Abstract

The integration of light sources on a photonic platform is a key aspect of the fabrication of self-contained photonic circuits with a small footprint that does not have a definitive solution yet. Several approaches are being actively researched for this purpose. In this work we propose optoelectronic tweezers for the manipulation and integration of light sources on a photonic platform and report the positional and angular accuracy of the micromanipulation of standard Fabry-Pérot InP semiconductor laser die. These lasers are over three orders of magnitude bigger in volume than any previously assembled with optofluidic techniques and the fact that they are industry standard lasers makes them significantly more useful than previously assembled microdisk lasers. We measure the accuracy to be 2.5 ± 1.4 µm and 1.4 ± 0.4° and conclude that optoelectronic tweezers are a promising technique for the micromanipulation and integration of optoelectronic components in general and semiconductor lasers in particular.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding

Muhammad Rodlin Billah, Matthias Blaicher, Tobias Hoose, Philipp-Immanuel Dietrich, Pablo Marin-Palomo, Nicole Lindenmann, Aleksandar Nesic, Andreas Hofmann, Ute Troppenz, Martin Moehrle, Sebastian Randel, Wolfgang Freude, and Christian Koos
Optica 5(7) 876-883 (2018)

Material platforms for integrated quantum photonics

S. Bogdanov, M. Y. Shalaginov, A. Boltasseva, and V. M. Shalaev
Opt. Mater. Express 7(1) 111-132 (2017)

Uniformity of the lasing wavelength of heterogeneously integrated InP microdisk lasers on SOI

P. Mechet, F. Raineri, A. Bazin, Y. Halioua, T. Spuesens, T. J. Karle, P. Regreny, P. Monnier, D. Van Thourhout, I. Sagnes, R. Raj, G. Roelkens, and G. Morthier
Opt. Express 21(9) 10622-10631 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. Kawanami, “Heteroepitaxial technologies of III–V on Si,” Sol. Energ. Mat. Sol. C. 66, 479–486 (2001).
    [Crossref]
  2. D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quant. 8, 118–131 (2002).
    [Crossref]
  3. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010).
    [Crossref]
  4. K. Tanabe, D. Guimard, D. Bordel, S. Iwamoto, and Y. Arakawa, “Electrically pumped 1.3 micron room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer,” Opt. Express 18, 10604–10608 (2010).
    [Crossref] [PubMed]
  5. S. Famenini and C. G. Fonstad, “Integration of edge-emitting laser diodes with dielectric waveguides on silicon,” IEEE Photonic Tech. L. 24, 1849–1851 (2012).
    [Crossref]
  6. K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J. K. Shin, and K. Pak, “Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices,” Appl. Phys. Lett. 69, 100 (1996).
    [Crossref]
  7. M. Yamaguchi, M. Sugo, and Y. Itoh, “Misfit stress dependence of dislocation density reduction in GaAs films on Si substrates grown by strained-layer superlattices,” Appl. Phys. Lett. 54, 2568–2570 (1989).
    [Crossref]
  8. H. Park, M. Sysak, and H. Chen, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quant. 17, 671–688 (2011).
    [Crossref]
  9. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
    [Crossref] [PubMed]
  10. S. L. Neale, Z. Fan, a. T. Ohta, a. Jamshidi, J. K. Valley, H. Y. Hsu, a. Javey, and M. C. Wu, “Optofluidic assembly of red/blue/green semiconductor nanowires,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS 2009)
  11. M. C. Tien, A. T. Ohta, K. Yu, L. C. Chuang, A. Jamshidi, S. L. Neale, C. Hou, C. Chang-Hasnain, and M. C. Wu, “Hybrid microdisk laser on a silicon platform using lateral-field optoelectronic tweezers assembly,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics (CLEO/QELS 2008)
  12. H. I. Cantú, A. McKee, I. Eddie, and A. E. Kelly, “Parametric study of 1310 nm ridge waveguide AlGaInAs-InP semi-conductor laser dynamics,” IET Optoelectron. 9, 341–347 (2015).
    [Crossref]
  13. J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. S. 17, 342–350 (2008).
    [Crossref]
  14. H. A. Pohl, Dielectrophoresis: the Behavior of Neutral Matter in Nonuniform Electric Fields (Cambridge University, 1978).
  15. X. Wang, X.-B. Wang, and P. R. Gascoyne, “General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method,” J. Electrostat. 39, 277–295 (1997).
    [Crossref]
  16. J. Juvert, I. Eddie, C. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “A low-cost technique for adding microlasers to a silicon photonic platform,” Proc. SPIE 9752, 97520Y (2016).
    [Crossref]
  17. I. Armstrong, I. Andonovic, A. Kelly, S. Bonthron, J. Bebbington, W. Michie, C. Tombling, S. Fasham, and W. John-stone, “Hybridisation platform assembly and demonstration of all optical wavelength conversion at 10Gbit/s,” J. Lightwave Technol. 23, 1852–1859 (2005).
    [Crossref]

