Abstract

The feasibility of remote chemical detection is experimentally demonstrated by using a Teflon pipe as a scanning arm in a continuous-terahertz wave sensing and imaging system. Different tablets with distinct mixed ratios of aluminum and polyethylene powders are well distinguished by measuring the power reflectivities of 0.4 THz wave associated with their distinct terahertz refractive indices. Given its refractive index sensitivity and fast response, the reflective terahertz sensing system can be used to real-time trace and quantitatively analyze the ammonium–chloride aerosols produced by the chemical reaction between hydrochloric acid and ammonia vapors. With a tightly focusing terahertz beam spot, the spatial and concentration distributions of the generated chemical product are successfully mapped out by the 1D scan of the flexible pipe probe. In consideration of the responsitivity, power stability, and focused spot size of the system, its detection limit for the ammonium–chloride aerosol is estimated to be approximately 165 nmol/mm2. The reliable and compact terahertz pipe scan system is potentially suitable for practical applications, such as biomedical or industrial fiber endoscopy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz refractive index sensors using dielectric pipe waveguides

Borwen You, Ja-Yu Lu, Chin-Ping Yu, Tze-An Liu, and Jin-Long Peng
Opt. Express 20(6) 5858-5866 (2012)

Bending loss of terahertz pipe waveguides

Jen-Tang Lu, Yu-Chun Hsueh, Yu-Ru Huang, Yuh-Jing Hwang, and Chi-Kuang Sun
Opt. Express 18(25) 26332-26338 (2010)

Terahertz polarization-sensitive rectangular pipe waveguides

Jen-Tang Lu, Chih-Hsien Lai, Tzu-Fang Tseng, Hua Chen, Yuan-Fu Tsai, I-Ju Chen, Yuh-Jing Hwang, Hung-chun Chang, and Chi-Kuang Sun
Opt. Express 19(22) 21532-21539 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Monk and D. R. Walt, “Optical fiber-based biosensors,” Anal. Bioanal. Chem. 379(7-8), 931–945 (2004).
    [Crossref] [PubMed]
  2. K. S. Bronk, K. L. Michael, P. Pantano, and D. R. Walt, “Combined imaging and chemical sensing using a single optical imaging fiber,” Anal. Chem. 67(17), 2750–2757 (1995).
    [Crossref] [PubMed]
  3. Z. Yang, M. Zhang, Y. Liao, Q. Tian, Q. Li, Y. Zhang, and Z. Zhuang, “Extrinsic Fabry-Perot interferometric optical fiber hydrogen detection system,” Appl. Opt. 49(15), 2736–2740 (2010).
    [Crossref] [PubMed]
  4. A. Albertazzi, A. C. Hofmann, A. V. Fantin, and J. M. C. Santos, “Development and application of a photogrammetric endoscopic system for measurement of misalignment and internal profile of welded joints in pipelines,” Proc. SPIE 7389, 73891W (2009).
  5. L. S. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology: Chemical and Environmental Sensing (Springer Science & Business Media, 2013), Chap. 5.
  6. J. Heo, M. Rodrigues, S. J. Saggese, and G. H. Sigel., “Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers,” Appl. Opt. 30(27), 3944–3951 (1991).
    [Crossref] [PubMed]
  7. D. M. Charron, K. Ajito, J. Y. Kim, and Y. Ueno, “Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging,” Anal. Chem. 85(4), 1980–1984 (2013).
    [Crossref] [PubMed]
  8. J. Y. Lu, C. M. Chiu, C. C. Kuo, C. H. Lai, H. C. Chang, Y. J. Hwang, C. L. Pan, and C. K. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92(8), 084102 (2008).
    [Crossref]
  9. Y. Cui, W. Fu, X. Guan, M. Hu, Y. Yan, and S. Liu, “Experiment studies on two-dimension terahertz raster scan imaging,” J. Infrared Milli. Terahz. Waves 33(5), 513–521 (2012).
    [Crossref]
  10. Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
    [Crossref] [PubMed]
  11. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
    [Crossref] [PubMed]
  12. Y. B. Ji, E. S. Lee, S. H. Kim, J. H. Son, and T. I. Jeon, “A miniaturized fiber-coupled terahertz endoscope system,” Opt. Express 17(19), 17082–17087 (2009).
    [Crossref] [PubMed]
  13. J. Y. Lu, C. C. Kuo, C. M. Chiu, H. W. Chen, Y. J. Hwang, C. L. Pan, and C. K. Sun, “THz interferometric imaging using subwavelength plastic fiber based THz endoscopes,” Opt. Express 16(4), 2494–2501 (2008).
    [Crossref] [PubMed]
  14. Y. W. Huang, T. F. Tseng, C. C. Kuo, Y. J. Hwang, and C. K. Sun, “Fiber-based swept-source terahertz radar,” Opt. Lett. 35(9), 1344–1346 (2010).
    [Crossref] [PubMed]
  15. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
    [Crossref]
  16. C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
    [Crossref] [PubMed]
  17. C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
    [Crossref] [PubMed]
  18. J. T. Lu, Y. C. Hsueh, Y. R. Huang, Y. J. Hwang, and C. K. Sun, “Bending loss of terahertz pipe waveguides,” Opt. Express 18(25), 26332–26338 (2010).
    [Crossref] [PubMed]
  19. C. H. Lai, T. Chang, and Y. S. Yeh, “Characteristics of bent terahertz antiresonant reflecting pipe waveguides,” Opt. Express 22(7), 8460–8472 (2014).
    [Crossref] [PubMed]
  20. N. Laman and D. Grischkowsky, “Reduced conductivity in the terahertz skin-depth layer of metals,” Appl. Phys. Lett. 90(12), 122115 (2007).
    [Crossref]
  21. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), Chap. 6.
  22. M. Naftaly, “Metrology issues and solutions in THz time-domain spectroscopy: noise, errors, calibration,” IEEE Sens. J. 13(1), 8–17 (2013).
    [Crossref]
  23. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1120 (1983).
    [Crossref] [PubMed]
  24. J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Milli. 17(12), 1996–2034 (1997).
    [Crossref]
  25. B. You, C. H. Ho, W. J. Zheng, and J. Y. Lu, “Terahertz volatile gas sensing by using polymer microporous membranes,” Opt. Express 23(3), 2048–2057 (2015).
    [Crossref] [PubMed]

