Abstract

Optical microcavity sensors using intensity detection open up the possibility to realize fully integrated high-performance sensing devices, which are significant for both fundamental study of molecular interaction and rapid disease diagnosis. Although the performance of microresonator-based sensors has been studied focusing on the resonance-tracking method, the situation can be much different for intensity-detection sensors. Here we conducted a systematically investigation on the noises sources in intensity detection scheme and their influences on key performance parameters, e.g., signal-to-noise ratio (SNR), limit-of-detection (LOD), and detection range, for various sensors configurations. Especially, the trade-off between SNR and LOD is identified and theoretically analyzed. With experiment noises taken into consideration, our work aims to provide design guidelines for integrated microresonator sensors with optimized performance.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design guidelines for optical resonator biochemical sensors

Juejun Hu, Xiaochen Sun, Anu Agarwal, and Lionel C. Kimerling
J. Opt. Soc. Am. B 26(5) 1032-1041 (2009)

Highly-sensitive optical biosensor based on equal FSR cascaded microring resonator with intensity interrogation for detection of progesterone molecules

Zhenyi Xie, Ziwei Cao, Yong Liu, Qingwen Zhang, Jun Zou, Liyang Shao, Yi Wang, Jianjun He, and Mingyu Li
Opt. Express 25(26) 33193-33201 (2017)

Dissipative sensing with low detection limit in a self-interference microring resonator

Hongliang Ren, Chang-Ling Zou, Jin Lu, Zichun Le, Yali Qin, Shuqin Guo, and Weisheng Hu
J. Opt. Soc. Am. B 36(4) 942-951 (2019)

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  2. M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84(2), 793–821 (2012).
    [Crossref] [PubMed]
  3. C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
    [Crossref]
  4. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
    [Crossref] [PubMed]
  5. C. A. Barrios, M. J. Bañuls, V. González-Pedro, K. B. Gylfason, B. Sánchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33(7), 708–710 (2008).
    [Crossref] [PubMed]
  6. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
    [Crossref]
  7. A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
    [Crossref] [PubMed]
  8. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
    [Crossref] [PubMed]
  9. L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
    [Crossref] [PubMed]
  10. N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophotonics 2(4), 212–226 (2009).
    [Crossref] [PubMed]
  11. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  12. M. I. Cheema, C. Shi, A. M. Armani, and A. G. Kirk, “Optimizing the signal to noise ratio of microcavity sensors,” IEEE Photonics Technol. Lett. 26(20), 2023–2026 (2014).
    [Crossref]
  13. F. Ghasemi, M. Chamanzar, A. A. Eftekhar, and A. Adibi, “An efficient technique for the reduction of wavelength noise in resonance-based integrated photonic sensors,” Analyst (Lond.) 139(22), 5901–5910 (2014).
    [Crossref] [PubMed]
  14. M. R. Foreman, W. L. Jin, and F. Vollmer, “Optimizing detection limits in whispering gallery mode biosensing,” Opt. Express 22(5), 5491–5511 (2014).
    [Crossref] [PubMed]
  15. C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006).
    [Crossref]
  16. Z. Xia, Y. Chen, and Z. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44(1), 100–107 (2008).
    [Crossref]
  17. X. Zhou, L. Zhang, A. M. Armani, D. Zhang, X. Duan, J. Liu, H. Zhang, and W. Pang, “On-chip biological and chemical sensing with reversed fano lineshape enabled by embedded microring resonators,” IEEE J. Sel. Top. Quantum Electron. 20(3), 35–44 (2014).
    [Crossref]
  18. X. Zhou, L. Zhang, A. M. Armani, J. Liu, X. Duan, D. Zhang, H. Zhang, and W. Pang, “An integrated photonic gas sensor enhanced by optimized Fano effects in coupled microring resonators with an athermal waveguide,” J. Lightwave Technol. 33(22), 4521–4530 (2015).
    [Crossref]
  19. H. Yi, D. S. Citrin, and Z. Zhou, “Highly sensitive silicon microring sensor with sharp asymmetrical resonance,” Opt. Express 18(3), 2967–2972 (2010).
    [Crossref] [PubMed]
  20. X. Zhou, L. Zhang, W. Pang, H. Zhang, Q. Yang, and D. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
    [Crossref]
  21. A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
    [Crossref]
  22. F. Dell’Olio and V. M. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
    [Crossref] [PubMed]
  23. Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
    [Crossref] [PubMed]
  24. C. F. Abari, A. T. Pedersen, and J. Mann, “An all-fiber image-reject homodyne coherent Doppler wind lidar,” Opt. Express 22(21), 25880–25894 (2014).
    [Crossref] [PubMed]
  25. G. Yabre, H. de Waardt, H. Van den Boom, and G. D. Khoe, “Noise characteristics of single-mode semiconductor lasers under external light injection,” IEEE J. Quantum Electron. 36(3), 385–393 (2000).
    [Crossref]
  26. B. E. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  27. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
    [Crossref]
  28. F. Aflatouni and H. Hashemi, “Wideband tunable laser phase noise reduction using single sideband modulation in an electro-optical feed-forward scheme,” Opt. Lett. 37(2), 196–198 (2012).
    [Crossref] [PubMed]
  29. F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal–oxide–semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102(5), 051106 (2013).
    [Crossref]
  30. B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
    [Crossref] [PubMed]
  31. C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
    [Crossref]
  32. L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
    [Crossref]
  33. M. Sumetsky, “Optimization of optical ring resonator devices for sensing applications,” Opt. Lett. 32(17), 2577–2579 (2007).
    [Crossref] [PubMed]
  34. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
    [Crossref] [PubMed]
  35. X. Zhang, H. S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett. 96(15), 153304 (2010).
    [Crossref]
  36. Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 21111 (2007).
    [Crossref]
  37. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
    [Crossref]

