, K. Hiruma, and T. Fukui, “III–V Nanowires on Si substrate: selective-area growth and device applications,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1112–1129 (2011).
    [Crossref]
  16. C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
    [Crossref] [PubMed]
  17. W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z. L. Wang, and D. Wang, “Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection,” Nano Lett. 9(8), 2926–2934 (2009).
    [Crossref] [PubMed]
  18. R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
    [Crossref]
  19. E. Dimakis, U. Jahn, M. Ramsteiner, A. Tahraoui, J. Grandal, X. Kong, O. Marquardt, A. Trampert, H. Riechert, and L. Geelhaar, “Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates,” Nano Lett. 14(5), 2604–2609 (2014).
    [Crossref] [PubMed]
  20. T. Stettner, P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, S. Matich, H. Riedl, M. Kaniber, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control,” Appl. Phys. Lett. 108(1), 011108 (2016).
    [Crossref]
  21. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
    [Crossref]
  22. H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links,” Nano Lett. 16(3), 1833–1839 (2016).
    [Crossref] [PubMed]
  23. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  24. S. K. Selvaraja, W. Bogaerts, P. Absil, D. Van Thourhout, and R. Baets, “Record low-loss hybrid rib / wire waveguides for silicon photonic circuits,” in IEEE/LEOS Group IV Phot. Conf. (2010).
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Inc., 1985).
  26. L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S.-Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A pespective on nanowire photodetectors: current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).
  27. L. C. Chiu, J. S. Smith, S. Margalit, A. Yariv, and A. Y. Cho, “Applications of internal photoemission from quantum-well and heterojunction superlattices to infrared photodetectors,” Infrared Phys. 23(2), 93–97 (1983).
    [Crossref]
  28. X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
    [Crossref] [PubMed]
  29. N. Erhard, S. Zenger, S. Morkötter, D. Rudolph, M. Weiss, H. J. Krenner, H. Karl, G. Abstreiter, J. J. Finley, G. Koblmüller, and A. W. Holleitner, “Ultrafast photodetection in the quantum wells of single AlGaAs/ GaAs-based nanowires,” Nano Lett. 15(10), 6869–6874 (2015).
    [Crossref] [PubMed]
  30. L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20(2), 1096–1101 (2012).
    [Crossref] [PubMed]
  31. A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett. 11(12), 5387–5390 (2011).
    [Crossref] [PubMed]

2016 (2)

T. Stettner, P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, S. Matich, H. Riedl, M. Kaniber, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control,” Appl. Phys. Lett. 108(1), 011108 (2016).
[Crossref]

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

2015 (2)

N. Erhard, S. Zenger, S. Morkötter, D. Rudolph, M. Weiss, H. J. Krenner, H. Karl, G. Abstreiter, J. J. Finley, G. Koblmüller, and A. W. Holleitner, “Ultrafast photodetection in the quantum wells of single AlGaAs/ GaAs-based nanowires,” Nano Lett. 15(10), 6869–6874 (2015).
[Crossref] [PubMed]

Y. Zhang, J. Wu, M. Aagesen, and H. Liu, “III-V nanowires and nanowire optoelectronic devices,” J. Phys. D Appl. Phys. 48(46), 463001 (2015).
[Crossref]

2014 (3)

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

E. Dimakis, U. Jahn, M. Ramsteiner, A. Tahraoui, J. Grandal, X. Kong, O. Marquardt, A. Trampert, H. Riechert, and L. Geelhaar, “Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates,” Nano Lett. 14(5), 2604–2609 (2014).
[Crossref] [PubMed]

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

2011 (7)

A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett. 11(12), 5387–5390 (2011).
[Crossref] [PubMed]

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S.-Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A pespective on nanowire photodetectors: current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99(7), 071109 (2011).
[Crossref]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

X. Zhang, V. G. Dubrovskii, N. V. Sibirev, and X. Ren, “Analytical study of elastic relaxation and plastic deformation in nanostructures on lattice mismatched substrates,” Cryst. Growth Des. 11(12), 5441–5448 (2011).
[Crossref]

S. D. Hersee, A. K. Rishinaramangalam, M. N. Fairchild, L. Zhang, and P. Varangis, “Threading defect elimination in GaN nanowires,” J. Mater. Res. 26(17), 2293–2298 (2011).
[Crossref]

K. Tomioka, T. Tanaka, S. Hara, K. Hiruma, and T. Fukui, “III–V Nanowires on Si substrate: selective-area growth and device applications,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1112–1129 (2011).
[Crossref]

2010 (3)

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

2009 (1)

W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z. L. Wang, and D. Wang, “Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection,” Nano Lett. 9(8), 2926–2934 (2009).
[Crossref] [PubMed]

2008 (2)

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Y. Furukawa, H. Yonezu, and A. Wakahara, “Monolithic integration of III-V active devices into silicon platform for optoelectronic circuits,” IEICE Trans. Electron. E91–C(2), 145–149 (2008).
[Crossref]

2007 (1)

2005 (1)

2004 (1)

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

1999 (1)

1983 (1)

L. C. Chiu, J. S. Smith, S. Margalit, A. Yariv, and A. Y. Cho, “Applications of internal photoemission from quantum-well and heterojunction superlattices to infrared photodetectors,” Infrared Phys. 23(2), 93–97 (1983).
[Crossref]

Aagesen, M.