2016 (1)

J. Juvert, I. Eddie, C. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “A low-cost technique for adding microlasers to a silicon photonic platform,” Proc. SPIE 9752, 97520Y (2016).
[Crossref]

2015 (1)

H. I. Cantú, A. McKee, I. Eddie, and A. E. Kelly, “Parametric study of 1310 nm ridge waveguide AlGaInAs-InP semi-conductor laser dynamics,” IET Optoelectron. 9, 341–347 (2015).
[Crossref]

2012 (1)

S. Famenini and C. G. Fonstad, “Integration of edge-emitting laser diodes with dielectric waveguides on silicon,” IEEE Photonic Tech. L. 24, 1849–1851 (2012).
[Crossref]

2011 (1)

H. Park, M. Sysak, and H. Chen, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quant. 17, 671–688 (2011).
[Crossref]

2010 (2)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010).
[Crossref]

K. Tanabe, D. Guimard, D. Bordel, S. Iwamoto, and Y. Arakawa, “Electrically pumped 1.3 micron room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer,” Opt. Express 18, 10604–10608 (2010).
[Crossref] [PubMed]

2008 (1)

J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. S. 17, 342–350 (2008).
[Crossref]

2005 (2)

2002 (1)

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quant. 8, 118–131 (2002).
[Crossref]

2001 (1)

H. Kawanami, “Heteroepitaxial technologies of III–V on Si,” Sol. Energ. Mat. Sol. C. 66, 479–486 (2001).
[Crossref]

1997 (1)

X. Wang, X.-B. Wang, and P. R. Gascoyne, “General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method,” J. Electrostat. 39, 277–295 (1997).
[Crossref]

1996 (1)

K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J. K. Shin, and K. Pak, “Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices,” Appl. Phys. Lett. 69, 100 (1996).
[Crossref]

1989 (1)

M. Yamaguchi, M. Sugo, and Y. Itoh, “Misfit stress dependence of dislocation density reduction in GaAs films on Si substrates grown by strained-layer superlattices,” Appl. Phys. Lett. 54, 2568–2570 (1989).
[Crossref]

Andonovic, I.

Arakawa, Y.

Armstrong, I.

Bebbington, J.

Bonthron, S.

Bordel, D.

Bowers, J.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010).
[Crossref]

Cantú, H. I.

H. I. Cantú, A. McKee, I. Eddie, and A. E. Kelly, “Parametric study of 1310 nm ridge waveguide AlGaInAs-InP semi-conductor laser dynamics,” IET Optoelectron. 9, 341–347 (2015).
[Crossref]

Chang-Hasnain, C.

M. C. Tien, A. T. Ohta, K. Yu, L. C. Chuang, A. Jamshidi, S. L. Neale, C. Hou, C. Chang-Hasnain, and M. C. Wu, “Hybrid microdisk laser on a silicon platform using lateral-field optoelectronic tweezers assembly,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics (CLEO/QELS 2008)

Chen, H.

H. Park, M. Sysak, and H. Chen, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quant. 17, 671–688 (2011).
[Crossref]

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
[Crossref] [PubMed]

Chuang, L. C.

M. C. Tien, A. T. Ohta, K. Yu, L. C. Chuang, A. Jamshidi, S. L. Neale, C. Hou, C. Chang-Hasnain, and M. C. Wu, “Hybrid microdisk laser on a silicon platform using lateral-field optoelectronic tweezers assembly,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics (CLEO/QELS 2008)

Eddie, I.