2015 (1)

2014 (6)

X. Zhou, L. Zhang, A. M. Armani, D. Zhang, X. Duan, J. Liu, H. Zhang, and W. Pang, “On-chip biological and chemical sensing with reversed fano lineshape enabled by embedded microring resonators,” IEEE J. Sel. Top. Quantum Electron. 20(3), 35–44 (2014).
[Crossref]

C. F. Abari, A. T. Pedersen, and J. Mann, “An all-fiber image-reject homodyne coherent Doppler wind lidar,” Opt. Express 22(21), 25880–25894 (2014).
[Crossref] [PubMed]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

M. I. Cheema, C. Shi, A. M. Armani, and A. G. Kirk, “Optimizing the signal to noise ratio of microcavity sensors,” IEEE Photonics Technol. Lett. 26(20), 2023–2026 (2014).
[Crossref]

F. Ghasemi, M. Chamanzar, A. A. Eftekhar, and A. Adibi, “An efficient technique for the reduction of wavelength noise in resonance-based integrated photonic sensors,” Analyst (Lond.) 139(22), 5901–5910 (2014).
[Crossref] [PubMed]

M. R. Foreman, W. L. Jin, and F. Vollmer, “Optimizing detection limits in whispering gallery mode biosensing,” Opt. Express 22(5), 5491–5511 (2014).
[Crossref] [PubMed]

2013 (4)

X. Zhou, L. Zhang, W. Pang, H. Zhang, Q. Yang, and D. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[Crossref]

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal–oxide–semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102(5), 051106 (2013).
[Crossref]

B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
[Crossref] [PubMed]

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

2012 (2)

2011 (1)

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

2010 (5)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref] [PubMed]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

H. Yi, D. S. Citrin, and Z. Zhou, “Highly sensitive silicon microring sensor with sharp asymmetrical resonance,” Opt. Express 18(3), 2967–2972 (2010).
[Crossref] [PubMed]

X. Zhang, H. S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett. 96(15), 153304 (2010).
[Crossref]

2009 (1)

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophotonics 2(4), 212–226 (2009).
[Crossref] [PubMed]

2008 (7)

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

C. A. Barrios, M. J. Bañuls, V. González-Pedro, K. B. Gylfason, B. Sánchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33(7), 708–710 (2008).
[Crossref] [PubMed]

Z. Xia, Y. Chen, and Z. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44(1), 100–107 (2008).
[Crossref]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
[Crossref] [PubMed]