Y. Zhang, J. Wu, M. Aagesen, and H. Liu, “III-V nanowires and nanowire optoelectronic devices,” J. Phys. D Appl. Phys. 48(46), 463001 (2015).
[Crossref]

Absil, P.

S. K. Selvaraja, W. Bogaerts, P. Absil, D. Van Thourhout, and R. Baets, “Record low-loss hybrid rib / wire waveguides for silicon photonic circuits,” in IEEE/LEOS Group IV Phot. Conf. (2010).

Abstreiter, G.

T. Stettner, P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, S. Matich, H. Riedl, M. Kaniber, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control,” Appl. Phys. Lett. 108(1), 011108 (2016).
[Crossref]

N. Erhard, S. Zenger, S. Morkötter, D. Rudolph, M. Weiss, H. J. Krenner, H. Karl, G. Abstreiter, J. J. Finley, G. Koblmüller, and A. W. Holleitner, “Ultrafast photodetection in the quantum wells of single AlGaAs/ GaAs-based nanowires,” Nano Lett. 15(10), 6869–6874 (2015).
[Crossref] [PubMed]

Adamo, G.

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
[Crossref] [PubMed]

Assanto, G.

Avramopoulos, H.

L. Zimmermann, G. B. Preve, K. Voigt, G. Winzer, J. Kreissl, L. Moerl, C. Stamatiadis, L. Stampoulidis, and H. Avramopoulos, “High-precision flip-chip technology for alloptical wavelength conversion using SOI photonic circuit,” in IEEE/LEOS Group IV Photonics Conf. (2011), pp. 237.
[Crossref]

Ayre, M.

Baets, R.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
[Crossref]

S. K. Selvaraja, W. Bogaerts, P. Absil, D. Van Thourhout, and R. Baets, “Record low-loss hybrid rib / wire waveguides for silicon photonic circuits,” in IEEE/LEOS Group IV Phot. Conf. (2010).

Bao, X.-Y.

W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z. L. Wang, and D. Wang, “Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection,” Nano Lett. 9(8), 2926–2934 (2009).
[Crossref] [PubMed]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Beyer, A.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99(7), 071109 (2011).
[Crossref]

Bogaerts, W.

S. K. Selvaraja, W. Bogaerts, P. Absil, D. Van Thourhout, and R. Baets, “Record low-loss hybrid rib / wire waveguides for silicon photonic circuits,” in IEEE/LEOS Group IV Phot. Conf. (2010).

Bowers, J.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Bowers, J. E.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

S. R. Jain, Y. Tang, H.-W. Chen, M. N. Sysak, and J. E. Bowers, “Integrated hybrid silicon transmitters,” J. Lightwave Technol. 30(5), 671–678 (2012).
[Crossref]

Cassan, E.

Chang-Hasnain, C.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Chatterjee, S.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99(7), 071109 (2011).
[Crossref]

Chen, H.-W.

Chen, R.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Chiu, L. C.

L. C. Chiu, J. S. Smith, S. Margalit, A. Yariv, and A. Y. Cho, “Applications of internal photoemission from quantum-well and heterojunction superlattices to infrared photodetectors,” Infrared Phys. 23(2), 93–97 (1983).
[Crossref]

Cho, A. Y.

L. C. Chiu, J. S. Smith, S. Margalit, A. Yariv, and A. Y. Cho, “Applications of internal photoemission from quantum-well and heterojunction superlattices to infrared photodetectors,” Infrared Phys. 23(2), 93–97 (1983).
[Crossref]

Chuang, L. C.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Corbett, B.

Couteau, C.

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
[Crossref] [PubMed]

Crozat, P.

Dai, X.

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
[Crossref] [PubMed]

Deppert, K.

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

Dhar, N. K.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S.-Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A pespective on nanowire photodetectors: current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).

Dimakis, E.

E. Dimakis, U. Jahn, M. Ramsteiner, A. Tahraoui, J. Grandal, X. Kong, O. Marquardt, A. Trampert, H. Riechert, and L. Geelhaar, “Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates,” Nano Lett. 14(5), 2604–2609 (2014).
[Crossref] [PubMed]

Ding, Y.

W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z. L. Wang, and D. Wang, “Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection,” Nano Lett. 9(8), 2926–2934 (2009).
[Crossref] [PubMed]

Döblinger, M.

T. Stettner, P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, S. Matich, H. Riedl, M. Kaniber, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control,” Appl. Phys. Lett. 108(1), 011108 (2016).
[Crossref]

Dubrovskii, V. G.

X. Zhang, V. G. Dubrovskii, N. V. Sibirev, and X. Ren, “Analytical study of elastic relaxation and plastic deformation in nanostructures on lattice mismatched substrates,” Cryst. Growth Des. 11(12), 5441–5448 (2011).
[Crossref]

Erhard, N.

N. Erhard, S. Zenger, S. Morkötter, D. Rudolph, M. Weiss, H. J. Krenner, H. Karl, G. Abstreiter, J. J. Finley, G. Koblmüller, and A. W. Holleitner, “Ultrafast photodetection in the quantum wells of single AlGaAs/ GaAs-based nanowires,” Nano Lett. 15(10), 6869–6874 (2015).
[Crossref] [PubMed]

Fairchild, M. N.

S. D. Hersee, A. K. Rishinaramangalam, M. N. Fairchild, L. Zhang, and P. Varangis, “Threading defect elimination in GaN nanowires,” J. Mater. Res. 26(17), 2293–2298 (2011).
[Crossref]

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Farrell, A. C.

