Abstract

We developed multiocular 1/3-inch 2.75-μm-pixel-size 2.1M- pixel image sensors by co-design of both on-chip beam-splitter and 100-nm-width 800-nm-depth patterned inner meta-micro-lens for single-main-lens stereo camera systems. A camera with the multiocular image sensor can capture horizontally one-dimensional light filed by both the on-chip beam-splitter horizontally dividing ray according to incident angle, and the inner meta-micro-lens collecting the divided ray into pixel with small optical loss. Cross-talks between adjacent light field images of a fabricated binocular image sensor and of a quad-ocular image sensor are as low as 6% and 7% respectively. With the selection of two images from one-dimensional light filed images, a selective baseline for stereo vision is realized to view close objects with single-main-lens. In addition, by adding multiple light field images with different ratios, baseline distance can be tuned within an aperture of a main lens. We suggest the electrically selective or tunable baseline stereo vision to reduce 3D fatigue of viewers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Real-time depth controllable integral imaging pickup and reconstruction method with a light field camera

Youngmo Jeong, Jonghyun Kim, Jiwoon Yeom, Chang-Kun Lee, and Byoungho Lee
Appl. Opt. 54(35) 10333-10341 (2015)

Compact stereo endoscopic camera using microprism arrays

Sung-Pyo Yang, Jae-Jun Kim, Kyung-Won Jang, Weon-Kook Song, and Ki-Hun Jeong
Opt. Lett. 41(6) 1285-1288 (2016)

Single-camera panoramic stereo imaging system with a fisheye lens and a convex mirror

Weiming Li and Y. F. Li
Opt. Express 19(7) 5855-5867 (2011)

References

  • View by:
  • |
  • |
  • |

  1. H. Rosas, Perception and Reality in Stereo Vision: Technological Applications, Advances in Stereo Vision (InTech, 2011).
  2. K. L. Kroeker, “Looking beyond stereoscopic 3D’s revival,” Commun. ACM 53(8), 14–16 (2010).
    [Crossref]
  3. A. F. Durrani and G. M. Preminger, “Advanced endoscopic imaging: 3-d laparoscopic endoscopy,” Surg. Technol. Int. 3, 141–147 (1994).
    [PubMed]
  4. R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robot. Autom. 3(4), 323–344 (1987).
    [Crossref]
  5. M. Okutomi and T. Kanade, “A multiple-baseline stereo,” IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 353–363 (1993).
    [Crossref]
  6. M. Lambooij, W. IJsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
    [Crossref]
  7. Q. Wei, “Converting 2D to 3D: A survey,” Delft University of Technology, The Netherlands, Project Report, (2005).
  8. T. Collins and A. Bartoli, “3D reconstruction in laparoscopy with close-range photometric stereo,” Med Image Comput Comput Assist Interv 15(Pt 2), 634–642 (2012).
    [PubMed]
  9. A. Goshtasby and W. A. Gruver, “Design of a single-lens stereo camera system,” Pattern Recognit. 26(6), 923–937 (1993).
    [Crossref]
  10. D. Lee and I. Kweon, “A novel stereo camera system by a biprism,” IEEE Trans. Robot. Autom. 16(5), 528–541 (2000).
    [Crossref]
  11. W. Woo, N. Kim, and Y. Iwadate, “Stereo imaging using a camera with stereoscopic adapter,”in Proceedings of 2000 IEEE International Conference on Systems, Man, and Cybernetics (2000), Vol. 2, pp. 1512–1517.
  12. T. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
    [Crossref]
  13. R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Comput. Sci. Tech. Report 2.11 (2005).
  14. M. H. Kamal, B. Heshmat, R. Raskar, P. Vandergheynst, and G. Wetzstein, “Tensor low-rank and sparse light field photography,” J. Comput. Vis. Imag. Underst. 145, 172–181 (2016).
    [Crossref]
  15. R. Ng, “Fourier slice photography,” ACM Trans. Graph. 24(3), 735–744 (2005).
    [Crossref]
  16. A. Wang, P. Gill, and A. Molnar, “Light field image sensors based on the Talbot effect,” Appl. Opt. 48(31), 5897–5905 (2009).
    [Crossref] [PubMed]
  17. S. Koyama, K. Onozawa, K. Tanaka, and Y. Kato, “A 3D vision 2.1 Mpixel image sensor for single-lens camera systems,” in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (2013), pp. 492–493.
    [Crossref]
  18. K. Toshikiyo, T. Yogo, M. Ishii, K. Yamanaka, T. Matsuno, K. Onozawa, and T. Yamaguchi, “A MOS Image Sensor with Microlenses Built by Sub-Wavelength Patterning,” in 2007 IEEE International Solid-State Circuits Conference Digest of Technical Papers (2007), pp. 514–515.
    [Crossref]
  19. K. Onozawa, K. Toshikiyo, T. Yogo, M. Ishii, K. Yamanaka, T. Matsuno, and D. Ueda, “A MOS image sensor with a digital-microlens,” IEEE Trans. Electron Dev. 55(4), 986–991 (2008).
    [Crossref]