J. Juvert, I. Eddie, C. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “A low-cost technique for adding microlasers to a silicon photonic platform,” Proc. SPIE 9752, 97520Y (2016).
[Crossref]

H. I. Cantú, A. McKee, I. Eddie, and A. E. Kelly, “Parametric study of 1310 nm ridge waveguide AlGaInAs-InP semi-conductor laser dynamics,” IET Optoelectron. 9, 341–347 (2015).
[Crossref]

Famenini, S.

S. Famenini and C. G. Fonstad, “Integration of edge-emitting laser diodes with dielectric waveguides on silicon,” IEEE Photonic Tech. L. 24, 1849–1851 (2012).
[Crossref]

Fan, Z.

S. L. Neale, Z. Fan, a. T. Ohta, a. Jamshidi, J. K. Valley, H. Y. Hsu, a. Javey, and M. C. Wu, “Optofluidic assembly of red/blue/green semiconductor nanowires,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS 2009)

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010).
[Crossref]

Fasham, S.

Fonstad, C. G.

S. Famenini and C. G. Fonstad, “Integration of edge-emitting laser diodes with dielectric waveguides on silicon,” IEEE Photonic Tech. L. 24, 1849–1851 (2012).
[Crossref]

Gascoyne, P. R.

X. Wang, X.-B. Wang, and P. R. Gascoyne, “General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method,” J. Electrostat. 39, 277–295 (1997).
[Crossref]

Guimard, D.

Hjort, K.

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quant. 8, 118–131 (2002).
[Crossref]

Hou, C.

M. C. Tien, A. T. Ohta, K. Yu, L. C. Chuang, A. Jamshidi, S. L. Neale, C. Hou, C. Chang-Hasnain, and M. C. Wu, “Hybrid microdisk laser on a silicon platform using lateral-field optoelectronic tweezers assembly,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics (CLEO/QELS 2008)

Hsu, H. Y.

J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. S. 17, 342–350 (2008).
[Crossref]

S. L. Neale, Z. Fan, a. T. Ohta, a. Jamshidi, J. K. Valley, H. Y. Hsu, a. Javey, and M. C. Wu, “Optofluidic assembly of red/blue/green semiconductor nanowires,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS 2009)

Itoh, Y.

M. Yamaguchi, M. Sugo, and Y. Itoh, “Misfit stress dependence of dislocation density reduction in GaAs films on Si substrates grown by strained-layer superlattices,” Appl. Phys. Lett. 54, 2568–2570 (1989).
[Crossref]

Iwaki, K.

K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J. K. Shin, and K. Pak, “Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices,” Appl. Phys. Lett. 69, 100 (1996).
[Crossref]

Iwamoto, S.

Jamshidi, A.

J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. S. 17, 342–350 (2008).
[Crossref]

S. L. Neale, Z. Fan, a. T. Ohta, a. Jamshidi, J. K. Valley, H. Y. Hsu, a. Javey, and M. C. Wu, “Optofluidic assembly of red/blue/green semiconductor nanowires,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS 2009)

M. C. Tien, A. T. Ohta, K. Yu, L. C. Chuang, A. Jamshidi, S. L. Neale, C. Hou, C. Chang-Hasnain, and M. C. Wu, “Hybrid microdisk laser on a silicon platform using lateral-field optoelectronic tweezers assembly,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics (CLEO/QELS 2008)

Javey, a.

S. L. Neale, Z. Fan, a. T. Ohta, a. Jamshidi, J. K. Valley, H. Y. Hsu, a. Javey, and M. C. Wu, “Optofluidic assembly of red/blue/green semiconductor nanowires,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS 2009)

John-stone, W.

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010).
[Crossref]

Juvert, J.

J. Juvert, I. Eddie, C. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “A low-cost technique for adding microlasers to a silicon photonic platform,” Proc. SPIE 9752, 97520Y (2016).
[Crossref]

Kawanami, H.

H. Kawanami, “Heteroepitaxial technologies of III–V on Si,” Sol. Energ. Mat. Sol. C. 66, 479–486 (2001).
[Crossref]

Kelly, A.