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Fédéli, J. M.

Finley, J. J.

T. Stettner, P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, S. Matich, H. Riedl, M. Kaniber, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control,” Appl. Phys. Lett. 108(1), 011108 (2016).
[Crossref]

N. Erhard, S. Zenger, S. Morkötter, D. Rudolph, M. Weiss, H. J. Krenner, H. Karl, G. Abstreiter, J. J. Finley, G. Koblmüller, and A. W. Holleitner, “Ultrafast photodetection in the quantum wells of single AlGaAs/ GaAs-based nanowires,” Nano Lett. 15(10), 6869–6874 (2015).
[Crossref] [PubMed]

Franzbach, D. J.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99(7), 071109 (2011).
[Crossref]

Fukui, T.

K. Tomioka, T. Tanaka, S. Hara, K. Hiruma, and T. Fukui, “III–V Nanowires on Si substrate: selective-area growth and device applications,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1112–1129 (2011).
[Crossref]

Furukawa, Y.

Y. Furukawa, H. Yonezu, and A. Wakahara, “Monolithic integration of III-V active devices into silicon platform for optoelectronic circuits,” IEICE Trans. Electron. E91–C(2), 145–149 (2008).
[Crossref]

Gallo, K.

Geelhaar, L.

E. Dimakis, U. Jahn, M. Ramsteiner, A. Tahraoui, J. Grandal, X. Kong, O. Marquardt, A. Trampert, H. Riechert, and L. Geelhaar, “Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates,” Nano Lett. 14(5), 2604–2609 (2014).
[Crossref] [PubMed]

Gilchrist, K. H.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S.-Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A pespective on nanowire photodetectors: current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).

Gossard, A. C.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Grandal, J.

E. Dimakis, U. Jahn, M. Ramsteiner, A. Tahraoui, J. Grandal, X. Kong, O. Marquardt, A. Trampert, H. Riechert, and L. Geelhaar, “Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates,” Nano Lett. 14(5), 2604–2609 (2014).
[Crossref] [PubMed]

Grego, S.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S.-Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A pespective on nanowire photodetectors: current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).

Grenouillet, L.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

Gustafsson, A.

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

Hara, S.

K. Tomioka, T. Tanaka, S. Hara, K. Hiruma, and T. Fukui, “III–V Nanowires on Si substrate: selective-area growth and device applications,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1112–1129 (2011).
[Crossref]

Hartmann, J. M.

Hersee, S. D.

S. D. Hersee, A. K. Rishinaramangalam, M. N. Fairchild, L. Zhang, and P. Varangis, “Threading defect elimination in GaN nanowires,” J. Mater. Res. 26(17), 2293–2298 (2011).
[Crossref]

Hessman, D.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Hiruma, K.

K. Tomioka, T. Tanaka, S. Hara, K. Hiruma, and T. Fukui, “III–V Nanowires on Si substrate: selective-area growth and device applications,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1112–1129 (2011).
[Crossref]

Holleitner, A. W.

N. Erhard, S. Zenger, S. Morkötter, D. Rudolph, M. Weiss, H. J. Krenner, H. Karl, G. Abstreiter, J. J. Finley, G. Koblmüller, and A. W. Holleitner, “Ultrafast photodetection in the quantum wells of single AlGaAs/ GaAs-based nanowires,” Nano Lett. 15(10), 6869–6874 (2015).
[Crossref] [PubMed]

Hossain, N.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99(7), 071109 (2011).
[Crossref]

Huang, Y.

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
[Crossref] [PubMed]

Huffaker, D. L.

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett. 11(12), 5387–5390 (2011).
[Crossref] [PubMed]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Islam, M. S.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S.-Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A pespective on nanowire photodetectors: current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).

Jahn, U.

E. Dimakis, U. Jahn, M. Ramsteiner, A. Tahraoui, J. Grandal, X. Kong, O. Marquardt, A. Trampert, H. Riechert, and L. Geelhaar, “Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates,” Nano Lett. 14(5), 2604–2609 (2014).
[Crossref] [PubMed]

Jain, S. R.

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Kaniber, M.

T. Stettner, P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, S. Matich, H. Riedl, M. Kaniber, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control,” Appl. Phys. Lett. 108(1), 011108 (2016).
[Crossref]

Karl, H.

N. Erhard, S. Zenger, S. Morkötter, D. Rudolph, M. Weiss, H. J. Krenner, H. Karl, G. Abstreiter, J. J. Finley, G. Koblmüller, and A. W. Holleitner, “Ultrafast photodetection in the quantum wells of single AlGaAs/ GaAs-based nanowires,” Nano Lett. 15(10), 6869–6874 (2015).
[Crossref] [PubMed]

Katzenmeyer, A. M.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S.-Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A pespective on nanowire photodetectors: current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).

Kim, H.

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

Kim, S.-H.

A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett. 11(12), 5387–5390 (2011).
[Crossref] [PubMed]

Ko, W. S.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Kobayashi, N. P.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S.-Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A pespective on nanowire photodetectors: current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).

Koblmüller, G.

T. Stettner, P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, S. Matich, H. Riedl, M. Kaniber, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control,” Appl. Phys. Lett. 108(1), 011108 (2016).
[Crossref]

N. Erhard, S. Zenger, S. Morkötter, D. Rudolph, M. Weiss, H. J. Krenner, H. Karl, G. Abstreiter, J. J. Finley, G. Koblmüller, and A. W. Holleitner, “Ultrafast photodetection in the quantum wells of single AlGaAs/ GaAs-based nanowires,” Nano Lett. 15(10), 6869–6874 (2015).
[Crossref] [PubMed]

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Kong, X.