2015 (1)

2014 (1)

2013 (2)

D. M. Charron, K. Ajito, J. Y. Kim, and Y. Ueno, “Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging,” Anal. Chem. 85(4), 1980–1984 (2013).
[Crossref] [PubMed]

M. Naftaly, “Metrology issues and solutions in THz time-domain spectroscopy: noise, errors, calibration,” IEEE Sens. J. 13(1), 8–17 (2013).
[Crossref]

2012 (1)

Y. Cui, W. Fu, X. Guan, M. Hu, Y. Yan, and S. Liu, “Experiment studies on two-dimension terahertz raster scan imaging,” J. Infrared Milli. Terahz. Waves 33(5), 513–521 (2012).
[Crossref]

2010 (5)

2009 (3)

Y. B. Ji, E. S. Lee, S. H. Kim, J. H. Son, and T. I. Jeon, “A miniaturized fiber-coupled terahertz endoscope system,” Opt. Express 17(19), 17082–17087 (2009).
[Crossref] [PubMed]

A. Albertazzi, A. C. Hofmann, A. V. Fantin, and J. M. C. Santos, “Development and application of a photogrammetric endoscopic system for measurement of misalignment and internal profile of welded joints in pipelines,” Proc. SPIE 7389, 73891W (2009).

C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
[Crossref] [PubMed]

2008 (2)

J. Y. Lu, C. M. Chiu, C. C. Kuo, C. H. Lai, H. C. Chang, Y. J. Hwang, C. L. Pan, and C. K. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92(8), 084102 (2008).
[Crossref]

J. Y. Lu, C. C. Kuo, C. M. Chiu, H. W. Chen, Y. J. Hwang, C. L. Pan, and C. K. Sun, “THz interferometric imaging using subwavelength plastic fiber based THz endoscopes,” Opt. Express 16(4), 2494–2501 (2008).
[Crossref] [PubMed]

2007 (1)

N. Laman and D. Grischkowsky, “Reduced conductivity in the terahertz skin-depth layer of metals,” Appl. Phys. Lett. 90(12), 122115 (2007).
[Crossref]

2006 (1)

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[Crossref] [PubMed]

2004 (1)

D. J. Monk and D. R. Walt, “Optical fiber-based biosensors,” Anal. Bioanal. Chem. 379(7-8), 931–945 (2004).
[Crossref] [PubMed]

2002 (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

1997 (1)

J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Milli. 17(12), 1996–2034 (1997).
[Crossref]

1995 (1)

K. S. Bronk, K. L. Michael, P. Pantano, and D. R. Walt, “Combined imaging and chemical sensing using a single optical imaging fiber,” Anal. Chem. 67(17), 2750–2757 (1995).
[Crossref] [PubMed]

1991 (1)

1983 (1)

Ajito, K.