J. Juvert, I. Eddie, C. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “A low-cost technique for adding microlasers to a silicon photonic platform,” Proc. SPIE 9752, 97520Y (2016).
[Crossref]

I. Armstrong, I. Andonovic, A. Kelly, S. Bonthron, J. Bebbington, W. Michie, C. Tombling, S. Fasham, and W. John-stone, “Hybridisation platform assembly and demonstration of all optical wavelength conversion at 10Gbit/s,” J. Lightwave Technol. 23, 1852–1859 (2005).
[Crossref]

Kelly, A. E.

H. I. Cantú, A. McKee, I. Eddie, and A. E. Kelly, “Parametric study of 1310 nm ridge waveguide AlGaInAs-InP semi-conductor laser dynamics,” IET Optoelectron. 9, 341–347 (2015).
[Crossref]

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010).
[Crossref]

Liang, D.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010).
[Crossref]

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010).
[Crossref]

McKee, A.

H. I. Cantú, A. McKee, I. Eddie, and A. E. Kelly, “Parametric study of 1310 nm ridge waveguide AlGaInAs-InP semi-conductor laser dynamics,” IET Optoelectron. 9, 341–347 (2015).
[Crossref]

Michie, W.

Mitchell, C.

J. Juvert, I. Eddie, C. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “A low-cost technique for adding microlasers to a silicon photonic platform,” Proc. SPIE 9752, 97520Y (2016).
[Crossref]

Neale, S. L.

J. Juvert, I. Eddie, C. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “A low-cost technique for adding microlasers to a silicon photonic platform,” Proc. SPIE 9752, 97520Y (2016).
[Crossref]

M. C. Tien, A. T. Ohta, K. Yu, L. C. Chuang, A. Jamshidi, S. L. Neale, C. Hou, C. Chang-Hasnain, and M. C. Wu, “Hybrid microdisk laser on a silicon platform using lateral-field optoelectronic tweezers assembly,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics (CLEO/QELS 2008)

S. L. Neale, Z. Fan, a. T. Ohta, a. Jamshidi, J. K. Valley, H. Y. Hsu, a. Javey, and M. C. Wu, “Optofluidic assembly of red/blue/green semiconductor nanowires,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS 2009)

Ohshima, N.

K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J. K. Shin, and K. Pak, “Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices,” Appl. Phys. Lett. 69, 100 (1996).
[Crossref]

Ohta, A. T.

J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. S. 17, 342–350 (2008).
[Crossref]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
[Crossref] [PubMed]

S. L. Neale, Z. Fan, a. T. Ohta, a. Jamshidi, J. K. Valley, H. Y. Hsu, a. Javey, and M. C. Wu, “Optofluidic assembly of red/blue/green semiconductor nanowires,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS 2009)

M. C. Tien, A. T. Ohta, K. Yu, L. C. Chuang, A. Jamshidi, S. L. Neale, C. Hou, C. Chang-Hasnain, and M. C. Wu, “Hybrid microdisk laser on a silicon platform using lateral-field optoelectronic tweezers assembly,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics (CLEO/QELS 2008)

Pak, K.

K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J. K. Shin, and K. Pak, “Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices,” Appl. Phys. Lett. 69, 100 (1996).
[Crossref]

Park, H.

H. Park, M. Sysak, and H. Chen, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quant. 17, 671–688 (2011).
[Crossref]

Pasquariello, D.

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quant. 8, 118–131 (2002).
[Crossref]

Pohl, H. A.

H. A. Pohl, Dielectrophoresis: the Behavior of Neutral Matter in Nonuniform Electric Fields (Cambridge University, 1978).

Reed, G. T.

J. Juvert, I. Eddie, C. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “A low-cost technique for adding microlasers to a silicon photonic platform,” Proc. SPIE 9752, 97520Y (2016).
[Crossref]

Roelkens, G.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010).
[Crossref]

Samonji, K.

K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J. K. Shin, and K. Pak, “Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices,” Appl. Phys. Lett. 69, 100 (1996).
[Crossref]

Shin, J. K.

K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J. K. Shin, and K. Pak, “Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices,” Appl. Phys. Lett. 69, 100 (1996).
[Crossref]

Sugo, M.

M. Yamaguchi, M. Sugo, and Y. Itoh, “Misfit stress dependence of dislocation density reduction in GaAs films on Si substrates grown by strained-layer superlattices,” Appl. Phys. Lett. 54, 2568–2570 (1989).
[Crossref]

Sysak, M.

