Abstract

We propose a new graphical method for selecting a pair of optical and housing materials to simultaneously achromatize and athermalize a multilens system. To obtain the material combination using an athermal glass map, the material suitable for housing is graphically selected, and then the powers of elements constituting an equivalent single lens are redistributed. Although a material combination does not exist, we can continuously change the power of each element. Thus, we can reasonably identify a pair of optical and housing materials that simultaneously satisfies achromatic and athermal conditions. By applying this method to design a Tessar lens, the chromatic and thermal defocuses are reduced to less than the depth of focus, over the specified waveband and temperature ranges.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical athermalization in the visible waveband using the 1+∑ method

Na Xie, Qingfeng Cui, Lin Sun, and Jingfeng Wang
Appl. Opt. 58(3) 635-641 (2019)

Midwave infrared optical zooming design and kinoform degrading evaluation methods

Chih-Wei Kuo, Jr-Ming Miao, and Chang-Hsien Tai
Appl. Opt. 50(18) 3043-3049 (2011)

Method of glass selection for color correction in optical system design

Bráulio Fonseca Carneiro de Albuquerque, Jose Sasian, Fabiano Luis de Sousa, and Amauri Silva Montes
Opt. Express 20(13) 13592-13611 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. Jamieson, “Thermal effects in optical systems,” Opt. Eng. 20(2), 156–160 (1981).
    [Crossref]
  2. P. J. Rogers, “Athermalized FLIR optics,” Proc. SPIE 1354, 742–751 (1991).
    [Crossref]
  3. L. Rayces and L. Lebich, “Thermal compensation of infrared achromatic objectives with three optical materials,” Proc. SPIE 1354, 752–759 (1991).
    [Crossref]
  4. Y. Tamagawa, S. Wakabayashi, T. Tajime, and T. Hashimoto, “Multilens system design with an athermal chart,” Appl. Opt. 33(34), 8009–8013 (1994).
    [Crossref] [PubMed]
  5. Y. Tamagawa and T. Tajime, “Expansion of an athermal chart into a multilens system with thick lenses spaced apart,” Opt. Eng. 35(10), 3001–3006 (1996).
    [Crossref]
  6. K. Schwertz, D. Dillon, and S. Sparrold, “Graphically selecting optical components and housing material for color correction and passive athermalization,” Proc. SPIE 8486, 84860E (2012).
    [Crossref]
  7. R. Li, “Passively athermalized broadband optical design using doublet combinations,” Appl. Opt. 53(18), 3903–3907 (2014).
    [Crossref] [PubMed]
  8. T. Y. Lim, Y. S. Kim, and S. C. Park, “Graphical selection of optical materials using an expanded athermal glass map and considering the housing material for an athermal and achromatic design,” J. Opt. Soc. Korea 19(5), 531–536 (2015).
    [Crossref]
  9. R. Kingslake, Applied Optics and Optical Engineering (Academic, 1965).
  10. W. J. Smith, “Optical-design technique,” in Handbook of Optics, W.G. Driscoll, ed. (McGraw-Hill, 1978) Chap. 2.
  11. Schott, “TIE-19: Temperature coefficient of the refractive index,” in Schott Technical Information (Schott Inc., 2008).

2015 (1)

2014 (1)

2012 (1)

K. Schwertz, D. Dillon, and S. Sparrold, “Graphically selecting optical components and housing material for color correction and passive athermalization,” Proc. SPIE 8486, 84860E (2012).
[Crossref]

1996 (1)

Y. Tamagawa and T. Tajime, “Expansion of an athermal chart into a multilens system with thick lenses spaced apart,” Opt. Eng. 35(10), 3001–3006 (1996).
[Crossref]

1994 (1)

1991 (2)

P. J. Rogers, “Athermalized FLIR optics,” Proc. SPIE 1354, 742–751 (1991).
[Crossref]

L. Rayces and L. Lebich, “Thermal compensation of infrared achromatic objectives with three optical materials,” Proc. SPIE 1354, 752–759 (1991).
[Crossref]

1981 (1)

H. Jamieson, “Thermal effects in optical systems,” Opt. Eng. 20(2), 156–160 (1981).
[Crossref]

Dillon, D.