2016 (1)

M. H. Kamal, B. Heshmat, R. Raskar, P. Vandergheynst, and G. Wetzstein, “Tensor low-rank and sparse light field photography,” J. Comput. Vis. Imag. Underst. 145, 172–181 (2016).
[Crossref]

2012 (1)

T. Collins and A. Bartoli, “3D reconstruction in laparoscopy with close-range photometric stereo,” Med Image Comput Comput Assist Interv 15(Pt 2), 634–642 (2012).
[PubMed]

2010 (1)

K. L. Kroeker, “Looking beyond stereoscopic 3D’s revival,” Commun. ACM 53(8), 14–16 (2010).
[Crossref]

2009 (2)

M. Lambooij, W. IJsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
[Crossref]

A. Wang, P. Gill, and A. Molnar, “Light field image sensors based on the Talbot effect,” Appl. Opt. 48(31), 5897–5905 (2009).
[Crossref] [PubMed]

2008 (1)

K. Onozawa, K. Toshikiyo, T. Yogo, M. Ishii, K. Yamanaka, T. Matsuno, and D. Ueda, “A MOS image sensor with a digital-microlens,” IEEE Trans. Electron Dev. 55(4), 986–991 (2008).
[Crossref]

2005 (1)

R. Ng, “Fourier slice photography,” ACM Trans. Graph. 24(3), 735–744 (2005).
[Crossref]

2000 (1)

D. Lee and I. Kweon, “A novel stereo camera system by a biprism,” IEEE Trans. Robot. Autom. 16(5), 528–541 (2000).
[Crossref]

1994 (1)

A. F. Durrani and G. M. Preminger, “Advanced endoscopic imaging: 3-d laparoscopic endoscopy,” Surg. Technol. Int. 3, 141–147 (1994).
[PubMed]

1993 (2)

M. Okutomi and T. Kanade, “A multiple-baseline stereo,” IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 353–363 (1993).
[Crossref]

A. Goshtasby and W. A. Gruver, “Design of a single-lens stereo camera system,” Pattern Recognit. 26(6), 923–937 (1993).
[Crossref]

1992 (1)

T. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

1987 (1)

R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robot. Autom. 3(4), 323–344 (1987).
[Crossref]

Adelson, T.

T. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Bartoli, A.

T. Collins and A. Bartoli, “3D reconstruction in laparoscopy with close-range photometric stereo,” Med Image Comput Comput Assist Interv 15(Pt 2), 634–642 (2012).
[PubMed]

Collins, T.

T. Collins and A. Bartoli, “3D reconstruction in laparoscopy with close-range photometric stereo,” Med Image Comput Comput Assist Interv 15(Pt 2), 634–642 (2012).
[PubMed]

Durrani, A. F.

A. F. Durrani and G. M. Preminger, “Advanced endoscopic imaging: 3-d laparoscopic endoscopy,” Surg. Technol. Int. 3, 141–147 (1994).
[PubMed]

Fortuin, M.

M. Lambooij, W. IJsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
[Crossref]

Gill, P.

Goshtasby, A.

A. Goshtasby and W. A. Gruver, “Design of a single-lens stereo camera system,” Pattern Recognit. 26(6), 923–937 (1993).
[Crossref]

Gruver, W. A.

A. Goshtasby and W. A. Gruver, “Design of a single-lens stereo camera system,” Pattern Recognit. 26(6), 923–937 (1993).
[Crossref]

Heshmat, B.

M. H. Kamal, B. Heshmat, R. Raskar, P. Vandergheynst, and G. Wetzstein, “Tensor low-rank and sparse light field photography,” J. Comput. Vis. Imag. Underst. 145, 172–181 (2016).
[Crossref]

Heynderickx, I.

M. Lambooij, W. IJsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
[Crossref]

IJsselsteijn, W.

M. Lambooij, W. IJsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
[Crossref]

Ishii, M.

