Abstract

Rigid metamaterials were prepared by embedding TiO2 microspheres into polyethylene. These structures exhibit a series of Mie resonances where the lowest-frequency one is associated with a strong dispersion in the effective magnetic permeability. Using time-domain terahertz spectroscopy, we experimentally demonstrated the magnetic nature of the observed resonance. The presented approach shows a way for low-cost massive fabrication of mechanically stable terahertz metamaterials based on dielectric microresonators.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Artificial magnetism at terahertz frequencies from three-dimensional lattices of TiO2 microspheres accounting for spatial dispersion and magnetoelectric coupling

Sylvain Lannebère, Salvatore Campione, Ashod Aradian, Matteo Albani, and Filippo Capolino
J. Opt. Soc. Am. B 31(5) 1078-1086 (2014)

A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles

José Dintinger, Stefan Mühlig, Carsten Rockstuhl, and Toralf Scharf
Opt. Mater. Express 2(3) 269-278 (2012)

Near-field probing of Mie resonances in single TiO2 microspheres at terahertz frequencies

Oleg Mitrofanov, Filip Dominec, Petr Kužel, John L. Reno, Igal Brener, U-Chan Chung, Cathy Elissalde, Mario Maglione, and Patrick Mounaix
Opt. Express 22(19) 23034-23042 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788 (2004).
    [Crossref] [PubMed]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
    [Crossref]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
    [Crossref] [PubMed]
  4. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449 (2005).
    [Crossref]
  5. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).
    [Crossref] [PubMed]
  6. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
    [Crossref] [PubMed]
  7. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
    [Crossref] [PubMed]
  8. S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys.: Condens. Matter 14, 4035 (2002).
  9. Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
    [Crossref]
  10. A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 011036 (2015).
  11. H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108 (2009).
    [Crossref]
  12. R. A. Parker, “Static dielectric constant of rutile (TiO2), 1.6-1060°K,” Phys. Rev. 124, 1719 (1961).
    [Crossref]
  13. H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
    [Crossref]
  14. F. Dominec, C. Kadlec, H. Němec, P. Kužel, and F. Kadlec, “Transition between metamaterial and photonic-crystal behavior in arrays of dielectric rods,” Opt. Express 22, 30492 (2014).
    [Crossref]
  15. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687 (2010).
    [Crossref]
  16. A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377 (1970).
    [Crossref]
  17. W. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE 62, 33 (1974).
    [Crossref]
  18. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
    [Crossref]
  19. Th. Koschny, P. Markoš, D.R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
    [Crossref]
  20. V. M. Agranovich and Yu. N. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029 (2006).
    [Crossref]
  21. P. Kužel, H. Němec, F. Kadlec, and C. Kadlec, “Gouy shift correction for highly accurate refractive index retrieval in time-domain terahertz spectroscopy,” Opt. Exp. 18, 15338 (2010).
    [Crossref]
  22. L. Duvillaret, F. Garet, and J.-L. Coutaz, “Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy,” Appl. Opt. 38, 409 (1999).
    [Crossref]
  23. H. Němec, F. Kadlec, P. Kužel, L. Duvillaret, and J.-L. Coutaz, “Independent determination of the complex refractive index and wave impedance by time-domain terahertz spectroscopy,” Opt. Commun. 260, 175 (2006).
    [Crossref]
  24. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717 (2005).
  25. W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852 (1989).
    [Crossref]

2015 (1)

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 011036 (2015).

2014 (1)

2012 (1)

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

2010 (2)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687 (2010).
[Crossref]

P. Kužel, H. Němec, F. Kadlec, and C. Kadlec, “Gouy shift correction for highly accurate refractive index retrieval in time-domain terahertz spectroscopy,” Opt. Exp. 18, 15338 (2010).
[Crossref]

2009 (2)

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108 (2009).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref] [PubMed]

2008 (1)

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

2006 (3)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[Crossref] [PubMed]

V. M. Agranovich and Yu. N. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029 (2006).
[Crossref]

H. Němec, F. Kadlec, P. Kužel, L. Duvillaret, and J.-L. Coutaz, “Independent determination of the complex refractive index and wave impedance by time-domain terahertz spectroscopy,” Opt. Commun. 260, 175 (2006).
[Crossref]

2005 (2)

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717 (2005).