E. Dimakis, U. Jahn, M. Ramsteiner, A. Tahraoui, J. Grandal, X. Kong, O. Marquardt, A. Trampert, H. Riechert, and L. Geelhaar, “Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates,” Nano Lett. 14(5), 2604–2609 (2014).
[Crossref] [PubMed]

Kopp, C.

L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20(2), 1096–1101 (2012).
[Crossref] [PubMed]

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

Krauss, T. F.

Kreissl, J.

L. Zimmermann, G. B. Preve, K. Voigt, G. Winzer, J. Kreissl, L. Moerl, C. Stamatiadis, L. Stampoulidis, and H. Avramopoulos, “High-precision flip-chip technology for alloptical wavelength conversion using SOI photonic circuit,” in IEEE/LEOS Group IV Photonics Conf. (2011), pp. 237.
[Crossref]

Krenner, H. J.

N. Erhard, S. Zenger, S. Morkötter, D. Rudolph, M. Weiss, H. J. Krenner, H. Karl, G. Abstreiter, J. J. Finley, G. Koblmüller, and A. W. Holleitner, “Ultrafast photodetection in the quantum wells of single AlGaAs/ GaAs-based nanowires,” Nano Lett. 15(10), 6869–6874 (2015).
[Crossref] [PubMed]

Kumar, R.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

Kunert, B.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99(7), 071109 (2011).
[Crossref]

Lange, C.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99(7), 071109 (2011).
[Crossref]

Larsson, C.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Larsson, M. W.

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

Lee, W.-J.

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

Liang, B.

A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett. 11(12), 5387–5390 (2011).
[Crossref] [PubMed]

Liang, D.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Liebich, S.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99(7), 071109 (2011).
[Crossref]

Lin, A.

A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett. 11(12), 5387–5390 (2011).
[Crossref] [PubMed]

Lipson, M.

Liu, A. W. K.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Liu, A. Y.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Liu, H.

Y. Zhang, J. Wu, M. Aagesen, and H. Liu, “III-V nanowires and nanowire optoelectronic devices,” J. Phys. D Appl. Phys. 48(46), 463001 (2015).
[Crossref]

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
[Crossref] [PubMed]

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

Loitsch, B.

T. Stettner, P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, S. Matich, H. Riedl, M. Kaniber, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control,” Appl. Phys. Lett. 108(1), 011108 (2016).
[Crossref]

Lubyshev, D.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Mandorlo, F.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

Margalit, S.

L. C. Chiu, J. S. Smith, S. Margalit, A. Yariv, and A. Y. Cho, “Applications of internal photoemission from quantum-well and heterojunction superlattices to infrared photodetectors,” Infrared Phys. 23(2), 93–97 (1983).
[Crossref]

Marquardt, O.

E. Dimakis, U. Jahn, M. Ramsteiner, A. Tahraoui, J. Grandal, X. Kong, O. Marquardt, A. Trampert, H. Riechert, and L. Geelhaar, “Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates,” Nano Lett. 14(5), 2604–2609 (2014).
[Crossref] [PubMed]

Marris-Morini, D.

Mårtensson, T.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

Matich, S.

T. Stettner, P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, S. Matich, H. Riedl, M. Kaniber, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control,” Appl. Phys. Lett. 108(1), 011108 (2016).
[Crossref]

Mayer, B.

T. Stettner, P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, S. Matich, H. Riedl, M. Kaniber, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control,” Appl. Phys. Lett. 108(1), 011108 (2016).
[Crossref]

Moerl, L.

L. Zimmermann, G. B. Preve, K. Voigt, G. Winzer, J. Kreissl, L. Moerl, C. Stamatiadis, L. Stampoulidis, and H. Avramopoulos, “High-precision flip-chip technology for alloptical wavelength conversion using SOI photonic circuit,” in IEEE/LEOS Group IV Photonics Conf. (2011), pp. 237.
[Crossref]

Morkötter, S.

N. Erhard, S. Zenger, S. Morkötter, D. Rudolph, M. Weiss, H. J. Krenner, H. Karl, G. Abstreiter, J. J. Finley, G. Koblmüller, and A. W. Holleitner, “Ultrafast photodetection in the quantum wells of single AlGaAs/ GaAs-based nanowires,” Nano Lett. 15(10), 6869–6874 (2015).
[Crossref] [PubMed]

Morthier, G.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

Nayak, A. P.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S.-Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A pespective on nanowire photodetectors: current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).

Ng, K. W.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Norman, J.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

O’Brien, P.

Oh, J.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S.-Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A pespective on nanowire photodetectors: current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).

Ohlsson, J.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Osmond, J.

Polzer, A.

Preve, G. B.

L. Zimmermann, G. B. Preve, K. Voigt, G. Winzer, J. Kreissl, L. Moerl, C. Stamatiadis, L. Stampoulidis, and H. Avramopoulos, “High-precision flip-chip technology for alloptical wavelength conversion using SOI photonic circuit,” in IEEE/LEOS Group IV Photonics Conf. (2011), pp. 237.
[Crossref]

Ramsteiner, M.