K. Onozawa, K. Toshikiyo, T. Yogo, M. Ishii, K. Yamanaka, T. Matsuno, and D. Ueda, “A MOS image sensor with a digital-microlens,” IEEE Trans. Electron Dev. 55(4), 986–991 (2008).
[Crossref]

K. Toshikiyo, T. Yogo, M. Ishii, K. Yamanaka, T. Matsuno, K. Onozawa, and T. Yamaguchi, “A MOS Image Sensor with Microlenses Built by Sub-Wavelength Patterning,” in 2007 IEEE International Solid-State Circuits Conference Digest of Technical Papers (2007), pp. 514–515.
[Crossref]

Kamal, M. H.

M. H. Kamal, B. Heshmat, R. Raskar, P. Vandergheynst, and G. Wetzstein, “Tensor low-rank and sparse light field photography,” J. Comput. Vis. Imag. Underst. 145, 172–181 (2016).
[Crossref]

Kanade, T.

M. Okutomi and T. Kanade, “A multiple-baseline stereo,” IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 353–363 (1993).
[Crossref]

Kato, Y.

S. Koyama, K. Onozawa, K. Tanaka, and Y. Kato, “A 3D vision 2.1 Mpixel image sensor for single-lens camera systems,” in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (2013), pp. 492–493.
[Crossref]

Koyama, S.

S. Koyama, K. Onozawa, K. Tanaka, and Y. Kato, “A 3D vision 2.1 Mpixel image sensor for single-lens camera systems,” in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (2013), pp. 492–493.
[Crossref]

Kroeker, K. L.

K. L. Kroeker, “Looking beyond stereoscopic 3D’s revival,” Commun. ACM 53(8), 14–16 (2010).
[Crossref]

Kweon, I.

D. Lee and I. Kweon, “A novel stereo camera system by a biprism,” IEEE Trans. Robot. Autom. 16(5), 528–541 (2000).
[Crossref]

Lambooij, M.

M. Lambooij, W. IJsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
[Crossref]

Lee, D.

D. Lee and I. Kweon, “A novel stereo camera system by a biprism,” IEEE Trans. Robot. Autom. 16(5), 528–541 (2000).
[Crossref]

Matsuno, T.

K. Onozawa, K. Toshikiyo, T. Yogo, M. Ishii, K. Yamanaka, T. Matsuno, and D. Ueda, “A MOS image sensor with a digital-microlens,” IEEE Trans. Electron Dev. 55(4), 986–991 (2008).
[Crossref]

K. Toshikiyo, T. Yogo, M. Ishii, K. Yamanaka, T. Matsuno, K. Onozawa, and T. Yamaguchi, “A MOS Image Sensor with Microlenses Built by Sub-Wavelength Patterning,” in 2007 IEEE International Solid-State Circuits Conference Digest of Technical Papers (2007), pp. 514–515.
[Crossref]

Molnar, A.

Ng, R.

R. Ng, “Fourier slice photography,” ACM Trans. Graph. 24(3), 735–744 (2005).
[Crossref]

Okutomi, M.

M. Okutomi and T. Kanade, “A multiple-baseline stereo,” IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 353–363 (1993).
[Crossref]

Onozawa, K.

K. Onozawa, K. Toshikiyo, T. Yogo, M. Ishii, K. Yamanaka, T. Matsuno, and D. Ueda, “A MOS image sensor with a digital-microlens,” IEEE Trans. Electron Dev. 55(4), 986–991 (2008).
[Crossref]

K. Toshikiyo, T. Yogo, M. Ishii, K. Yamanaka, T. Matsuno, K. Onozawa, and T. Yamaguchi, “A MOS Image Sensor with Microlenses Built by Sub-Wavelength Patterning,” in 2007 IEEE International Solid-State Circuits Conference Digest of Technical Papers (2007), pp. 514–515.
[Crossref]

S. Koyama, K. Onozawa, K. Tanaka, and Y. Kato, “A 3D vision 2.1 Mpixel image sensor for single-lens camera systems,” in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (2013), pp. 492–493.
[Crossref]

Preminger, G. M.

A. F. Durrani and G. M. Preminger, “Advanced endoscopic imaging: 3-d laparoscopic endoscopy,” Surg. Technol. Int. 3, 141–147 (1994).
[PubMed]

Raskar, R.

M. H. Kamal, B. Heshmat, R. Raskar, P. Vandergheynst, and G. Wetzstein, “Tensor low-rank and sparse light field photography,” J. Comput. Vis. Imag. Underst. 145, 172–181 (2016).
[Crossref]

Tanaka, K.

S. Koyama, K. Onozawa, K. Tanaka, and Y. Kato, “A 3D vision 2.1 Mpixel image sensor for single-lens camera systems,” in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (2013), pp. 492–493.
[Crossref]

Toshikiyo, K.