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449 (2005).
[Crossref]

2004 (2)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788 (2004).
[Crossref] [PubMed]

2003 (1)

Th. Koschny, P. Markoš, D.R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

2002 (2)

S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys.: Condens. Matter 14, 4035 (2002).

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref] [PubMed]

1999 (2)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[Crossref]

L. Duvillaret, F. Garet, and J.-L. Coutaz, “Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy,” Appl. Opt. 38, 409 (1999).
[Crossref]

1989 (1)

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852 (1989).
[Crossref]

1974 (1)

W. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE 62, 33 (1974).
[Crossref]

1970 (1)

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377 (1970).
[Crossref]

1961 (1)

R. A. Parker, “Static dielectric constant of rutile (TiO2), 1.6-1060°K,” Phys. Rev. 124, 1719 (1961).
[Crossref]

Agranovich, V. M.

V. M. Agranovich and Yu. N. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029 (2006).
[Crossref]

Averitt, R. D.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[Crossref] [PubMed]

Basharin, A. A.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 011036 (2015).

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).
[Crossref] [PubMed]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687 (2010).
[Crossref]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[Crossref] [PubMed]

Chung, U-C.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

Coutaz, J.-L.

H. Němec, F. Kadlec, P. Kužel, L. Duvillaret, and J.-L. Coutaz, “Independent determination of the complex refractive index and wave impedance by time-domain terahertz spectroscopy,” Opt. Commun. 260, 175 (2006).
[Crossref]

L. Duvillaret, F. Garet, and J.-L. Coutaz, “Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy,” Appl. Opt. 38, 409 (1999).
[Crossref]

Dominec, F.

Doyle, W. T.

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852 (1989).
[Crossref]

Du, B.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

Duvillaret, L.

H. Němec, F. Kadlec, P. Kužel, L. Duvillaret, and J.-L. Coutaz, “Independent determination of the complex refractive index and wave impedance by time-domain terahertz spectroscopy,” Opt. Commun. 260, 175 (2006).
[Crossref]

L. Duvillaret, F. Garet, and J.-L. Coutaz, “Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy,” Appl. Opt. 38, 409 (1999).
[Crossref]

Economou, E. N.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 011036 (2015).

Elissalde, C.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

Fan, K.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref] [PubMed]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).
[Crossref] [PubMed]

Fedotov, V. A.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 011036 (2015).

Garet, F.

Gartstein, Yu. N.

V. M. Agranovich and Yu. N. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029 (2006).
[Crossref]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[Crossref] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687 (2010).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687 (2010).
[Crossref]

Kadlec, C.

F. Dominec, C. Kadlec, H. Němec, P. Kužel, and F. Kadlec, “Transition between metamaterial and photonic-crystal behavior in arrays of dielectric rods,” Opt. Express 22, 30492 (2014).
[Crossref]

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

P. Kužel, H. Němec, F. Kadlec, and C. Kadlec, “Gouy shift correction for highly accurate refractive index retrieval in time-domain terahertz spectroscopy,” Opt. Exp. 18, 15338 (2010).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108 (2009).
[Crossref]

Kadlec, F.