E. Dimakis, U. Jahn, M. Ramsteiner, A. Tahraoui, J. Grandal, X. Kong, O. Marquardt, A. Trampert, H. Riechert, and L. Geelhaar, “Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates,” Nano Lett. 14(5), 2604–2609 (2014).
[Crossref] [PubMed]

Rask, M.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Raz, O.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

Regler, A.

T. Stettner, P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, S. Matich, H. Riedl, M. Kaniber, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control,” Appl. Phys. Lett. 108(1), 011108 (2016).
[Crossref]

Regreny, P.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

Ren, X.

X. Zhang, V. G. Dubrovskii, N. V. Sibirev, and X. Ren, “Analytical study of elastic relaxation and plastic deformation in nanostructures on lattice mismatched substrates,” Cryst. Growth Des. 11(12), 5441–5448 (2011).
[Crossref]

Riechert, H.

E. Dimakis, U. Jahn, M. Ramsteiner, A. Tahraoui, J. Grandal, X. Kong, O. Marquardt, A. Trampert, H. Riechert, and L. Geelhaar, “Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates,” Nano Lett. 14(5), 2604–2609 (2014).
[Crossref] [PubMed]

Riedl, H.

T. Stettner, P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, S. Matich, H. Riedl, M. Kaniber, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control,” Appl. Phys. Lett. 108(1), 011108 (2016).
[Crossref]

Rishinaramangalam, A. K.

S. D. Hersee, A. K. Rishinaramangalam, M. N. Fairchild, L. Zhang, and P. Varangis, “Threading defect elimination in GaN nanowires,” J. Mater. Res. 26(17), 2293–2298 (2011).
[Crossref]

Roelkens, G.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
[Crossref]

Rojo-romeo, P.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Rudolph, D.

N. Erhard, S. Zenger, S. Morkötter, D. Rudolph, M. Weiss, H. J. Krenner, H. Karl, G. Abstreiter, J. J. Finley, G. Koblmüller, and A. W. Holleitner, “Ultrafast photodetection in the quantum wells of single AlGaAs/ GaAs-based nanowires,” Nano Lett. 15(10), 6869–6874 (2015).
[Crossref] [PubMed]

Samuelson, L.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

Scherer, A.

A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett. 11(12), 5387–5390 (2011).
[Crossref] [PubMed]

Schrauwen, J.

Scofield, A. C.

A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett. 11(12), 5387–5390 (2011).
[Crossref] [PubMed]

Sedgwick, F. G.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Seifert, W.

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

Selvaraja, S. K.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

S. K. Selvaraja, W. Bogaerts, P. Absil, D. Van Thourhout, and R. Baets, “Record low-loss hybrid rib / wire waveguides for silicon photonic circuits,” in IEEE/LEOS Group IV Phot. Conf. (2010).

Senanayake, P.

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

Shapiro, J. N.

A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett. 11(12), 5387–5390 (2011).
[Crossref] [PubMed]

Sibirev, N. V.

X. Zhang, V. G. Dubrovskii, N. V. Sibirev, and X. Ren, “Analytical study of elastic relaxation and plastic deformation in nanostructures on lattice mismatched substrates,” Cryst. Growth Des. 11(12), 5441–5448 (2011).
[Crossref]

Smith, J. S.

L. C. Chiu, J. S. Smith, S. Margalit, A. Yariv, and A. Y. Cho, “Applications of internal photoemission from quantum-well and heterojunction superlattices to infrared photodetectors,” Infrared Phys. 23(2), 93–97 (1983).
[Crossref]

Snyder, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Snyder, B.

Soci, C.

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
[Crossref] [PubMed]

W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z. L. Wang, and D. Wang, “Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection,” Nano Lett. 9(8), 2926–2934 (2009).
[Crossref] [PubMed]

Spuesens, T.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

Stamatiadis, C.

L. Zimmermann, G. B. Preve, K. Voigt, G. Winzer, J. Kreissl, L. Moerl, C. Stamatiadis, L. Stampoulidis, and H. Avramopoulos, “High-precision flip-chip technology for alloptical wavelength conversion using SOI photonic circuit,” in IEEE/LEOS Group IV Photonics Conf. (2011), pp. 237.
[Crossref]

Stampoulidis, L.

L. Zimmermann, G. B. Preve, K. Voigt, G. Winzer, J. Kreissl, L. Moerl, C. Stamatiadis, L. Stampoulidis, and H. Avramopoulos, “High-precision flip-chip technology for alloptical wavelength conversion using SOI photonic circuit,” in IEEE/LEOS Group IV Photonics Conf. (2011), pp. 237.
[Crossref]

Stettner, T.

T. Stettner, P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, S. Matich, H. Riedl, M. Kaniber, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control,” Appl. Phys. Lett. 108(1), 011108 (2016).
[Crossref]

Stolz, W.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99(7), 071109 (2011).
[Crossref]

Svensson, C. P. T.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

Sweeney, S. J.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99(7), 071109 (2011).
[Crossref]

Sysak, M. N.

Tahraoui, A.

E. Dimakis, U. Jahn, M. Ramsteiner, A. Tahraoui, J. Grandal, X. Kong, O. Marquardt, A. Trampert, H. Riechert, and L. Geelhaar, “Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates,” Nano Lett. 14(5), 2604–2609 (2014).
[Crossref] [PubMed]

Taillaert, D.

Talin, A. A.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S.-Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A pespective on nanowire photodetectors: current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).

Tanaka, T.

