Abstract

Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of “free-form” 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an “ad hoc” optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple “click” it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Achromatic phase shifting self-interference incoherent digital holography using linear polarizer and geometric phase lens

Kihong Choi, Junkyu Yim, and Sung-Wook Min
Opt. Express 26(13) 16212-16225 (2018)

Diffractive waveplate arrays [Invited]

Svetlana V. Serak, David E. Roberts, Jeoung-Yeon Hwang, Sarik R. Nersisyan, Nelson V. Tabiryan, Timothy J. Bunning, Diane M. Steeves, and Brian R. Kimball
J. Opt. Soc. Am. B 34(5) B56-B63 (2017)

Beam shaping diffractive wave plates [Invited]

Luciano De Sio, David E. Roberts, Zhi Liao, Jeoungyeon Hwang, Nelson Tabiryan, Diane M. Steeves, and Brian R. Kimball
Appl. Opt. 57(1) A118-A121 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Scharf, Polarized Light in Liquid Crystals and Polymers (John Wiley and Sons, 2006).
  2. C. S. Wu and S. T. Wu, “Liquid-crystal-based switchable polarizers for sensor protection,” Appl. Opt. 34(31), 7221–7227 (1995).
    [Crossref] [PubMed]
  3. M. D. Lavrentovich, T. A. Sergan, and J. R. Kelly, “Switchable broadband achromatic half-wave plate with nematic liquid crystals,” Opt. Lett. 29(12), 1411–1413 (2004).
    [Crossref] [PubMed]
  4. S. R. Nersisyan and N. V. Tabiryan, “Polarization imaging components based on patterned photoalignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 156–168 (2008).
    [Crossref]
  5. R. Magnusson and T. K. Gaylord, “Diffraction efficiencies of thin phase gratings with arbitrary grating shape,” J. Opt. Soc. Am. 68(6), 806–809 (1978).
    [Crossref]
  6. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]
  7. L. De Sio, N. Tabiryan, T. Bunning, B. R. Kimball, and C. Umeton, “Dynamic Photonic Materials based on Liquid Crystals,” Prog. Opt. 58, 1–64 (2013).
    [Crossref]
  8. B. Bahadur, Liquid Crystals – Applications and Uses (World Scientific, 1990).
  9. K. H. Kim and J. K. Song, “Technical evolution of liquid crystal displays,” NPG Asia Mater. 1(1), 29–36 (2009).
    [Crossref]
  10. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The Promise of Diffractive Waveplates,” Opt. Photonics News 21(3), 40–45 (2010).
    [Crossref]
  11. N. Tabiryan, D. Roberts, E. Serabyn, D. Steeves, and B. Kimball, “Superlens in the skies: liquid-crystal-polymer technology for telescopes,” SPIE Newsroom, http://spie.org/newsroom/6317-superlens-in-the-skies-liquid-crystal-polymer-technology-for-telescopes?ArticleID=x117044 (2016).
    [Crossref]
  12. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27(13), 1141–1143 (2002).
    [Crossref] [PubMed]
  13. L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
    [Crossref]
  14. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
    [Crossref]
  15. S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
    [Crossref] [PubMed]
  16. N. V. Tabiryan, S. R. Nersisyan, H. Xianyu, and E. Serabyn, “Fabricating vector vortex waveplates for coronagraphy,” IEEE Aerospace Conference, 1–12, 2012.
  17. N. V. Tabiryan, S. V. Serak, S. R. Nersisyan, D. E. Roberts, B. Ya. Zeldovich, D. M. Steeves, and B. R. Kimball, “Broadband waveplate lenses,” Opt. Express 24(7), 7091–7102 (2016).
    [Crossref] [PubMed]
  18. N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length--new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
    [Crossref] [PubMed]
  19. K. Gao, H. H. Cheng, A. Bhowmik, C. McGinty, and P. Bos, “Nonmechanical zoom lens based on the Pancharatnam phase effect,” Appl. Opt. 55(5), 1145–1150 (2016).
    [Crossref] [PubMed]
  20. L. Nikolova and P. S. Ramanujam, Polarization holography (Cambridge, 2009).
  21. G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
    [Crossref]
  22. A. Mazzulla, A. Dastoli, G. Russo, L. Lucchetti, and G. Cipparrone, “Polarization holographic techniques: a method to produce diffractive devices in polymer dispersed liquid crystals,” Liq. Cryst. 30(1), 87–92 (2003).
    [Crossref]
  23. A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, V. P. Korolkov, A. A. Kharissov, V. V. Cherkashin, V. P. Kiryanov, A. V. Kiryanov, S. A. Kokarev, and A. G. Verhoglyad, “Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure,” Appl. Opt. 38(8), 1295–1301 (1999).
    [Crossref] [PubMed]
  24. C. Ye, “Construction of an optical rotator using quarter-wave plates and an optical retarder,” Opt. Eng. 34(10), 3031–3035 (1995).
    [Crossref]
  25. V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. Spagnolo, “The Simon–Mukunda polarization gadget,” Eur. J. Phys. 17(5), 279–284 (1996).
    [Crossref]
  26. http://www.axometrics.com/6.htm .
  27. F. Moia, H. Seiberle, and M. Schadt, “Optical LPP/LCP devices: a new generation of optical security elements,” Proc. SPIE 3973, 196–203 (2000).
    [Crossref]
  28. C. Carrasco-Vela, X. Quintana, E. Otón, M. A. Geday, and J. M. Otón, “Security devices based on liquid crystals doped with a colour dye,” Opto-Electron. Rev. 19(4), 496–500 (2011).
    [Crossref]

