Abstract

In this paper, a narrow band thermal emission at 10 μm is demonstrated using a one dimensional metasurface. The proposed metasurface structure provides magnetic resonance mode that enhances the phonon absorption of SiO2. The proposed metasurface thermal emitter shows a Lambertian distribution. Additionally, 5.8-folds enhancement of emissivity is achieved by optimizing the cavity thickness of the metasurfaces. This type of thermal emitter will be useful for IR sensing applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Omnidirectional thermal emitter based on plasmonic nanoantenna arrays

Chih-Ming Wang and De-Yu Feng
Opt. Express 22(2) 1313-1318 (2014)

Nearly perfect resonant absorption and coherent thermal emission by hBN-based photonic crystals

Hodjat Hajian, Amir Ghobadi, Bayram Butun, and Ekmel Ozbay
Opt. Express 25(25) 31970-31987 (2017)

T-shaped plasmonic array as a narrow-band thermal emitter or biosensor

Chih-Ming Wang, Yia-Chung Chang, Mohammed Nadhim Abbas, Ming-Hsiung Shih, and Din Ping Tsai
Opt. Express 17(16) 13526-13531 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
    [Crossref]
  2. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
    [Crossref]
  3. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
    [Crossref]
  4. T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersive infrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
    [Crossref]
  5. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
    [Crossref] [PubMed]
  6. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
    [PubMed]
  7. M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
    [Crossref]
  8. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [Crossref] [PubMed]
  9. J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
    [Crossref]
  10. M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1-4), 117–122 (1999).
    [Crossref]
  11. R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93(6), 063307 (2008).
    [Crossref]
  12. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
    [Crossref]
  13. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1Suppl 1), A96–A110 (2013).
    [Crossref] [PubMed]
  14. H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
    [Crossref]
  15. C. M. Wang and D. Y. Feng, “Omnidirectional thermal emitter based on plasmonic nanoantenna arrays,” Opt. Express 22(2), 1313–1318 (2014).
    [Crossref] [PubMed]
  16. Y. C. Chang, C. M. Wang, M. N. Abbas, M. H. Shih, and D. P. Tsai, “T-shaped plasmonic array as a narrow-band thermal emitter or biosensor,” Opt. Express 17(16), 13526–13531 (2009).
    [Crossref] [PubMed]
  17. R. Siegel and J. Howell, Thermal Radiation Heat Transfer (New York: Hemisphere Publishing Corporation, (1981).
  18. Y. Takakura, “Optical Resonance in a Narrow Slit in a Thick Metallic Screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
    [Crossref] [PubMed]
  19. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, and D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express 15(22), 14673–14678 (2007).
    [Crossref] [PubMed]
  20. E. D. Palik, Handbook of Optical Constants of Solids, Academic Press: San Diego, 1998.

2015 (1)

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

2014 (3)

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersive infrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
[Crossref]

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

C. M. Wang and D. Y. Feng, “Omnidirectional thermal emitter based on plasmonic nanoantenna arrays,” Opt. Express 22(2), 1313–1318 (2014).
[Crossref] [PubMed]

2013 (2)

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1Suppl 1), A96–A110 (2013).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[PubMed]

2009 (2)

2008 (1)

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93(6), 063307 (2008).
[Crossref]

2007 (1)

2004 (1)

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[Crossref]

2003 (1)

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

2002 (2)

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

2001 (1)

Y. Takakura, “Optical Resonance in a Narrow Slit in a Thick Metallic Screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[Crossref] [PubMed]

2000 (1)

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[Crossref]

1999 (1)

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1-4), 117–122 (1999).
[Crossref]

1997 (1)

J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[Crossref]

Abbas, M. N.

Asano, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersive infrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
[Crossref]

Biswas, R.

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93(6), 063307 (2008).
[Crossref]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

Bur, J.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[Crossref]

Carminati, R.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[Crossref]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Chang, Y. C.

Chang, Y. T.

Chen, C. Y.

Chen, Y.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[Crossref]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Choi, B.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Choi, K. K.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[Crossref]

Chow, E.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[Crossref]

De Zoysa, M.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersive infrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
[Crossref]

Dewalt, C. J.

El-Kady, I.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Fan, S.

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[PubMed]

Feng, D. Y.

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[Crossref]

Goldberg, A.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[Crossref]

Greffet, J. J.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[Crossref]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[Crossref]

Gu, M.