F. Dominec, C. Kadlec, H. Němec, P. Kužel, and F. Kadlec, “Transition between metamaterial and photonic-crystal behavior in arrays of dielectric rods,” Opt. Express 22, 30492 (2014).
[Crossref]

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

P. Kužel, H. Němec, F. Kadlec, and C. Kadlec, “Gouy shift correction for highly accurate refractive index retrieval in time-domain terahertz spectroscopy,” Opt. Exp. 18, 15338 (2010).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108 (2009).
[Crossref]

H. Němec, F. Kadlec, P. Kužel, L. Duvillaret, and J.-L. Coutaz, “Independent determination of the complex refractive index and wave impedance by time-domain terahertz spectroscopy,” Opt. Commun. 260, 175 (2006).
[Crossref]

Kafesaki, M.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 011036 (2015).

Kang, L.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

Koschny, Th.

Th. Koschny, P. Markoš, D.R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

Kužel, P.

F. Dominec, C. Kadlec, H. Němec, P. Kužel, and F. Kadlec, “Transition between metamaterial and photonic-crystal behavior in arrays of dielectric rods,” Opt. Express 22, 30492 (2014).
[Crossref]

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

P. Kužel, H. Němec, F. Kadlec, and C. Kadlec, “Gouy shift correction for highly accurate refractive index retrieval in time-domain terahertz spectroscopy,” Opt. Exp. 18, 15338 (2010).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108 (2009).
[Crossref]

H. Němec, F. Kadlec, P. Kužel, L. Duvillaret, and J.-L. Coutaz, “Independent determination of the complex refractive index and wave impedance by time-domain terahertz spectroscopy,” Opt. Commun. 260, 175 (2006).
[Crossref]

Li, B.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

Li, L.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

Maglione, M.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

Markoš, P.

Th. Koschny, P. Markoš, D.R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Meng, Y.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

Moroz, A.

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717 (2005).

Mounaix, P.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108 (2009).
[Crossref]

Nemec, H.

F. Dominec, C. Kadlec, H. Němec, P. Kužel, and F. Kadlec, “Transition between metamaterial and photonic-crystal behavior in arrays of dielectric rods,” Opt. Express 22, 30492 (2014).
[Crossref]

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

P. Kužel, H. Němec, F. Kadlec, and C. Kadlec, “Gouy shift correction for highly accurate refractive index retrieval in time-domain terahertz spectroscopy,” Opt. Exp. 18, 15338 (2010).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108 (2009).
[Crossref]

H. Němec, F. Kadlec, P. Kužel, L. Duvillaret, and J.-L. Coutaz, “Independent determination of the complex refractive index and wave impedance by time-domain terahertz spectroscopy,” Opt. Commun. 260, 175 (2006).
[Crossref]

Nicolson, A. M.

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377 (1970).
[Crossref]

O’Brien, S.

S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys.: Condens. Matter 14, 4035 (2002).

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687 (2010).
[Crossref]

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).
[Crossref] [PubMed]

Parker, R. A.

R. A. Parker, “Static dielectric constant of rutile (TiO2), 1.6-1060°K,” Phys. Rev. 124, 1719 (1961).
[Crossref]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788 (2004).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).
[Crossref] [PubMed]

S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys.: Condens. Matter 14, 4035 (2002).

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[Crossref]

Ramakrishna, S. A.

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449 (2005).
[Crossref]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[Crossref]

Ross, G. F.

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377 (1970).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687 (2010).
[Crossref]

Savinov, V.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 011036 (2015).

Schultz, S.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788 (2004).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Smith, D.R.

Th. Koschny, P. Markoš, D.R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

Soukoulis, C. M.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 011036 (2015).

Th. Koschny, P. Markoš, D.R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[Crossref]

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref] [PubMed]

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref] [PubMed]

Taylor, A. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[Crossref] [PubMed]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).
[Crossref] [PubMed]

Weir, W.

W. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE 62, 33 (1974).
[Crossref]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788 (2004).
[Crossref] [PubMed]

Xie, Q.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

Yahiaoui, R.

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108 (2009).
[Crossref]

Yannopapas, V.

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717 (2005).

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).
[Crossref] [PubMed]

Zhang, X.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref] [PubMed]

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).
[Crossref] [PubMed]

Zhao, H.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

Zhao, Q.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

Zheludev, N. I.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 011036 (2015).