K. Tomioka, T. Tanaka, S. Hara, K. Hiruma, and T. Fukui, “III–V Nanowires on Si substrate: selective-area growth and device applications,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1112–1129 (2011).
[Crossref]

Tang, Y.

Tomioka, K.

K. Tomioka, T. Tanaka, S. Hara, K. Hiruma, and T. Fukui, “III–V Nanowires on Si substrate: selective-area growth and device applications,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1112–1129 (2011).
[Crossref]

Trägårdh, J.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Trampert, A.

E. Dimakis, U. Jahn, M. Ramsteiner, A. Tahraoui, J. Grandal, X. Kong, O. Marquardt, A. Trampert, H. Riechert, and L. Geelhaar, “Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates,” Nano Lett. 14(5), 2604–2609 (2014).
[Crossref] [PubMed]

Tran, T.-T. D.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Van Laere, F.

Van Thourhout, D.

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
[Crossref]

S. K. Selvaraja, W. Bogaerts, P. Absil, D. Van Thourhout, and R. Baets, “Record low-loss hybrid rib / wire waveguides for silicon photonic circuits,” in IEEE/LEOS Group IV Phot. Conf. (2010).

Varangis, P.

S. D. Hersee, A. K. Rishinaramangalam, M. N. Fairchild, L. Zhang, and P. Varangis, “Threading defect elimination in GaN nanowires,” J. Mater. Res. 26(17), 2293–2298 (2011).
[Crossref]

Vivien, L.

Vj, L.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S.-Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A pespective on nanowire photodetectors: current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).

Voigt, K.

L. Zimmermann, G. B. Preve, K. Voigt, G. Winzer, J. Kreissl, L. Moerl, C. Stamatiadis, L. Stampoulidis, and H. Avramopoulos, “High-precision flip-chip technology for alloptical wavelength conversion using SOI photonic circuit,” in IEEE/LEOS Group IV Photonics Conf. (2011), pp. 237.
[Crossref]

Volz, K.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99(7), 071109 (2011).
[Crossref]

Wacaser, B. A.

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

Wakahara, A.

Y. Furukawa, H. Yonezu, and A. Wakahara, “Monolithic integration of III-V active devices into silicon platform for optoelectronic circuits,” IEICE Trans. Electron. E91–C(2), 145–149 (2008).
[Crossref]

Wallenberg, L. R.

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

Wang, D.

W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z. L. Wang, and D. Wang, “Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection,” Nano Lett. 9(8), 2926–2934 (2009).
[Crossref] [PubMed]

Wang, S.-Y.

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S.-Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A pespective on nanowire photodetectors: current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).

Wang, Z.

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
[Crossref] [PubMed]

Wang, Z. L.

W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z. L. Wang, and D. Wang, “Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection,” Nano Lett. 9(8), 2926–2934 (2009).
[Crossref] [PubMed]

Wei, W.

W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z. L. Wang, and D. Wang, “Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection,” Nano Lett. 9(8), 2926–2934 (2009).
[Crossref] [PubMed]

Weiss, M.

N. Erhard, S. Zenger, S. Morkötter, D. Rudolph, M. Weiss, H. J. Krenner, H. Karl, G. Abstreiter, J. J. Finley, G. Koblmüller, and A. W. Holleitner, “Ultrafast photodetection in the quantum wells of single AlGaAs/ GaAs-based nanowires,” Nano Lett. 15(10), 6869–6874 (2015).
[Crossref] [PubMed]

Winnerl, J.

T. Stettner, P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, S. Matich, H. Riedl, M. Kaniber, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control,” Appl. Phys. Lett. 108(1), 011108 (2016).
[Crossref]

Winzer, G.

L. Zimmermann, G. B. Preve, K. Voigt, G. Winzer, J. Kreissl, L. Moerl, C. Stamatiadis, L. Stampoulidis, and H. Avramopoulos, “High-precision flip-chip technology for alloptical wavelength conversion using SOI photonic circuit,” in IEEE/LEOS Group IV Photonics Conf. (2011), pp. 237.
[Crossref]

Wu, J.

Y. Zhang, J. Wu, M. Aagesen, and H. Liu, “III-V nanowires and nanowire optoelectronic devices,” J. Phys. D Appl. Phys. 48(46), 463001 (2015).
[Crossref]

Yariv, A.

L. C. Chiu, J. S. Smith, S. Margalit, A. Yariv, and A. Y. Cho, “Applications of internal photoemission from quantum-well and heterojunction superlattices to infrared photodetectors,” Infrared Phys. 23(2), 93–97 (1983).
[Crossref]

Yonezu, H.

Y. Furukawa, H. Yonezu, and A. Wakahara, “Monolithic integration of III-V active devices into silicon platform for optoelectronic circuits,” IEICE Trans. Electron. E91–C(2), 145–149 (2008).
[Crossref]

Zenger, S.

N. Erhard, S. Zenger, S. Morkötter, D. Rudolph, M. Weiss, H. J. Krenner, H. Karl, G. Abstreiter, J. J. Finley, G. Koblmüller, and A. W. Holleitner, “Ultrafast photodetection in the quantum wells of single AlGaAs/ GaAs-based nanowires,” Nano Lett. 15(10), 6869–6874 (2015).
[Crossref] [PubMed]

Zhang, C.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

Zhang, L.