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

2007 (4)

M. Sumetsky, “Optimization of optical ring resonator devices for sensing applications,” Opt. Lett. 32(17), 2577–2579 (2007).
[Crossref] [PubMed]

F. Dell’Olio and V. M. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
[Crossref] [PubMed]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 21111 (2007).
[Crossref]

2006 (3)

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006).
[Crossref]

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

2000 (1)

G. Yabre, H. de Waardt, H. Van den Boom, and G. D. Khoe, “Noise characteristics of single-mode semiconductor lasers under external light injection,” IEEE J. Quantum Electron. 36(3), 385–393 (2000).
[Crossref]

1978 (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Abari, C. F.

Adibi, A.

F. Ghasemi, M. Chamanzar, A. A. Eftekhar, and A. Adibi, “An efficient technique for the reduction of wavelength noise in resonance-based integrated photonic sensors,” Analyst (Lond.) 139(22), 5901–5910 (2014).
[Crossref] [PubMed]

Aflatouni, F.

Agrawal, G. P.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 21111 (2007).
[Crossref]

Alic, N.

Armani, A. M.

X. Zhou, L. Zhang, A. M. Armani, J. Liu, X. Duan, D. Zhang, H. Zhang, and W. Pang, “An integrated photonic gas sensor enhanced by optimized Fano effects in coupled microring resonators with an athermal waveguide,” J. Lightwave Technol. 33(22), 4521–4530 (2015).
[Crossref]

X. Zhou, L. Zhang, A. M. Armani, D. Zhang, X. Duan, J. Liu, H. Zhang, and W. Pang, “On-chip biological and chemical sensing with reversed fano lineshape enabled by embedded microring resonators,” IEEE J. Sel. Top. Quantum Electron. 20(3), 35–44 (2014).
[Crossref]

M. I. Cheema, C. Shi, A. M. Armani, and A. G. Kirk, “Optimizing the signal to noise ratio of microcavity sensors,” IEEE Photonics Technol. Lett. 26(20), 2023–2026 (2014).
[Crossref]

X. Zhang, H. S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett. 96(15), 153304 (2010).
[Crossref]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Armenise, M. N.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Bailey, R. C.

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84(2), 793–821 (2012).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Bañuls, M. J.

Barrios, C. A.

Bowers, J.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Boyd, R. W.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 21111 (2007).
[Crossref]

Campanella, C. E.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Campanella, C. M.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Cardenas, J.

Casquel, R.

Chamanzar, M.

F. Ghasemi, M. Chamanzar, A. A. Eftekhar, and A. Adibi, “An efficient technique for the reduction of wavelength noise in resonance-based integrated photonic sensors,” Analyst (Lond.) 139(22), 5901–5910 (2014).
[Crossref] [PubMed]

Chao, C. Y.

Chao, C.-Y.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

Cheben, P.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Cheema, M. I.

M. I. Cheema, C. Shi, A. M. Armani, and A. G. Kirk, “Optimizing the signal to noise ratio of microcavity sensors,” IEEE Photonics Technol. Lett. 26(20), 2023–2026 (2014).
[Crossref]

Chen, W.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Chen, Y.

Z. Xia, Y. Chen, and Z. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44(1), 100–107 (2008).
[Crossref]

Choi, H. S.

X. Zhang, H. S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett. 96(15), 153304 (2010).
[Crossref]

Chu, S. T.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Ciminelli, C.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Citrin, D. S.

Clarke, J.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

de Waardt, H.

G. Yabre, H. de Waardt, H. Van den Boom, and G. D. Khoe, “Noise characteristics of single-mode semiconductor lasers under external light injection,” IEEE J. Quantum Electron. 36(3), 385–393 (2000).
[Crossref]

Delâge, A.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Dell’Olio, F.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

F. Dell’Olio and V. M. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
[Crossref] [PubMed]

Densmore, A.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Dhar, S.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophotonics 2(4), 212–226 (2009).
[Crossref] [PubMed]

Dong, C.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Dong, C. H.

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref] [PubMed]

Duan, X.