H. Park, M. Sysak, and H. Chen, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quant. 17, 671–688 (2011).
[Crossref]

Takagi, Y.

K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J. K. Shin, and K. Pak, “Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices,” Appl. Phys. Lett. 69, 100 (1996).
[Crossref]

Tanabe, K.

Tien, M. C.

M. C. Tien, A. T. Ohta, K. Yu, L. C. Chuang, A. Jamshidi, S. L. Neale, C. Hou, C. Chang-Hasnain, and M. C. Wu, “Hybrid microdisk laser on a silicon platform using lateral-field optoelectronic tweezers assembly,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics (CLEO/QELS 2008)

Tombling, C.

Valley, J. K.

J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. S. 17, 342–350 (2008).
[Crossref]

S. L. Neale, Z. Fan, a. T. Ohta, a. Jamshidi, J. K. Valley, H. Y. Hsu, a. Javey, and M. C. Wu, “Optofluidic assembly of red/blue/green semiconductor nanowires,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS 2009)

Wang, X.

X. Wang, X.-B. Wang, and P. R. Gascoyne, “General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method,” J. Electrostat. 39, 277–295 (1997).
[Crossref]

Wang, X.-B.

X. Wang, X.-B. Wang, and P. R. Gascoyne, “General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method,” J. Electrostat. 39, 277–295 (1997).
[Crossref]

Wilkinson, J. S.

J. Juvert, I. Eddie, C. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “A low-cost technique for adding microlasers to a silicon photonic platform,” Proc. SPIE 9752, 97520Y (2016).
[Crossref]

Wu, M. C.

J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. S. 17, 342–350 (2008).
[Crossref]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
[Crossref] [PubMed]

S. L. Neale, Z. Fan, a. T. Ohta, a. Jamshidi, J. K. Valley, H. Y. Hsu, a. Javey, and M. C. Wu, “Optofluidic assembly of red/blue/green semiconductor nanowires,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS 2009)

M. C. Tien, A. T. Ohta, K. Yu, L. C. Chuang, A. Jamshidi, S. L. Neale, C. Hou, C. Chang-Hasnain, and M. C. Wu, “Hybrid microdisk laser on a silicon platform using lateral-field optoelectronic tweezers assembly,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics (CLEO/QELS 2008)

Yamaguchi, M.

M. Yamaguchi, M. Sugo, and Y. Itoh, “Misfit stress dependence of dislocation density reduction in GaAs films on Si substrates grown by strained-layer superlattices,” Appl. Phys. Lett. 54, 2568–2570 (1989).
[Crossref]

Yonezu, H.

K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J. K. Shin, and K. Pak, “Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices,” Appl. Phys. Lett. 69, 100 (1996).
[Crossref]

Yu, K.

M. C. Tien, A. T. Ohta, K. Yu, L. C. Chuang, A. Jamshidi, S. L. Neale, C. Hou, C. Chang-Hasnain, and M. C. Wu, “Hybrid microdisk laser on a silicon platform using lateral-field optoelectronic tweezers assembly,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics (CLEO/QELS 2008)

Appl. Phys. Lett. (2)

K. Samonji, H. Yonezu, Y. Takagi, K. Iwaki, N. Ohshima, J. K. Shin, and K. Pak, “Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices,” Appl. Phys. Lett. 69, 100 (1996).
[Crossref]

M. Yamaguchi, M. Sugo, and Y. Itoh, “Misfit stress dependence of dislocation density reduction in GaAs films on Si substrates grown by strained-layer superlattices,” Appl. Phys. Lett. 54, 2568–2570 (1989).
[Crossref]

IEEE J. Sel. Top. Quant. (2)

H. Park, M. Sysak, and H. Chen, “Device and integration technology for silicon photonic transmitters,” IEEE J. Sel. Top. Quant. 17, 671–688 (2011).
[Crossref]

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quant. 8, 118–131 (2002).
[Crossref]

IEEE Photonic Tech. L. (1)

S. Famenini and C. G. Fonstad, “Integration of edge-emitting laser diodes with dielectric waveguides on silicon,” IEEE Photonic Tech. L. 24, 1849–1851 (2012).
[Crossref]

IET Optoelectron. (1)