K. Onozawa, K. Toshikiyo, T. Yogo, M. Ishii, K. Yamanaka, T. Matsuno, and D. Ueda, “A MOS image sensor with a digital-microlens,” IEEE Trans. Electron Dev. 55(4), 986–991 (2008).
[Crossref]

K. Toshikiyo, T. Yogo, M. Ishii, K. Yamanaka, T. Matsuno, K. Onozawa, and T. Yamaguchi, “A MOS Image Sensor with Microlenses Built by Sub-Wavelength Patterning,” in 2007 IEEE International Solid-State Circuits Conference Digest of Technical Papers (2007), pp. 514–515.
[Crossref]

Tsai, R. Y.

R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robot. Autom. 3(4), 323–344 (1987).
[Crossref]

Ueda, D.

K. Onozawa, K. Toshikiyo, T. Yogo, M. Ishii, K. Yamanaka, T. Matsuno, and D. Ueda, “A MOS image sensor with a digital-microlens,” IEEE Trans. Electron Dev. 55(4), 986–991 (2008).
[Crossref]

Vandergheynst, P.

M. H. Kamal, B. Heshmat, R. Raskar, P. Vandergheynst, and G. Wetzstein, “Tensor low-rank and sparse light field photography,” J. Comput. Vis. Imag. Underst. 145, 172–181 (2016).
[Crossref]

Wang, A.

Wang, J. Y. A.

T. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Wetzstein, G.

M. H. Kamal, B. Heshmat, R. Raskar, P. Vandergheynst, and G. Wetzstein, “Tensor low-rank and sparse light field photography,” J. Comput. Vis. Imag. Underst. 145, 172–181 (2016).
[Crossref]

Yamaguchi, T.

K. Toshikiyo, T. Yogo, M. Ishii, K. Yamanaka, T. Matsuno, K. Onozawa, and T. Yamaguchi, “A MOS Image Sensor with Microlenses Built by Sub-Wavelength Patterning,” in 2007 IEEE International Solid-State Circuits Conference Digest of Technical Papers (2007), pp. 514–515.
[Crossref]

Yamanaka, K.

K. Onozawa, K. Toshikiyo, T. Yogo, M. Ishii, K. Yamanaka, T. Matsuno, and D. Ueda, “A MOS image sensor with a digital-microlens,” IEEE Trans. Electron Dev. 55(4), 986–991 (2008).
[Crossref]

K. Toshikiyo, T. Yogo, M. Ishii, K. Yamanaka, T. Matsuno, K. Onozawa, and T. Yamaguchi, “A MOS Image Sensor with Microlenses Built by Sub-Wavelength Patterning,” in 2007 IEEE International Solid-State Circuits Conference Digest of Technical Papers (2007), pp. 514–515.
[Crossref]

Yogo, T.

K. Onozawa, K. Toshikiyo, T. Yogo, M. Ishii, K. Yamanaka, T. Matsuno, and D. Ueda, “A MOS image sensor with a digital-microlens,” IEEE Trans. Electron Dev. 55(4), 986–991 (2008).
[Crossref]

K. Toshikiyo, T. Yogo, M. Ishii, K. Yamanaka, T. Matsuno, K. Onozawa, and T. Yamaguchi, “A MOS Image Sensor with Microlenses Built by Sub-Wavelength Patterning,” in 2007 IEEE International Solid-State Circuits Conference Digest of Technical Papers (2007), pp. 514–515.
[Crossref]

ACM Trans. Graph. (1)

R. Ng, “Fourier slice photography,” ACM Trans. Graph. 24(3), 735–744 (2005).
[Crossref]

Appl. Opt. (1)

Commun. ACM (1)

K. L. Kroeker, “Looking beyond stereoscopic 3D’s revival,” Commun. ACM 53(8), 14–16 (2010).
[Crossref]

IEEE J. Robot. Autom. (1)

R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robot. Autom. 3(4), 323–344 (1987).
[Crossref]

IEEE Trans. Electron Dev. (1)

K. Onozawa, K. Toshikiyo, T. Yogo, M. Ishii, K. Yamanaka, T. Matsuno, and D. Ueda, “A MOS image sensor with a digital-microlens,” IEEE Trans. Electron Dev. 55(4), 986–991 (2008).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (2)

M. Okutomi and T. Kanade, “A multiple-baseline stereo,” IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 353–363 (1993).
[Crossref]

T. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

IEEE Trans. Robot. Autom. (1)