K. Schwertz, D. Dillon, and S. Sparrold, “Graphically selecting optical components and housing material for color correction and passive athermalization,” Proc. SPIE 8486, 84860E (2012).
[Crossref]

Hashimoto, T.

Jamieson, H.

H. Jamieson, “Thermal effects in optical systems,” Opt. Eng. 20(2), 156–160 (1981).
[Crossref]

Kim, Y. S.

Lebich, L.

L. Rayces and L. Lebich, “Thermal compensation of infrared achromatic objectives with three optical materials,” Proc. SPIE 1354, 752–759 (1991).
[Crossref]

Li, R.

Lim, T. Y.

Park, S. C.

Rayces, L.

L. Rayces and L. Lebich, “Thermal compensation of infrared achromatic objectives with three optical materials,” Proc. SPIE 1354, 752–759 (1991).
[Crossref]

Rogers, P. J.

P. J. Rogers, “Athermalized FLIR optics,” Proc. SPIE 1354, 742–751 (1991).
[Crossref]

Schwertz, K.

K. Schwertz, D. Dillon, and S. Sparrold, “Graphically selecting optical components and housing material for color correction and passive athermalization,” Proc. SPIE 8486, 84860E (2012).
[Crossref]

Sparrold, S.

K. Schwertz, D. Dillon, and S. Sparrold, “Graphically selecting optical components and housing material for color correction and passive athermalization,” Proc. SPIE 8486, 84860E (2012).
[Crossref]

Tajime, T.

Y. Tamagawa and T. Tajime, “Expansion of an athermal chart into a multilens system with thick lenses spaced apart,” Opt. Eng. 35(10), 3001–3006 (1996).
[Crossref]

Y. Tamagawa, S. Wakabayashi, T. Tajime, and T. Hashimoto, “Multilens system design with an athermal chart,” Appl. Opt. 33(34), 8009–8013 (1994).
[Crossref] [PubMed]

Tamagawa, Y.

Y. Tamagawa and T. Tajime, “Expansion of an athermal chart into a multilens system with thick lenses spaced apart,” Opt. Eng. 35(10), 3001–3006 (1996).
[Crossref]

Y. Tamagawa, S. Wakabayashi, T. Tajime, and T. Hashimoto, “Multilens system design with an athermal chart,” Appl. Opt. 33(34), 8009–8013 (1994).
[Crossref] [PubMed]

Wakabayashi, S.

Appl. Opt. (2)

J. Opt. Soc. Korea (1)

Opt. Eng. (2)

Y. Tamagawa and T. Tajime, “Expansion of an athermal chart into a multilens system with thick lenses spaced apart,” Opt. Eng. 35(10), 3001–3006 (1996).
[Crossref]

H. Jamieson, “Thermal effects in optical systems,” Opt. Eng. 20(2), 156–160 (1981).
[Crossref]

Proc. SPIE (3)

P. J. Rogers, “Athermalized FLIR optics,” Proc. SPIE 1354, 742–751 (1991).
[Crossref]

L. Rayces and L. Lebich, “Thermal compensation of infrared achromatic objectives with three optical materials,” Proc. SPIE 1354, 752–759 (1991).
[Crossref]

K. Schwertz, D. Dillon, and S. Sparrold, “Graphically selecting optical components and housing material for color correction and passive athermalization,” Proc. SPIE 8486, 84860E (2012).
[Crossref]

Other (3)