2016 (2)

2015 (1)

2013 (1)

L. De Sio, N. Tabiryan, T. Bunning, B. R. Kimball, and C. Umeton, “Dynamic Photonic Materials based on Liquid Crystals,” Prog. Opt. 58, 1–64 (2013).
[Crossref]

2011 (1)

C. Carrasco-Vela, X. Quintana, E. Otón, M. A. Geday, and J. M. Otón, “Security devices based on liquid crystals doped with a colour dye,” Opto-Electron. Rev. 19(4), 496–500 (2011).
[Crossref]

2010 (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The Promise of Diffractive Waveplates,” Opt. Photonics News 21(3), 40–45 (2010).
[Crossref]

2009 (3)

K. H. Kim and J. K. Song, “Technical evolution of liquid crystal displays,” NPG Asia Mater. 1(1), 29–36 (2009).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

2008 (1)

S. R. Nersisyan and N. V. Tabiryan, “Polarization imaging components based on patterned photoalignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 156–168 (2008).
[Crossref]

2006 (1)

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

2005 (1)

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

2004 (1)

2003 (1)

A. Mazzulla, A. Dastoli, G. Russo, L. Lucchetti, and G. Cipparrone, “Polarization holographic techniques: a method to produce diffractive devices in polymer dispersed liquid crystals,” Liq. Cryst. 30(1), 87–92 (2003).
[Crossref]

2002 (1)

2000 (1)

F. Moia, H. Seiberle, and M. Schadt, “Optical LPP/LCP devices: a new generation of optical security elements,” Proc. SPIE 3973, 196–203 (2000).
[Crossref]

1999 (1)

1996 (1)

V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. Spagnolo, “The Simon–Mukunda polarization gadget,” Eur. J. Phys. 17(5), 279–284 (1996).
[Crossref]

1995 (2)

C. Ye, “Construction of an optical rotator using quarter-wave plates and an optical retarder,” Opt. Eng. 34(10), 3031–3035 (1995).
[Crossref]

C. S. Wu and S. T. Wu, “Liquid-crystal-based switchable polarizers for sensor protection,” Appl. Opt. 34(31), 7221–7227 (1995).
[Crossref] [PubMed]

1981 (1)

1978 (1)

Bagini, V.