X. Zhou, L. Zhang, A. M. Armani, J. Liu, X. Duan, D. Zhang, H. Zhang, and W. Pang, “An integrated photonic gas sensor enhanced by optimized Fano effects in coupled microring resonators with an athermal waveguide,” J. Lightwave Technol. 33(22), 4521–4530 (2015).
[Crossref]

X. Zhou, L. Zhang, A. M. Armani, D. Zhang, X. Duan, J. Liu, H. Zhang, and W. Pang, “On-chip biological and chemical sensing with reversed fano lineshape enabled by embedded microring resonators,” IEEE J. Sel. Top. Quantum Electron. 20(3), 35–44 (2014).
[Crossref]

Eftekhar, A. A.

F. Ghasemi, M. Chamanzar, A. A. Eftekhar, and A. Adibi, “An efficient technique for the reduction of wavelength noise in resonance-based integrated photonic sensors,” Analyst (Lond.) 139(22), 5901–5910 (2014).
[Crossref] [PubMed]

Fainman, Y.

Fan, X.

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Fauchet, P. M.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 21111 (2007).
[Crossref]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Flood, E. M.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Foreman, M. R.

M. R. Foreman, W. L. Jin, and F. Vollmer, “Optimizing detection limits in whispering gallery mode biosensing,” Opt. Express 22(5), 5491–5511 (2014).
[Crossref] [PubMed]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Fung, W.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

Gaddam, V.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Ghasemi, F.

F. Ghasemi, M. Chamanzar, A. A. Eftekhar, and A. Adibi, “An efficient technique for the reduction of wavelength noise in resonance-based integrated photonic sensors,” Analyst (Lond.) 139(22), 5901–5910 (2014).
[Crossref] [PubMed]

Gill, D.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Goad, D.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Gong, Q.

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref] [PubMed]

González-Pedro, V.

Griol, A.

Guha, B.

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Guo, L. J.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006).
[Crossref]

Gylfason, K. B.

Han, Z. F.

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref] [PubMed]

Hashemi, H.

He, L.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Holgado, M.

Hryniewicz, J. V.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Ikeda, K.

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Ja, S. J.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Janz, S.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Jin, W. L.

Jokerst, N.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophotonics 2(4), 212–226 (2009).
[Crossref] [PubMed]

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Khoe, G. D.

G. Yabre, H. de Waardt, H. Van den Boom, and G. D. Khoe, “Noise characteristics of single-mode semiconductor lasers under external light injection,” IEEE J. Quantum Electron. 36(3), 385–393 (2000).
[Crossref]

Kim, W.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

King, O.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Kirk, A. G.

M. I. Cheema, C. Shi, A. M. Armani, and A. G. Kirk, “Optimizing the signal to noise ratio of microcavity sensors,” IEEE Photonics Technol. Lett. 26(20), 2023–2026 (2014).
[Crossref]

Knobbe, E.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Lamontagne, B.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Lapointe, J.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Li, B. B.

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref] [PubMed]

Li, Y.

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref] [PubMed]

Liang, D.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Lin, C.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Lin, Q.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 21111 (2007).
[Crossref]

Lipson, M.

Little, B. E.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Liu, J.

X. Zhou, L. Zhang, A. M. Armani, J. Liu, X. Duan, D. Zhang, H. Zhang, and W. Pang, “An integrated photonic gas sensor enhanced by optimized Fano effects in coupled microring resonators with an athermal waveguide,” J. Lightwave Technol. 33(22), 4521–4530 (2015).
[Crossref]

X. Zhou, L. Zhang, A. M. Armani, D. Zhang, X. Duan, J. Liu, H. Zhang, and W. Pang, “On-chip biological and chemical sensing with reversed fano lineshape enabled by embedded microring resonators,” IEEE J. Sel. Top. Quantum Electron. 20(3), 35–44 (2014).
[Crossref]

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Luan, L.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophotonics 2(4), 212–226 (2009).
[Crossref] [PubMed]

Luchansky, M. S.

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84(2), 793–821 (2012).
[Crossref] [PubMed]

Mann, J.

Maquieira, A.

Özdemir, S. K.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Palit, S.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophotonics 2(4), 212–226 (2009).
[Crossref] [PubMed]

Pang, W.