H. I. Cantú, A. McKee, I. Eddie, and A. E. Kelly, “Parametric study of 1310 nm ridge waveguide AlGaInAs-InP semi-conductor laser dynamics,” IET Optoelectron. 9, 341–347 (2015).
[Crossref]

J. Electrostat. (1)

X. Wang, X.-B. Wang, and P. R. Gascoyne, “General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method,” J. Electrostat. 39, 277–295 (1997).
[Crossref]

J. Lightwave Technol. (1)

J. Microelectromech. S. (1)

J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. S. 17, 342–350 (2008).
[Crossref]

Laser Photonics Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010).
[Crossref]

Nature (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
[Crossref] [PubMed]

Opt. Express (1)

Proc. SPIE (1)

J. Juvert, I. Eddie, C. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, and S. L. Neale, “A low-cost technique for adding microlasers to a silicon photonic platform,” Proc. SPIE 9752, 97520Y (2016).
[Crossref]

Sol. Energ. Mat. Sol. C. (1)

H. Kawanami, “Heteroepitaxial technologies of III–V on Si,” Sol. Energ. Mat. Sol. C. 66, 479–486 (2001).
[Crossref]

Other (3)

S. L. Neale, Z. Fan, a. T. Ohta, a. Jamshidi, J. K. Valley, H. Y. Hsu, a. Javey, and M. C. Wu, “Optofluidic assembly of red/blue/green semiconductor nanowires,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS 2009)

M. C. Tien, A. T. Ohta, K. Yu, L. C. Chuang, A. Jamshidi, S. L. Neale, C. Hou, C. Chang-Hasnain, and M. C. Wu, “Hybrid microdisk laser on a silicon platform using lateral-field optoelectronic tweezers assembly,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics (CLEO/QELS 2008)

H. A. Pohl, Dielectrophoresis: the Behavior of Neutral Matter in Nonuniform Electric Fields (Cambridge University, 1978).

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (10521 KB)      Video showing movement and rotation of an InP laser

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic representation of the optoelectronic tweezers device. The chamber is realised by inserting a 150 µm thick spacer (double sided tape, not represented) between the top electrode and the a-Si:H. The blue lines follow the electric field vector.
Fig. 2
Fig. 2 Schematic representation of the experimental setup used in this work.
Fig. 3
Fig. 3 Picture of a laser die (blue dashed contour) inside a dielectrophoretic trap (red dashed contour). The laser is 250 µm on its side. See Visualization 1 for a video showcasing the micromanipulation of the laser die.
Fig. 4
Fig. 4 Schematic representation of the simulated system (not to scale). The relevant parameters are the total width of the trap wt and the offset ϕ between the centres of the laser and the trap.
Fig. 5
Fig. 5 Total force on the laser as a function of the offset of the trap with respect to the laser, for two different sizes of the trap, calculated using the gradient of the square of the electric field.
Fig. 6
Fig. 6 Potential energy of the laser around the center of dielectrophoretic traps of different sizes. The potential energy has been worked out from the force calculated using the gradient of the square of the electric field (Fig. 5).
Fig. 7
Fig. 7 Total force on the laser as a function of the offset of the trap with respect to the laser, for different sizes of the trap. Calculated using the Maxwell stress tensor.
Fig. 8
Fig. 8 Potential energy of the laser around the center of dielectrophoretic traps of different sizes. The potential energy has been worked out from the force calculated using the Maxwell stress tensor (Fig. 7).
Fig. 9
Fig. 9 Offset of the centre of a laser die with respect to the centre of the trap for different sizes of the trap. This laser was face down and did not move smoothly.
Fig. 10
Fig. 10 Offset of the centre of a laser die with respect to the centre of the trap for different sizes of the trap. This laser was face up and showed a smooth movement.
Fig. 11
Fig. 11 Offset in the angular orientation of two laser die with respect to the trap, for different sizes of the trap. The labels L1 and L2 correspond to the die of Figs. 9 and 10, respectively. The numbers 350, 285 and 260 correspond to the size of the trap in µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F DEP = 2 π r 3 m ( ^ p ^ m ^ p 2 ^ m ) E 2 ,
σ i j = ε 0 E i E j + 1 μ 0 B i B j 1 2 ( ε 0 E 2 + 1 μ 0 B 2 ) δ i j

Metrics