D. Lee and I. Kweon, “A novel stereo camera system by a biprism,” IEEE Trans. Robot. Autom. 16(5), 528–541 (2000).
[Crossref]

J. Comput. Vis. Imag. Underst. (1)

M. H. Kamal, B. Heshmat, R. Raskar, P. Vandergheynst, and G. Wetzstein, “Tensor low-rank and sparse light field photography,” J. Comput. Vis. Imag. Underst. 145, 172–181 (2016).
[Crossref]

J. Imaging Sci. Technol. (1)

M. Lambooij, W. IJsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
[Crossref]

Med Image Comput Comput Assist Interv (1)

T. Collins and A. Bartoli, “3D reconstruction in laparoscopy with close-range photometric stereo,” Med Image Comput Comput Assist Interv 15(Pt 2), 634–642 (2012).
[PubMed]

Pattern Recognit. (1)

A. Goshtasby and W. A. Gruver, “Design of a single-lens stereo camera system,” Pattern Recognit. 26(6), 923–937 (1993).
[Crossref]

Surg. Technol. Int. (1)

A. F. Durrani and G. M. Preminger, “Advanced endoscopic imaging: 3-d laparoscopic endoscopy,” Surg. Technol. Int. 3, 141–147 (1994).
[PubMed]

Other (6)

Q. Wei, “Converting 2D to 3D: A survey,” Delft University of Technology, The Netherlands, Project Report, (2005).

W. Woo, N. Kim, and Y. Iwadate, “Stereo imaging using a camera with stereoscopic adapter,”in Proceedings of 2000 IEEE International Conference on Systems, Man, and Cybernetics (2000), Vol. 2, pp. 1512–1517.

R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Comput. Sci. Tech. Report 2.11 (2005).

S. Koyama, K. Onozawa, K. Tanaka, and Y. Kato, “A 3D vision 2.1 Mpixel image sensor for single-lens camera systems,” in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (2013), pp. 492–493.
[Crossref]

K. Toshikiyo, T. Yogo, M. Ishii, K. Yamanaka, T. Matsuno, K. Onozawa, and T. Yamaguchi, “A MOS Image Sensor with Microlenses Built by Sub-Wavelength Patterning,” in 2007 IEEE International Solid-State Circuits Conference Digest of Technical Papers (2007), pp. 514–515.
[Crossref]

H. Rosas, Perception and Reality in Stereo Vision: Technological Applications, Advances in Stereo Vision (InTech, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 A multi-ocular stereo camera system with single main lens/chip. (a) Camera optics, (b) sensitivity of a proposed binocular image sensor, and (c) color filter arrangement are shown.
Fig. 2
Fig. 2 (a) Top view of imaging area of a multi-ocular image sensor, and (b) a cross section view of a multi-ocular image sensor with incident light ray.
Fig. 3
Fig. 3 Ideal inner lens to focus incident light to photodiode (PD) in case of (a) a positive incident ray angle, (b) a normal incident ray angle, and (c) a negative incident ray angle to the pixel.
Fig. 4
Fig. 4 Lens profile concept of iDML. (a) Top view, (b) cross-section view, and (c) refractive index profile.
Fig. 5
Fig. 5 Top view of iDML in a multi-ocular pixel unit.
Fig. 6
Fig. 6 Multiple operation modes of 3D vision are shown. By selecting columns of pixels according to an operation mode, the multiocular image sensors can provide different stereo vision by using different baseline distance.
Fig. 7
Fig. 7 Sensitivity response of pixel which is produced with values of kth ocular pixel and k + 1th ocular pixel is shown.
Fig. 8
Fig. 8 An SEM image of pixel cross-section of (a) a binocular image sensor and (b) a quad-ocular image sensor.
Fig. 9
Fig. 9 Measured sensitivity responses of (a) a fabricated binocular image sensor and (b) a fabricated quad-ocular image sensor are shown.
Fig. 10
Fig. 10 Demonstration of stereo imaging. (a) Scene: objects are three small toys positioned at 50 cm, 60 cm, and 70 cm from stereo camera with the fabricated two-view 3D image sensor. (b) Captured left ocular image and right ocular image. (c) Magnified images show disparity at each position.
Fig. 11
Fig. 11 Demonstration of quad-ocular images. (a) Object: a small screw with 12 mm height. (b) Capture images by using a camera with a fabricated quad-ocular stereo camera.
Fig. 12
Fig. 12 Calculated disparity and measured disparity as a function of object distance from focused point using a quad-ocular image sensor and a binocular image sensor.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ= n o n i f inner sinθ
I p (x,y)= k=1 n a k I k (x,y) ,

Metrics