X. Zhou, L. Zhang, A. M. Armani, J. Liu, X. Duan, D. Zhang, H. Zhang, and W. Pang, “An integrated photonic gas sensor enhanced by optimized Fano effects in coupled microring resonators with an athermal waveguide,” J. Lightwave Technol. 33(22), 4521–4530 (2015).
[Crossref]

X. Zhou, L. Zhang, A. M. Armani, D. Zhang, X. Duan, J. Liu, H. Zhang, and W. Pang, “On-chip biological and chemical sensing with reversed fano lineshape enabled by embedded microring resonators,” IEEE J. Sel. Top. Quantum Electron. 20(3), 35–44 (2014).
[Crossref]

X. Zhou, L. Zhang, W. Pang, H. Zhang, Q. Yang, and D. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[Crossref]

Passaro, V. M.

Pedersen, A. T.

Piredda, G.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 21111 (2007).
[Crossref]

Post, E.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Qiu, F.

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal–oxide–semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102(5), 051106 (2013).
[Crossref]

Ramachandran, A.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Roelkens, G.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Royal, M.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophotonics 2(4), 212–226 (2009).
[Crossref] [PubMed]

Sánchez, B.

Saperstein, R. E.

Schmid, J. H.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Shi, C.

M. I. Cheema, C. Shi, A. M. Armani, and A. G. Kirk, “Optimizing the signal to noise ratio of microcavity sensors,” IEEE Photonics Technol. Lett. 26(20), 2023–2026 (2014).
[Crossref]

Sohlström, H.

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Spring, A. M.

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal–oxide–semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102(5), 051106 (2013).
[Crossref]

Stolen, R. H.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Sumetsky, M.

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Tyler, T.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophotonics 2(4), 212–226 (2009).
[Crossref] [PubMed]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Van den Boom, H.

G. Yabre, H. de Waardt, H. Van den Boom, and G. D. Khoe, “Noise characteristics of single-mode semiconductor lasers under external light injection,” IEEE J. Quantum Electron. 36(3), 385–393 (2000).
[Crossref]

Vollmer, F.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

M. R. Foreman, W. L. Jin, and F. Vollmer, “Optimizing detection limits in whispering gallery mode biosensing,” Opt. Express 22(5), 5491–5511 (2014).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Wald, L.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Waldron, P.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Wang, S.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

White, I. M.

Xia, Z.

Z. Xia, Y. Chen, and Z. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44(1), 100–107 (2008).
[Crossref]

Xiao, Y. F.

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref] [PubMed]

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Xu, D. X.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Yabre, G.

G. Yabre, H. de Waardt, H. Van den Boom, and G. D. Khoe, “Noise characteristics of single-mode semiconductor lasers under external light injection,” IEEE J. Quantum Electron. 36(3), 385–393 (2000).
[Crossref]

Yang, L.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Yang, Q.

X. Zhou, L. Zhang, W. Pang, H. Zhang, Q. Yang, and D. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[Crossref]

Yi, H.

Yokoyama, S.

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal–oxide–semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102(5), 051106 (2013).
[Crossref]

Yu, F.

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal–oxide–semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102(5), 051106 (2013).
[Crossref]

Zhang, D.

X. Zhou, L. Zhang, A. M. Armani, J. Liu, X. Duan, D. Zhang, H. Zhang, and W. Pang, “An integrated photonic gas sensor enhanced by optimized Fano effects in coupled microring resonators with an athermal waveguide,” J. Lightwave Technol. 33(22), 4521–4530 (2015).
[Crossref]

X. Zhou, L. Zhang, A. M. Armani, D. Zhang, X. Duan, J. Liu, H. Zhang, and W. Pang, “On-chip biological and chemical sensing with reversed fano lineshape enabled by embedded microring resonators,” IEEE J. Sel. Top. Quantum Electron. 20(3), 35–44 (2014).
[Crossref]

X. Zhou, L. Zhang, W. Pang, H. Zhang, Q. Yang, and D. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[Crossref]

Zhang, H.