D. M. Charron, K. Ajito, J. Y. Kim, and Y. Ueno, “Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging,” Anal. Chem. 85(4), 1980–1984 (2013).
[Crossref] [PubMed]

Albertazzi, A.

A. Albertazzi, A. C. Hofmann, A. V. Fantin, and J. M. C. Santos, “Development and application of a photogrammetric endoscopic system for measurement of misalignment and internal profile of welded joints in pipelines,” Proc. SPIE 7389, 73891W (2009).

Alexander, R. W.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bronk, K. S.

K. S. Bronk, K. L. Michael, P. Pantano, and D. R. Walt, “Combined imaging and chemical sensing using a single optical imaging fiber,” Anal. Chem. 67(17), 2750–2757 (1995).
[Crossref] [PubMed]

Chang, H. C.

Chang, T.

Charron, D. M.

D. M. Charron, K. Ajito, J. Y. Kim, and Y. Ueno, “Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging,” Anal. Chem. 85(4), 1980–1984 (2013).
[Crossref] [PubMed]

Chen, H. W.

Chiu, C. M.

J. Y. Lu, C. C. Kuo, C. M. Chiu, H. W. Chen, Y. J. Hwang, C. L. Pan, and C. K. Sun, “THz interferometric imaging using subwavelength plastic fiber based THz endoscopes,” Opt. Express 16(4), 2494–2501 (2008).
[Crossref] [PubMed]

J. Y. Lu, C. M. Chiu, C. C. Kuo, C. H. Lai, H. C. Chang, Y. J. Hwang, C. L. Pan, and C. K. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92(8), 084102 (2008).
[Crossref]

Cui, Y.

Y. Cui, W. Fu, X. Guan, M. Hu, Y. Yan, and S. Liu, “Experiment studies on two-dimension terahertz raster scan imaging,” J. Infrared Milli. Terahz. Waves 33(5), 513–521 (2012).
[Crossref]

Engelbrecht, C. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Fantin, A. V.

A. Albertazzi, A. C. Hofmann, A. V. Fantin, and J. M. C. Santos, “Development and application of a photogrammetric endoscopic system for measurement of misalignment and internal profile of welded joints in pipelines,” Proc. SPIE 7389, 73891W (2009).

Fu, W.

Y. Cui, W. Fu, X. Guan, M. Hu, Y. Yan, and S. Liu, “Experiment studies on two-dimension terahertz raster scan imaging,” J. Infrared Milli. Terahz. Waves 33(5), 513–521 (2012).
[Crossref]

Grischkowsky, D.

N. Laman and D. Grischkowsky, “Reduced conductivity in the terahertz skin-depth layer of metals,” Appl. Phys. Lett. 90(12), 122115 (2007).
[Crossref]

Guan, X.

Y. Cui, W. Fu, X. Guan, M. Hu, Y. Yan, and S. Liu, “Experiment studies on two-dimension terahertz raster scan imaging,” J. Infrared Milli. Terahz. Waves 33(5), 513–521 (2012).
[Crossref]

Helmchen, F.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Heng, X.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[Crossref] [PubMed]

Heo, J.

Ho, C. H.

Hofmann, A. C.

A. Albertazzi, A. C. Hofmann, A. V. Fantin, and J. M. C. Santos, “Development and application of a photogrammetric endoscopic system for measurement of misalignment and internal profile of welded joints in pipelines,” Proc. SPIE 7389, 73891W (2009).

Hsueh, Y. C.

Hu, M.

Y. Cui, W. Fu, X. Guan, M. Hu, Y. Yan, and S. Liu, “Experiment studies on two-dimension terahertz raster scan imaging,” J. Infrared Milli. Terahz. Waves 33(5), 513–521 (2012).
[Crossref]

Huang, Y. J.

Huang, Y. R.

Huang, Y. W.

Hwang, Y. J.

Jeon, T. I.

Ji, Y. B.

Kim, J. Y.

D. M. Charron, K. Ajito, J. Y. Kim, and Y. Ueno, “Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging,” Anal. Chem. 85(4), 1980–1984 (2013).
[Crossref] [PubMed]

Kim, S. H.