V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. Spagnolo, “The Simon–Mukunda polarization gadget,” Eur. J. Phys. 17(5), 279–284 (1996).
[Crossref]

Bhowmik, A.

Biener, G.

Bomzon, Z.

Borghi, R.

V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. Spagnolo, “The Simon–Mukunda polarization gadget,” Eur. J. Phys. 17(5), 279–284 (1996).
[Crossref]

Bos, P.

Bunning, T.

L. De Sio, N. Tabiryan, T. Bunning, B. R. Kimball, and C. Umeton, “Dynamic Photonic Materials based on Liquid Crystals,” Prog. Opt. 58, 1–64 (2013).
[Crossref]

Callan-Jones, A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Carrasco-Vela, C.

C. Carrasco-Vela, X. Quintana, E. Otón, M. A. Geday, and J. M. Otón, “Security devices based on liquid crystals doped with a colour dye,” Opto-Electron. Rev. 19(4), 496–500 (2011).
[Crossref]

Cheng, H. H.

Cherkashin, V. V.

Churin, E. G.

Cipparrone, G.

A. Mazzulla, A. Dastoli, G. Russo, L. Lucchetti, and G. Cipparrone, “Polarization holographic techniques: a method to produce diffractive devices in polymer dispersed liquid crystals,” Liq. Cryst. 30(1), 87–92 (2003).
[Crossref]

Crawford, G. P.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Dastoli, A.

A. Mazzulla, A. Dastoli, G. Russo, L. Lucchetti, and G. Cipparrone, “Polarization holographic techniques: a method to produce diffractive devices in polymer dispersed liquid crystals,” Liq. Cryst. 30(1), 87–92 (2003).
[Crossref]

De Sio, L.

L. De Sio, N. Tabiryan, T. Bunning, B. R. Kimball, and C. Umeton, “Dynamic Photonic Materials based on Liquid Crystals,” Prog. Opt. 58, 1–64 (2013).
[Crossref]

Eakin, J. N.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Frezza, F.

V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. Spagnolo, “The Simon–Mukunda polarization gadget,” Eur. J. Phys. 17(5), 279–284 (1996).
[Crossref]

Gao, K.

Gaylord, T. K.

Geday, M. A.

C. Carrasco-Vela, X. Quintana, E. Otón, M. A. Geday, and J. M. Otón, “Security devices based on liquid crystals doped with a colour dye,” Opto-Electron. Rev. 19(4), 496–500 (2011).
[Crossref]

Gori, F.

V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. Spagnolo, “The Simon–Mukunda polarization gadget,” Eur. J. Phys. 17(5), 279–284 (1996).
[Crossref]

Hasman, E.

Hoke, L.

Kelly, J. R.

Kharissov, A. A.

Kim, K. H.

K. H. Kim and J. K. Song, “Technical evolution of liquid crystal displays,” NPG Asia Mater. 1(1), 29–36 (2009).
[Crossref]

Kimball, B. R.

N. V. Tabiryan, S. V. Serak, S. R. Nersisyan, D. E. Roberts, B. Ya. Zeldovich, D. M. Steeves, and B. R. Kimball, “Broadband waveplate lenses,” Opt. Express 24(7), 7091–7102 (2016).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length--new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
[Crossref] [PubMed]

L. De Sio, N. Tabiryan, T. Bunning, B. R. Kimball, and C. Umeton, “Dynamic Photonic Materials based on Liquid Crystals,” Prog. Opt. 58, 1–64 (2013).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The Promise of Diffractive Waveplates,” Opt. Photonics News 21(3), 40–45 (2010).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

Kiryanov, A. V.

Kiryanov, V. P.

Kleiner, V.

Kokarev, S. A.

Korolkov, V. P.

Koronkevich, V. P.

Lavrentovich, M. D.

Lucchetti, L.