X. Zhou, L. Zhang, A. M. Armani, J. Liu, X. Duan, D. Zhang, H. Zhang, and W. Pang, “An integrated photonic gas sensor enhanced by optimized Fano effects in coupled microring resonators with an athermal waveguide,” J. Lightwave Technol. 33(22), 4521–4530 (2015).
[Crossref]

X. Zhou, L. Zhang, A. M. Armani, D. Zhang, X. Duan, J. Liu, H. Zhang, and W. Pang, “On-chip biological and chemical sensing with reversed fano lineshape enabled by embedded microring resonators,” IEEE J. Sel. Top. Quantum Electron. 20(3), 35–44 (2014).
[Crossref]

X. Zhou, L. Zhang, W. Pang, H. Zhang, Q. Yang, and D. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[Crossref]

Zhang, J.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 21111 (2007).
[Crossref]

Zhang, L.

X. Zhou, L. Zhang, A. M. Armani, J. Liu, X. Duan, D. Zhang, H. Zhang, and W. Pang, “An integrated photonic gas sensor enhanced by optimized Fano effects in coupled microring resonators with an athermal waveguide,” J. Lightwave Technol. 33(22), 4521–4530 (2015).
[Crossref]

X. Zhou, L. Zhang, A. M. Armani, D. Zhang, X. Duan, J. Liu, H. Zhang, and W. Pang, “On-chip biological and chemical sensing with reversed fano lineshape enabled by embedded microring resonators,” IEEE J. Sel. Top. Quantum Electron. 20(3), 35–44 (2014).
[Crossref]

X. Zhou, L. Zhang, W. Pang, H. Zhang, Q. Yang, and D. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[Crossref]

Zhang, X.

X. Zhang, H. S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett. 96(15), 153304 (2010).
[Crossref]

Zhou, X.

X. Zhou, L. Zhang, A. M. Armani, J. Liu, X. Duan, D. Zhang, H. Zhang, and W. Pang, “An integrated photonic gas sensor enhanced by optimized Fano effects in coupled microring resonators with an athermal waveguide,” J. Lightwave Technol. 33(22), 4521–4530 (2015).
[Crossref]

X. Zhou, L. Zhang, A. M. Armani, D. Zhang, X. Duan, J. Liu, H. Zhang, and W. Pang, “On-chip biological and chemical sensing with reversed fano lineshape enabled by embedded microring resonators,” IEEE J. Sel. Top. Quantum Electron. 20(3), 35–44 (2014).
[Crossref]

X. Zhou, L. Zhang, W. Pang, H. Zhang, Q. Yang, and D. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[Crossref]

Zhou, Z.

H. Yi, D. S. Citrin, and Z. Zhou, “Highly sensitive silicon microring sensor with sharp asymmetrical resonance,” Opt. Express 18(3), 2967–2972 (2010).
[Crossref] [PubMed]

Z. Xia, Y. Chen, and Z. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44(1), 100–107 (2008).
[Crossref]

Zhu, J.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

Zou, C. L.

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref] [PubMed]

Anal. Chem. (1)

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84(2), 793–821 (2012).
[Crossref] [PubMed]

Analyst (Lond.) (1)

F. Ghasemi, M. Chamanzar, A. A. Eftekhar, and A. Adibi, “An efficient technique for the reduction of wavelength noise in resonance-based integrated photonic sensors,” Analyst (Lond.) 139(22), 5901–5910 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[Crossref]

X. Zhang, H. S. Choi, and A. M. Armani, “Ultimate quality factor of silica microtoroid resonant cavities,” Appl. Phys. Lett. 96(15), 153304 (2010).
[Crossref]

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 21111 (2007).
[Crossref]

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal–oxide–semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102(5), 051106 (2013).
[Crossref]

Biosens. Bioelectron. (1)

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (2)

Z. Xia, Y. Chen, and Z. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44(1), 100–107 (2008).
[Crossref]

G. Yabre, H. de Waardt, H. Van den Boom, and G. D. Khoe, “Noise characteristics of single-mode semiconductor lasers under external light injection,” IEEE J. Quantum Electron. 36(3), 385–393 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