Zhou, J.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92, 051106 (2008).
[Crossref]

H. Němec, C. Kadlec, F. Kadlec, P. Kužel, R. Yahiaoui, U-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687 (2010).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377 (1970).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[Crossref]

J. Phys.: Condens. Matter (2)

S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys.: Condens. Matter 14, 4035 (2002).

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys.: Condens. Matter 17, 3717 (2005).

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

H. Němec, F. Kadlec, P. Kužel, L. Duvillaret, and J.-L. Coutaz, “Independent determination of the complex refractive index and wave impedance by time-domain terahertz spectroscopy,” Opt. Commun. 260, 175 (2006).
[Crossref]

Opt. Exp. (1)

P. Kužel, H. Němec, F. Kadlec, and C. Kadlec, “Gouy shift correction for highly accurate refractive index retrieval in time-domain terahertz spectroscopy,” Opt. Exp. 18, 15338 (2010).
[Crossref]

Opt. Express (1)

Phys. Rev. (1)

R. A. Parker, “Static dielectric constant of rutile (TiO2), 1.6-1060°K,” Phys. Rev. 124, 1719 (1961).
[Crossref]

Phys. Rev. B (3)

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108 (2009).
[Crossref]

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852 (1989).
[Crossref]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Phys. Rev. E (1)

Th. Koschny, P. Markoš, D.R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

Phys. Rev. Lett. (2)

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref] [PubMed]

Phys. Rev. X (1)

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 011036 (2015).

Phys. Usp. (1)

V. M. Agranovich and Yu. N. Gartstein, “Spatial dispersion and negative refraction of light,” Phys. Usp. 49, 1029 (2006).
[Crossref]

Proc. IEEE (1)

W. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE 62, 33 (1974).
[Crossref]

Rep. Prog. Phys. (1)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449 (2005).
[Crossref]

Science (2)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 TiO2 microresonators (A) X-ray radiography of TiO2 microparticles embedded in a polyethylene pellet (B) Scanning-electron-microscope image of the TiO2 microparticle.
Fig. 2
Fig. 2 Calculated effective magnetic permeability spectra μ(ω) of a single layer of TiO2 microspheres with diameter 35 µm arranged in a square lattice with unit cell a × a embedded in a medium with permittivity εH and thickness a. (a) Variable filling fraction s (and lattice constant a), host permittivity εH = 2; (b,c) Variable host permittivity, a = 50 µm (=filling factor of 18%). The colour scale in (c) represents the value of μ.
Fig. 3
Fig. 3 Effective permeability of a 3 mm thick polyethylene pellet with low concentration ( 0.15%) of TiO2 around the first Mie resonance. Inset in the upper panel shows the waveform of raw experimental data. The signal corresponding to the first internal reflection is multiplied by 50 to make it visible.
Fig. 4
Fig. 4 (a) Transmission spectra of 1 mm-thick polyethylene pellets with various concentrations of TiO2 spheres. Symbols: experimental data, lines: fits using Maxwell-Garnett theory. (b) Effective permeability corresponding to the fitted transmission spectra. Filling factors were obtained from the component weights (nominal values) and from the fits.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g ( r ) = w 2 π σ exp [ ( r r 1 ) 2 2 σ 2 ] + 1 w 2 π σ exp [ ( r r 2 ) 2 2 σ 2 ] ,
ε ε H ε + 2 ε H = 1 3 ε 0 ε H 0 c t o t g ( r ) α ( r ) d r .
ε = ε H k 3 + 4 π i c t o t 0 g ( r ) a 1 ( r ) d r k 3 2 π i c t o t 0 g ( r ) a 1 ( r ) d r μ = k 3 + 4 π i c t o t 0 g ( r ) b 1 ( r ) d r k 3 4 π i c t o t 0 g ( r ) b 1 ( r ) d r .

Metrics