S. D. Hersee, A. K. Rishinaramangalam, M. N. Fairchild, L. Zhang, and P. Varangis, “Threading defect elimination in GaN nanowires,” J. Mater. Res. 26(17), 2293–2298 (2011).
[Crossref]

Zhang, S.

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, V. G. Dubrovskii, N. V. Sibirev, and X. Ren, “Analytical study of elastic relaxation and plastic deformation in nanostructures on lattice mismatched substrates,” Cryst. Growth Des. 11(12), 5441–5448 (2011).
[Crossref]

Zhang, Y.

Y. Zhang, J. Wu, M. Aagesen, and H. Liu, “III-V nanowires and nanowire optoelectronic devices,” J. Phys. D Appl. Phys. 48(46), 463001 (2015).
[Crossref]

Zimmermann, H.

Zimmermann, L.

L. Zimmermann, G. B. Preve, K. Voigt, G. Winzer, J. Kreissl, L. Moerl, C. Stamatiadis, L. Stampoulidis, and H. Avramopoulos, “High-precision flip-chip technology for alloptical wavelength conversion using SOI photonic circuit,” in IEEE/LEOS Group IV Photonics Conf. (2011), pp. 237.
[Crossref]

Zimmermann, P.

T. Stettner, P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, S. Matich, H. Riedl, M. Kaniber, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control,” Appl. Phys. Lett. 108(1), 011108 (2016).
[Crossref]

Zimprich, M.

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99(7), 071109 (2011).
[Crossref]

Appl. Phys. Lett. (3)

S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. J. Franzbach, S. Chatterjee, N. Hossain, S. J. Sweeney, K. Volz, B. Kunert, and W. Stolz, “Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate,” Appl. Phys. Lett. 99(7), 071109 (2011).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref]

T. Stettner, P. Zimmermann, B. Loitsch, M. Döblinger, A. Regler, B. Mayer, J. Winnerl, S. Matich, H. Riedl, M. Kaniber, G. Abstreiter, G. Koblmüller, and J. J. Finley, “Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control,” Appl. Phys. Lett. 108(1), 011108 (2016).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Cryst. Growth Des. (1)

X. Zhang, V. G. Dubrovskii, N. V. Sibirev, and X. Ren, “Analytical study of elastic relaxation and plastic deformation in nanostructures on lattice mismatched substrates,” Cryst. Growth Des. 11(12), 5441–5448 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

K. Tomioka, T. Tanaka, S. Hara, K. Hiruma, and T. Fukui, “III–V Nanowires on Si substrate: selective-area growth and device applications,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1112–1129 (2011).
[Crossref]

D. Van Thourhout, T. Spuesens, S. K. Selvaraja, L. Liu, G. Roelkens, R. Kumar, G. Morthier, P. Rojo-romeo, F. Mandorlo, P. Regreny, O. Raz, C. Kopp, and L. Grenouillet, “Nanophotonic devices for optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1363–1375 (2010).
[Crossref]

L. Vj, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S.-Y. Wang, A. A. Talin, N. K. Dhar, and M. S. Islam, “A pespective on nanowire photodetectors: current status, future challenges, and opportunities,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011).

IEICE Trans. Electron. (1)

Y. Furukawa, H. Yonezu, and A. Wakahara, “Monolithic integration of III-V active devices into silicon platform for optoelectronic circuits,” IEICE Trans. Electron. E91–C(2), 145–149 (2008).
[Crossref]

Infrared Phys. (1)

L. C. Chiu, J. S. Smith, S. Margalit, A. Yariv, and A. Y. Cho, “Applications of internal photoemission from quantum-well and heterojunction superlattices to infrared photodetectors,” Infrared Phys. 23(2), 93–97 (1983).
[Crossref]

J. Lightwave Technol. (4)

J. Mater. Res. (1)

S. D. Hersee, A. K. Rishinaramangalam, M. N. Fairchild, L. Zhang, and P. Varangis, “Threading defect elimination in GaN nanowires,” J. Mater. Res. 26(17), 2293–2298 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

Y. Zhang, J. Wu, M. Aagesen, and H. Liu, “III-V nanowires and nanowire optoelectronic devices,” J. Phys. D Appl. Phys. 48(46), 463001 (2015).
[Crossref]

Laser Photonics Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Nano Lett. (7)

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z. L. Wang, and D. Wang, “Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection,” Nano Lett. 9(8), 2926–2934 (2009).
[Crossref] [PubMed]

E. Dimakis, U. Jahn, M. Ramsteiner, A. Tahraoui, J. Grandal, X. Kong, O. Marquardt, A. Trampert, H. Riechert, and L. Geelhaar, “Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates,” Nano Lett. 14(5), 2604–2609 (2014).
[Crossref] [PubMed]

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, and C. Soci, “GaAs/AlGaAs nanowire photodetector,” Nano Lett. 14(5), 2688–2693 (2014).
[Crossref] [PubMed]

N. Erhard, S. Zenger, S. Morkötter, D. Rudolph, M. Weiss, H. J. Krenner, H. Karl, G. Abstreiter, J. J. Finley, G. Koblmüller, and A. W. Holleitner, “Ultrafast photodetection in the quantum wells of single AlGaAs/ GaAs-based nanowires,” Nano Lett. 15(10), 6869–6874 (2015).
[Crossref] [PubMed]

A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett. 11(12), 5387–5390 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Opt. Express (1)

Other (3)

S. K. Selvaraja, W. Bogaerts, P. Absil, D. Van Thourhout, and R. Baets, “Record low-loss hybrid rib / wire waveguides for silicon photonic circuits,” in IEEE/LEOS Group IV Phot. Conf. (2010).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Inc., 1985).