Kuo, C. C.

Lai, C. H.

Laman, N.

N. Laman and D. Grischkowsky, “Reduced conductivity in the terahertz skin-depth layer of metals,” Appl. Phys. Lett. 90(12), 122115 (2007).
[Crossref]

Lamb, J. W.

J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Milli. 17(12), 1996–2034 (1997).
[Crossref]

Lee, C. M.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Lee, E. S.

Li, Q.

Liao, Y.

Liu, S.

Y. Cui, W. Fu, X. Guan, M. Hu, Y. Yan, and S. Liu, “Experiment studies on two-dimension terahertz raster scan imaging,” J. Infrared Milli. Terahz. Waves 33(5), 513–521 (2012).
[Crossref]

Liu, T. A.

Long, L. L.

Lu, J. T.

Lu, J. Y.

McDowell, E. J.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[Crossref] [PubMed]

Michael, K. L.

K. S. Bronk, K. L. Michael, P. Pantano, and D. R. Walt, “Combined imaging and chemical sensing using a single optical imaging fiber,” Anal. Chem. 67(17), 2750–2757 (1995).
[Crossref] [PubMed]

Monk, D. J.

D. J. Monk and D. R. Walt, “Optical fiber-based biosensors,” Anal. Bioanal. Chem. 379(7-8), 931–945 (2004).
[Crossref] [PubMed]

Naftaly, M.

M. Naftaly, “Metrology issues and solutions in THz time-domain spectroscopy: noise, errors, calibration,” IEEE Sens. J. 13(1), 8–17 (2013).
[Crossref]

Ordal, M. A.

Pan, C. L.

J. Y. Lu, C. C. Kuo, C. M. Chiu, H. W. Chen, Y. J. Hwang, C. L. Pan, and C. K. Sun, “THz interferometric imaging using subwavelength plastic fiber based THz endoscopes,” Opt. Express 16(4), 2494–2501 (2008).
[Crossref] [PubMed]

J. Y. Lu, C. M. Chiu, C. C. Kuo, C. H. Lai, H. C. Chang, Y. J. Hwang, C. L. Pan, and C. K. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92(8), 084102 (2008).
[Crossref]

Pantano, P.

K. S. Bronk, K. L. Michael, P. Pantano, and D. R. Walt, “Combined imaging and chemical sensing using a single optical imaging fiber,” Anal. Chem. 67(17), 2750–2757 (1995).
[Crossref] [PubMed]

Peng, J. L.

Rodrigues, M.

Saggese, S. J.

Santos, J. M. C.

A. Albertazzi, A. C. Hofmann, A. V. Fantin, and J. M. C. Santos, “Development and application of a photogrammetric endoscopic system for measurement of misalignment and internal profile of welded joints in pipelines,” Proc. SPIE 7389, 73891W (2009).

Seibel, E. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

Sigel, G. H.

Son, J. H.

Soper, T. D.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Sun, C. K.

Tian, Q.

Tseng, T. F.

Ueno, Y.

D. M. Charron, K. Ajito, J. Y. Kim, and Y. Ueno, “Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging,” Anal. Chem. 85(4), 1980–1984 (2013).
[Crossref] [PubMed]

Walt, D. R.

D. J. Monk and D. R. Walt, “Optical fiber-based biosensors,” Anal. Bioanal. Chem. 379(7-8), 931–945 (2004).
[Crossref] [PubMed]

K. S. Bronk, K. L. Michael, P. Pantano, and D. R. Walt, “Combined imaging and chemical sensing using a single optical imaging fiber,” Anal. Chem. 67(17), 2750–2757 (1995).
[Crossref] [PubMed]

Ward, C. A.

Wu, J.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[Crossref] [PubMed]

Yan, Y.

Y. Cui, W. Fu, X. Guan, M. Hu, Y. Yan, and S. Liu, “Experiment studies on two-dimension terahertz raster scan imaging,” J. Infrared Milli. Terahz. Waves 33(5), 513–521 (2012).
[Crossref]

Yang, C.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[Crossref] [PubMed]

Yang, Z.

Yaqoob, Z.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[Crossref] [PubMed]

Yeh, Y. S.

You, B.

Zhang, M.

Zhang, Y.

Zheng, W. J.

Zhuang, Z.