R. Kingslake, Applied Optics and Optical Engineering (Academic, 1965).

W. J. Smith, “Optical-design technique,” in Handbook of Optics, W.G. Driscoll, ed. (McGraw-Hill, 1978) Chap. 2.

Schott, “TIE-19: Temperature coefficient of the refractive index,” in Schott Technical Information (Schott Inc., 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Achromatic and athermal conditions on an athermal glass map and (b) principle of achromatic and athermal design by redistributing the powers.
Fig. 2
Fig. 2 Layout of an initial Tessar lens taken from the Code-V sample lenses.
Fig. 3
Fig. 3 Thermal shifts of an initial Tessar lens for effective focal length (EFL), back focal length (BFL), housing material length (HML), and flange back distance (FBD).
Fig. 4
Fig. 4 MTF graphs of an initial Tessar lens with temperatures: (a) 40°C , (b) 20°C , and (c) 80°C .
Fig. 5
Fig. 5 Iterative design method for an achromatic and athermal Tessar lens on an athermal glass map: (a) only redistributing the powers of elements and (b) changing the material for L 1 (= L j ) and then redistributing the powers of elements in L 234 (= L e ) .
Fig. 6
Fig. 6 Layout of an achromatic and athermal Tessar lens.
Fig. 7
Fig. 7 Thermal shifts of an achromatic and athermal Tessar lens for effective focal length (EFL), back focal length (BFL), housing material length (HML), and flange back distance (FBD).
Fig. 8
Fig. 8 MTF graphs of an achromatic and athermal Tessar lens with temperatures: (a) 40°C , (b) 20°C , and (c) 80°C .

Tables (3)

Tables Icon

Table 1 Design Specifications of an Initial Tessar Lens

Tables Icon

Table 2 Optical Properties of the Elements in an Initial Tessar Lens

Tables Icon

Table 3 Optical Properties of the Elements in an Achromatic and Athermal Tessar Lens

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

ω i =1/ v i = ( ϕ i / λ ) / ϕ i = ( n i / λ )Δλ / ( n i 1 ) ,
γ i = ( ϕ i / T ) / ϕ i = ( n i / T ) / ( n i 1 ) α i ,
ϕ T = i=1 k h i h 1 ϕ i ,
d ϕ T dλ = i=1 k d dλ ( h i h 1 ϕ i ) = 1 h 1 ( i=1 k h i λ ϕ i + i=1 k ϕ i λ h i ),
d ϕ T dT = i=1 k d dT ( h i h 1 ϕ i ) = 1 h 1 ( i=1 k h i T ϕ i + i=1 k ϕ i T h i ).
ϕ T = i=1 k ϕ i ,
d ϕ T dλ i=1 k ω i ϕ i =0 ,
d ϕ T dT i=1 k γ i ϕ i = α h ϕ T ,
ϕ e = i=1 k ( ϕ i ) ϕ j ,
ω e = { i=1 k ( ω i ϕ i ) ω j ϕ j } / ϕ e ,
γ e = { i=1 k ( γ i ϕ i ) γ j ϕ j } / ϕ e .
ϕ T = ϕ j + ϕ e ,
d ϕ T dλ ω j ϕ j + ω e ϕ e =0,
d ϕ T dT γ j ϕ j + γ e ϕ e = α h ϕ T .
ϕ j = ω e ϕ T / ( ω j ω e ) , ϕ e = ω j ϕ T / ( ω j ω e ) .
γ j ω e / ( ω j ω e ) + γ e ω j / ( ω j ω e ) = α h .
( γ j ω e + γ e ω e ) / ( ω j ω e ) + ( γ e ω j γ e ω e ) / ( ω j ω e ) = α h .
γ e = γ e γ j ω e ω j ω e α h .
y= γ e γ j ω e ω j x α h .
α h = γ e ω j γ j ω e ω e ω j .
Total power: ϕ T = i=1 k h i h 1 ϕ i = i=1 k ϕ i =constant,
Availablehousing: α h = { i=1 k ( γ i ϕ i ) γ j ϕ j } ω j γ j { i=1 k ( ω i ϕ i ) ω j ϕ j } i=1 k ( ω i ϕ i ) ω j ϕ j ω j ϕ e ,

Metrics