A. Mazzulla, A. Dastoli, G. Russo, L. Lucchetti, and G. Cipparrone, “Polarization holographic techniques: a method to produce diffractive devices in polymer dispersed liquid crystals,” Liq. Cryst. 30(1), 87–92 (2003).
[Crossref]

Magnusson, R.

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

Marrucci, L.

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

Mazzulla, A.

A. Mazzulla, A. Dastoli, G. Russo, L. Lucchetti, and G. Cipparrone, “Polarization holographic techniques: a method to produce diffractive devices in polymer dispersed liquid crystals,” Liq. Cryst. 30(1), 87–92 (2003).
[Crossref]

McGinty, C.

Moharam, M. G.

Moia, F.

F. Moia, H. Seiberle, and M. Schadt, “Optical LPP/LCP devices: a new generation of optical security elements,” Proc. SPIE 3973, 196–203 (2000).
[Crossref]

Nersisyan, S. R.

N. V. Tabiryan, S. V. Serak, S. R. Nersisyan, D. E. Roberts, B. Ya. Zeldovich, D. M. Steeves, and B. R. Kimball, “Broadband waveplate lenses,” Opt. Express 24(7), 7091–7102 (2016).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The Promise of Diffractive Waveplates,” Opt. Photonics News 21(3), 40–45 (2010).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

S. R. Nersisyan and N. V. Tabiryan, “Polarization imaging components based on patterned photoalignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 156–168 (2008).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, H. Xianyu, and E. Serabyn, “Fabricating vector vortex waveplates for coronagraphy,” IEEE Aerospace Conference, 1–12, 2012.

Otón, E.

C. Carrasco-Vela, X. Quintana, E. Otón, M. A. Geday, and J. M. Otón, “Security devices based on liquid crystals doped with a colour dye,” Opto-Electron. Rev. 19(4), 496–500 (2011).
[Crossref]

Otón, J. M.

C. Carrasco-Vela, X. Quintana, E. Otón, M. A. Geday, and J. M. Otón, “Security devices based on liquid crystals doped with a colour dye,” Opto-Electron. Rev. 19(4), 496–500 (2011).
[Crossref]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

Pelcovits, R. A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Poleshchuk, A. G.

Quintana, X.

C. Carrasco-Vela, X. Quintana, E. Otón, M. A. Geday, and J. M. Otón, “Security devices based on liquid crystals doped with a colour dye,” Opto-Electron. Rev. 19(4), 496–500 (2011).
[Crossref]

Radcliffe, M. D.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Roberts, D. E.

Russo, G.

A. Mazzulla, A. Dastoli, G. Russo, L. Lucchetti, and G. Cipparrone, “Polarization holographic techniques: a method to produce diffractive devices in polymer dispersed liquid crystals,” Liq. Cryst. 30(1), 87–92 (2003).
[Crossref]

Santarsiero, M.

V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. Spagnolo, “The Simon–Mukunda polarization gadget,” Eur. J. Phys. 17(5), 279–284 (1996).
[Crossref]

Schadt, M.

F. Moia, H. Seiberle, and M. Schadt, “Optical LPP/LCP devices: a new generation of optical security elements,” Proc. SPIE 3973, 196–203 (2000).
[Crossref]

Schettini, G.

V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. Spagnolo, “The Simon–Mukunda polarization gadget,” Eur. J. Phys. 17(5), 279–284 (1996).
[Crossref]

Seiberle, H.

F. Moia, H. Seiberle, and M. Schadt, “Optical LPP/LCP devices: a new generation of optical security elements,” Proc. SPIE 3973, 196–203 (2000).
[Crossref]

Serabyn, E.

N. V. Tabiryan, S. R. Nersisyan, H. Xianyu, and E. Serabyn, “Fabricating vector vortex waveplates for coronagraphy,” IEEE Aerospace Conference, 1–12, 2012.

Serak, S. V.

Sergan, T. A.