Anal. Bioanal. Chem. (1)

D. J. Monk and D. R. Walt, “Optical fiber-based biosensors,” Anal. Bioanal. Chem. 379(7-8), 931–945 (2004).
[Crossref] [PubMed]

Anal. Chem. (2)

K. S. Bronk, K. L. Michael, P. Pantano, and D. R. Walt, “Combined imaging and chemical sensing using a single optical imaging fiber,” Anal. Chem. 67(17), 2750–2757 (1995).
[Crossref] [PubMed]

D. M. Charron, K. Ajito, J. Y. Kim, and Y. Ueno, “Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging,” Anal. Chem. 85(4), 1980–1984 (2013).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

J. Y. Lu, C. M. Chiu, C. C. Kuo, C. H. Lai, H. C. Chang, Y. J. Hwang, C. L. Pan, and C. K. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92(8), 084102 (2008).
[Crossref]

N. Laman and D. Grischkowsky, “Reduced conductivity in the terahertz skin-depth layer of metals,” Appl. Phys. Lett. 90(12), 122115 (2007).
[Crossref]

IEEE Sens. J. (1)

M. Naftaly, “Metrology issues and solutions in THz time-domain spectroscopy: noise, errors, calibration,” IEEE Sens. J. 13(1), 8–17 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

Int. J. Infrared. Milli. (1)

J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Milli. 17(12), 1996–2034 (1997).
[Crossref]

J. Biomed. Opt. (1)

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[Crossref] [PubMed]

J. Biophotonics (1)

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

J. Infrared Milli. Terahz. Waves (1)

Y. Cui, W. Fu, X. Guan, M. Hu, Y. Yan, and S. Liu, “Experiment studies on two-dimension terahertz raster scan imaging,” J. Infrared Milli. Terahz. Waves 33(5), 513–521 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Proc. SPIE (1)

A. Albertazzi, A. C. Hofmann, A. V. Fantin, and J. M. C. Santos, “Development and application of a photogrammetric endoscopic system for measurement of misalignment and internal profile of welded joints in pipelines,” Proc. SPIE 7389, 73891W (2009).

Other (2)

L. S. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology: Chemical and Environmental Sensing (Springer Science & Business Media, 2013), Chap. 5.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), Chap. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Optical configuration of a THz pipe scan system. (b) Bending loss performance of a Teflon pipe. (c) Schematic of a 2D mechanical scan to image a tablet. (d) Photos of the tablets mixed with different ratios of PE and Al powders. (e) THz reflective images of tablets.
Fig. 2
Fig. 2 (a) Measured and calculated THz reflectivities and (b) the corresponding refractive indices of tablets mixed with various volume percentages of the aluminum powder.
Fig. 3
Fig. 3 Sensitivity of THz refractive index detection.
Fig. 4
Fig. 4 (a) Design of the tubular chamber for the chemical reaction. (b) A PE cap is connected to a Teflon microtube for reactant liquid injection and a cotton sorbent for vapor evaporation. (c) Microtube inlet to deliver liquid analytes into the cotton sorbent. (d) Chemical reaction of NH3 and HCl vapors inside the tubular chamber. The white region in the reaction chamber is the generated chemical product, namely, NH4Cl aerosol.
Fig. 5
Fig. 5 (a) Dynamic relative reflectivity of the chemical reaction to generate aerosol, NH4Cl, within 15 min. (b) The average THz relative reflectivities of the equilibrium and vapor absorption periods versus the liquid reactant volumes.
Fig. 6
Fig. 6 (a) Sensing results of a photograph and (b) THz wave power difference to show the NH4Cl aerosol generated by the pipe scan system for the 0.03 cm3 liquid reactants of NH3 and HCl. Sensing results of the NH4Cl aerosol generation showed in (c) a photograph and (d) the THz wave power difference for the reactants with 0.06 cm3 volumes. Detection results of THz wave power difference for the liquid reactant volumes of (e) 0.10 cm3 and (f) 0.15 cm3.
Fig. 7
Fig. 7 (a) THz signals obtained by the integral of THz reflective power difference curves with respect to scan positions. (b) Weights of generated NH4Cl aerosol in the reaction chamber versus different injected reactant volumes. (c) THz reflective power difference for different amounts of NH4Cl aerosol generated from different volumes of reaction liquids. (d) Average weight of NH4Cl aerosol detected within a THz wave beam spot. (e) Relation between the THz reflective power difference and the NH4Cl aerosol within a THz beam spot.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( 2π×R )×[ P( x 1 ) P( x 2 ) dP(x) ]×d π× r 2 × P avg. ×d = W total W spot

Metrics