L. Zimmermann, G. B. Preve, K. Voigt, G. Winzer, J. Kreissl, L. Moerl, C. Stamatiadis, L. Stampoulidis, and H. Avramopoulos, “High-precision flip-chip technology for alloptical wavelength conversion using SOI photonic circuit,” in IEEE/LEOS Group IV Photonics Conf. (2011), pp. 237.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Generic representation of a periodic array of free-standing III-V nanowires grown on a planar Si waveguide. The waveguide is fabricated from a silicon-on-insulator wafer. The waveguide width is here tapered out to accommodate three parallel rows of nanowires. For a real device, the nanowires would be embedded into a transparent insulating material and electrically contacted. These details are not shown for simplicity.
Fig. 2
Fig. 2 (a) Calculated dependence of the out-coupled light power, normalized to the power of the light guided in the waveguide, on the array period Λa for fifteen periods of nanowires with a fixed height hNW = 1 µm and diameter dNW = 250 nm. The red curve was calculated with a 2D model, while the blue one with a 3D model. In the inset plot for the 3D case the dependence of the maximum coupling ratio on the lateral period Λb is shown. The 3D calculations in the main diagram were carried out for the optimum value Λb = 0.45 µm, considering TE polarization and a waveguide width of 1.7 µm. (b) Computed electric field propagating from the waveguide into the optical interface with the nanowire array. Here the lateral cross section is shown. The colored areas show the amplitude of the electric field, with blue and red marking opposite signs. The parameters for the array are: period Λa = 0.92 µm, row spacing Λb = 0.45 µm, nanowire diameter dNW = 250 nm, and nanowire height hNW = 1 µm.
Fig. 3
Fig. 3 Out-coupling of light from a Si waveguide resulting from scattering at an array of GaAs nanowires. (a) Calculated dependence of the out-coupled light power, normalized to the power of the light guided in the waveguide, on the array period Λa and nanowire diameter dNW for a fixed nanowire height hNW = 1 µm. (b) Computed electric field propagating from the waveguide into the optical interface with the nanowire array. The bold black arrows indicate the direction of the phase fronts. The colored areas show the amplitude of the electric field, with blue and red marking opposite signs. The parameters for the array are: period Λa = 1 µm, nanowire diameter dNW = 250 nm, and nanowire height hNW = 1 µm. (c) Calculated dependence of the out-coupled power, normalized to the power of the light guided in the waveguide, on the array period Λa and nanowire height hNW for a fixed nanowire diameter dNW = 250 nm. (d) Same as (b), with hNW = 2 µm.
Fig. 4
Fig. 4 In-coupling of plane light waves into a Si waveguide resulting from scattering at an array of GaAs nanowires. (a) Calculated dependence of the in-coupled light power, normalized to the power of the impinging light, on the array period Λa and nanowire diameter dNW for a fixed nanowire height hNW = 1 µm. (b) Calculated dependence of the in-coupled power, normalized to the power of the impinging light, on the array period Λa and nanowire height hNW for a fixed nanowire diameter dNW = 170 nm. (c) Computed electric field propagating from above the nanowire array into the optical interface with the waveguide. The bold black arrows indicate the direction of the phase fronts. The colored areas show the amplitude of the electric field, with blue and red marking opposite signs. The parameters for the array are: array period Λa = 0.87 µm, nanowire diameter dNW = 170 nm, and nanowire height hNW = 1 µm. (d) Same as (c), with hNW = 1.5 µm.
Fig. 5
Fig. 5 (a) Calculated spectral bandwidth for the light coupling between nanowires and waveguides in both directions. (b) Dependence of the coupled optical power on the number of nanowires in the array. For the out-coupling scenario a nanowire array with Λa = 1 µm, dNW = 250 nm, and hNW = 1 µm has been considered, while for the in-coupling scenario the used parameters are Λa = 0.87 µm, dNW = 170 nm, and hNW = 1 µm.
Fig. 6
Fig. 6 Light coupling from Si waveguides into GaAs/In0.35Ga0.65As core-shell nanowires acting as photodetectors. (a) Optical power absorbed in an array of 15 nanowires with diameter dNW = 250 nm, height hNW = 1 µm, and shell thickness 10 nm, compared to the total out-coupled power, both normalized to the power of the light guided in the Si waveguide and plotted as a function of the array period Λa for core-shell nanowires acting as photodiodes. The continuous lines indicate calculations performed with a 2D model, dashed lines with a 3D one. (b) Absorption in the nanowire array (Λa = 1 µm, dNW = 250 nm) calculated with a 2D model as a function of the nanowire height hNW for two different (In,Ga)As shell thicknesses.
Fig. 7
Fig. 7 Light coupling from GaAs nanowires acting as light sources. (a) Calculated dependence of the power coupled into the waveguide, normalized to the power generated in the nanowires, on the array period. Both cases of coherent and incoherent emission are shown. The continuous and dashed blue lines indicate the coupling of coherent emission, calculated with a 2D and 3D model, respectively. An array of 15 nanowires with diameter dNW = 170 nm and height hNW = 1 µm has been considered. Electric field of (b) coherent and (c) incoherent radiation generated in the nanowire array and coupled into the Si waveguide for the period Λa = 0.87 nm, computed with a 2D model.

Metrics