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Herminghaus, S.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1-4), 117–122 (1999).
[Crossref]

Ho, K. M.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Hossain, M. M.

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Inoue, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersive infrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
[Crossref]

Iwanaga, M.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Jacob, Z.

Jia, B.

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Jiang, Y. W.

Johnson, E.

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93(6), 063307 (2008).
[Crossref]

Joulain, K.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[Crossref]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Kasaya, T.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Knoll, W.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1-4), 117–122 (1999).
[Crossref]

Kreiter, M.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1-4), 117–122 (1999).
[Crossref]

Le Gall, J.

J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[Crossref]

Lee, S. C.

Lin, S. Y.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[Crossref]

Mainguy, S.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Marquier, F.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[Crossref]

Mittler-Neher, S.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1-4), 117–122 (1999).
[Crossref]

Miyazaki, H. T.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Molesky, S.

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

Mulet, J. P.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[Crossref]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Noda, S.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersive infrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
[Crossref]

Olivier, M.

J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[Crossref]

Oster, J.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1-4), 117–122 (1999).
[Crossref]

Puscasu, I.

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93(6), 063307 (2008).
[Crossref]

Raman, A.

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[PubMed]

Rephaeli, E.

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[PubMed]

Sakoda, K.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Sambles, R.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1-4), 117–122 (1999).
[Crossref]

Schuller, J. A.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

Shih, M. H.

Sugimoto, Y.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Takakura, Y.

Y. Takakura, “Optical Resonance in a Narrow Slit in a Thick Metallic Screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[Crossref] [PubMed]

Taubner, T.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

Taylor, A.

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93(6), 063307 (2008).
[Crossref]

Tsai, D. P.

Tsai, M. W.

Wang, C. M.

Ye, Y. H.

Zhao, W.

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93(6), 063307 (2008).
[Crossref]

Zhou, D.

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93(6), 063307 (2008).
[Crossref]

Adv. Opt. Mater. (1)

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Appl. Phys. Express (1)

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersive infrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
[Crossref]

Appl. Phys. Lett. (3)

R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, and W. Zhao, “Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice,” Appl. Phys. Lett. 93(6), 063307 (2008).
[Crossref]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Nano Lett. (1)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[PubMed]

Nat. Photonics (1)

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

Nature (2)

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1-4), 117–122 (1999).
[Crossref]

Opt. Express (4)

Phys. Rev. B (3)

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[Crossref]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, “Coherent spontaneous emission of light by thermal sources,” Phys. Rev. B 69(15), 155412 (2004).
[Crossref]

J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[Crossref]

Phys. Rev. Lett. (1)

Y. Takakura, “Optical Resonance in a Narrow Slit in a Thick Metallic Screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[Crossref] [PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids, Academic Press: San Diego, 1998.

R. Siegel and J. Howell, Thermal Radiation Heat Transfer (New York: Hemisphere Publishing Corporation, (1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Side-view diagram of the investigated 1D metasurface. The thickness of Ag wire and SiO2 layer is denoted by TAg and TSiO2, respectively. The width of Ag wire is denoted by WAg. The incident angle is θin.

Fig. 2
Fig. 2

(a) Reflection spectrum of 1D thermal emitter. Black, red and blue solid lines indicate the thermal emitter with TSiO2 = 50 nm, TSiO2 = 100 nm, and TSiO2 = 150 nm, respectively. The other geometry parameters of the structure are WAg = 1.5μm, TAg = 100nm, Λg = 3μm. (b) Hy field distribution at 10.2 μm.

Fig. 3
Fig. 3

Emissivity as a function of observation angle. The blue solid line shows the ideal Lambertian distribution. The black square and red circle symbols indicates the experimental data at 10.2 μm and 6.2 μm, respectively. The emissivity is at the resonance wavelength of 10.2 μm. The geometry parameters of the structure are TSiO2 = 100 nm, WAg = 1.5μm, TAg = 100nm, Λg = 3μm.

Fig. 4
Fig. 4

Emittance enhancement of heated metasurfaces with a temperature of 250°C. Black, red, and blue solid lines represent the metasurfaces w the thermal emitter with TSiO2 = 50 nm, TSiO2 = 100 nm, and TSiO2 = 150 nm, respectively. The other geometry parameters of the structure are WAg = 1.5μm, TAg = 100nm, Λg = 3μm.

Metrics