Song, J. K.

K. H. Kim and J. K. Song, “Technical evolution of liquid crystal displays,” NPG Asia Mater. 1(1), 29–36 (2009).
[Crossref]

Spagnolo, G.

V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. Spagnolo, “The Simon–Mukunda polarization gadget,” Eur. J. Phys. 17(5), 279–284 (1996).
[Crossref]

Steeves, D. M.

Tabiryan, N.

L. De Sio, N. Tabiryan, T. Bunning, B. R. Kimball, and C. Umeton, “Dynamic Photonic Materials based on Liquid Crystals,” Prog. Opt. 58, 1–64 (2013).
[Crossref]

Tabiryan, N. V.

N. V. Tabiryan, S. V. Serak, S. R. Nersisyan, D. E. Roberts, B. Ya. Zeldovich, D. M. Steeves, and B. R. Kimball, “Broadband waveplate lenses,” Opt. Express 24(7), 7091–7102 (2016).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length--new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The Promise of Diffractive Waveplates,” Opt. Photonics News 21(3), 40–45 (2010).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]

S. R. Nersisyan and N. V. Tabiryan, “Polarization imaging components based on patterned photoalignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 156–168 (2008).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, H. Xianyu, and E. Serabyn, “Fabricating vector vortex waveplates for coronagraphy,” IEEE Aerospace Conference, 1–12, 2012.

Umeton, C.

L. De Sio, N. Tabiryan, T. Bunning, B. R. Kimball, and C. Umeton, “Dynamic Photonic Materials based on Liquid Crystals,” Prog. Opt. 58, 1–64 (2013).
[Crossref]

Verhoglyad, A. G.

Wu, C. S.

Wu, S. T.

Xianyu, H.

N. V. Tabiryan, S. R. Nersisyan, H. Xianyu, and E. Serabyn, “Fabricating vector vortex waveplates for coronagraphy,” IEEE Aerospace Conference, 1–12, 2012.

Ye, C.

C. Ye, “Construction of an optical rotator using quarter-wave plates and an optical retarder,” Opt. Eng. 34(10), 3031–3035 (1995).
[Crossref]

Zeldovich, B. Ya.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

Eur. J. Phys. (1)

V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. Spagnolo, “The Simon–Mukunda polarization gadget,” Eur. J. Phys. 17(5), 279–284 (1996).
[Crossref]

J. Appl. Phys. (1)

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]

J. Opt. Soc. Am. (2)

Liq. Cryst. (1)

A. Mazzulla, A. Dastoli, G. Russo, L. Lucchetti, and G. Cipparrone, “Polarization holographic techniques: a method to produce diffractive devices in polymer dispersed liquid crystals,” Liq. Cryst. 30(1), 87–92 (2003).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

S. R. Nersisyan and N. V. Tabiryan, “Polarization imaging components based on patterned photoalignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489(1), 156–168 (2008).
[Crossref]

NPG Asia Mater. (1)

K. H. Kim and J. K. Song, “Technical evolution of liquid crystal displays,” NPG Asia Mater. 1(1), 29–36 (2009).
[Crossref]

Opt. Eng. (1)

C. Ye, “Construction of an optical rotator using quarter-wave plates and an optical retarder,” Opt. Eng. 34(10), 3031–3035 (1995).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Photonics News (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The Promise of Diffractive Waveplates,” Opt. Photonics News 21(3), 40–45 (2010).
[Crossref]

Opto-Electron. Rev. (1)

C. Carrasco-Vela, X. Quintana, E. Otón, M. A. Geday, and J. M. Otón, “Security devices based on liquid crystals doped with a colour dye,” Opto-Electron. Rev. 19(4), 496–500 (2011).
[Crossref]

Proc. SPIE (1)

F. Moia, H. Seiberle, and M. Schadt, “Optical LPP/LCP devices: a new generation of optical security elements,” Proc. SPIE 3973, 196–203 (2000).
[Crossref]