X. Zhou, L. Zhang, A. M. Armani, D. Zhang, X. Duan, J. Liu, H. Zhang, and W. Pang, “On-chip biological and chemical sensing with reversed fano lineshape enabled by embedded microring resonators,” IEEE J. Sel. Top. Quantum Electron. 20(3), 35–44 (2014).
[Crossref]

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. I. Cheema, C. Shi, A. M. Armani, and A. G. Kirk, “Optimizing the signal to noise ratio of microcavity sensors,” IEEE Photonics Technol. Lett. 26(20), 2023–2026 (2014).
[Crossref]

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

J. Biophotonics (1)

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophotonics 2(4), 212–226 (2009).
[Crossref] [PubMed]

J. Lightwave Technol. (2)

Laser Photonics Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

New J. Phys. (1)

X. Zhou, L. Zhang, W. Pang, H. Zhang, Q. Yang, and D. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[Crossref]

Opt. Express (7)

Opt. Lett. (3)

Phys. Rev. A (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Phys. Rev. Lett. (1)

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q exterior whispering-gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Other (1)

B. E. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of an optical microcavity sensing system using intensity detection. (b) Principle of refractive-index sensing by monitoring the intensity change at a fixed wavelength (λ0). (c) Zoom-in view of the effective spectral range (∆λDR) around the maximum device sensitivity point (S1 max ) used for sensing.
Fig. 2
Fig. 2 The influence of optical power on the intensity uncertainty (σint) and its components. Pdet is the power received at the detector. (a) σint is dominated by RIN and becomes power-independent for SRIN = −110 dB/Hz. (b) For SRIN = −160 dB/Hz, σint is dominated by different noise sources, depending on Pdet. Other parameters are RL = 1 kΩ, T = 300 K, R = 0.9 (Si photodetector at the wavelength of 1.55 µm), and ∆f = 100 MHz.
Fig. 3
Fig. 3 (a) Transmitivity spectra for optical microcavity with Q = 105 and 106. The effective parts of spectra used for sensing are indicated by the solid lines. (b) Corresponding LODint in a full spectral detection region, where λmax is the wavelength corresponding to S1 max . LODint is obtained in two situations, where intensity noises are independent (SRIN = −110 dB/Hz) and dependent (SRIN = −160 dB/Hz) on the transmitted power, respectively. The minima of the LODint are indicated by the solid dotes. Plas = 4 mW and α = 3 dB are considered.
Fig. 4
Fig. 4 (a) 1/SNR or intensity uncertainty (σ) and (b) LOD for Si3N4 microrings with varied cavity Q factors.
Fig. 5
Fig. 5 1/SNR or intensity signal uncertainty (σ) and LOD for optical microcavities with varied cavity Q factors. (a) and (b) are for Si microrings, while (c) and (d) are for SiO2 microtoroids. The dash lines mark two cavity configurations used in Fig. 6 for laser power tuning illustrations.
Fig. 6
Fig. 6 The sensor performance can be optimized through balancing the LOD and RINL by tuning the laser output power (Plas). Two examples are presented: (a) Si microring cavity with Q factor of 5 × 104 and (b) SiO2 microtoroid cavity with Q factor of 5 × 107. Plas values used in Fig. 5 are labeled by the dash lines.

Tables (1)

Tables Icon

Table 1 Microcavity configurations and SNR limited by thermal noise (SNRther).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S = I n s a m = S 1 S 2 S 3 = I λ λ n e f f n e f f n s a m
L O D = σ S
D R = Δ λ D R S 2 S 3
σ i n t = σ R I N 2 + σ s h o t 2 + σ J o h n s o n 2
σ s p e c = S 1 δ λ
σ t h e r = S 1 S 2 δ n e f f = S 1 S 2 β δ T
σ = σ i n t 2 + σ s p e c 2 + σ t h e r 2 = σ i n t 2 + ( S 1 δ λ ) 2 + ( S 1 S 2 δ n e f f ) 2
L O D = σ S = L O D i n t 2 + L O D s p e c 2 + L O D t h e r 2 = ( σ i n t S ) 2 + ( δ λ S 2 S 3 ) 2 + ( δ n e f f S 3 ) 2
D R = Δ λ D R S 1 L O D σ = Δ I D R L O D S N R

Metrics