Prog. Opt. (1)

L. De Sio, N. Tabiryan, T. Bunning, B. R. Kimball, and C. Umeton, “Dynamic Photonic Materials based on Liquid Crystals,” Prog. Opt. 58, 1–64 (2013).
[Crossref]

Other (6)

B. Bahadur, Liquid Crystals – Applications and Uses (World Scientific, 1990).

T. Scharf, Polarized Light in Liquid Crystals and Polymers (John Wiley and Sons, 2006).

N. Tabiryan, D. Roberts, E. Serabyn, D. Steeves, and B. Kimball, “Superlens in the skies: liquid-crystal-polymer technology for telescopes,” SPIE Newsroom, http://spie.org/newsroom/6317-superlens-in-the-skies-liquid-crystal-polymer-technology-for-telescopes?ArticleID=x117044 (2016).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, H. Xianyu, and E. Serabyn, “Fabricating vector vortex waveplates for coronagraphy,” IEEE Aerospace Conference, 1–12, 2012.

http://www.axometrics.com/6.htm .

L. Nikolova and P. S. Ramanujam, Polarization holography (Cambridge, 2009).

Supplementary Material (3)

NameDescription
» Visualization 1: MP4 (3997 KB)      Polarized image of an “invisible” cat revealed by inserting and removing a polarizer.
» Visualization 2: MP4 (2664 KB)      Polarized image of an invisible barcode revealed by inserting/rotating and removing a polarizer.
» Visualization 3: MP4 (2894 KB)      Sample with the invisible photo of George Washington (the background is The New York Times homepage)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Sketch of the DSLPC optical setup. L1, L2, L3, lenses; A, aperture; P1, P2, polarizers; QWP1, QWP2, quarter waveplates; SLM, spatial light modulator; S, sample coated with photoanisotropic material. Photo-insert shows the schematic of the digital control (pixel to pixel) of light polarization.
Fig. 2
Fig. 2 Absorbance spectrum of a 1 wt.% solution of PAAD-72 in DMF with 10 µm cell thickness.
Fig. 3
Fig. 3 Sketch of the fabrication process of a liquid crystal polymer DW component.
Fig. 4
Fig. 4 Phase mask input to SLM of a fast (a), slow (e), diffractive lenslet arrays along with the POM view of the product sample (b), (f) and their corresponding Mueller matrix polarimeter characterization (c), (g). Phase mask of an axicon (i), a vortex array (o) along with the POM view of the samples (l), (p) and their corresponding Mueller matrix polarimeter characterization (m), (q). Images (d), (h), (n), (r) are the corresponding far field diffraction patterns.
Fig. 5
Fig. 5 Photo of a cat transformed into a phase mask input to SLM (a) along with the generated polarization pattern (b) after passing the light through a linear polarizer. POM view of the DW (c). View of the eye acuity chart through the “invisible” cat (d).
Fig. 6
Fig. 6 Phase mask input to SLM (a); photograph of image at alignment layer of laser-illuminated SLM, viewed through polarization analyser (b); POM view of the DW barcode along with a photomicrograph of a section of the DW bar code made with phase mask (a); view of eye acuity chart through LCP with the invisible barcode image (e).
Fig. 7
Fig. 7 Photo of George Washington used as a phase mask input to SLM (a) along with the generated polarization pattern after passing the light through a linear polarizer (b). POM view of the product DW (c). Photo of the United States passport (specimen) after transferring the translucent DW film encoding the George Washington photo without (d) and with the polarizer/analyser (e).
Fig. 8
Fig. 8 Photo of the Great Pyramid used as a phase mask input to SLM (a) along with the generated polarization pattern after passing the light through a linear polarizer (b) and the resultant DW (c). Dual side label showing from one side the pyramid (d) and from the other side the George Washington picture (e). View of the eye acuity chart through the invisible dual label (g) along with the POM image showing both images (f).

Metrics