Abstract

A passively mode-locked Ho:YAG ceramic laser around 2.1 µm is demonstrated using GaSb-based near-surface SESAM as saturable absorber. Stable and self-starting mode-locked operation is realized in the entire tuning range from 2059 to 2121 nm. The oscillator operated at 82 MHz with a maximum output power of 230 mW at 2121 nm. The shortest pulses with duration of 2.1 ps were achieved at 2064 nm. We also present spectroscopic properties of Ho:YAG ceramics at room temperature.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm

Alexander Gluth, Yicheng Wang, Valentin Petrov, Jonna Paajaste, Soile Suomalainen, Antti Härkönen, Mircea Guina, Günter Steinmeyer, Xavier Mateos, Stefano Veronesi, Mauro Tonelli, Jiang Li, Yubai Pan, Jingkun Guo, and Uwe Griebner
Opt. Express 23(2) 1361-1369 (2015)

Thulium doped LuAG ceramics for passively mode locked lasers

Yicheng Wang, Ruijun Lan, Xavier Mateos, Jiang Li, Chaoyu Li, Soile Suomalainen, Antti Härkönen, Mircea Guina, Valentin Petrov, and Uwe Griebner
Opt. Express 25(6) 7084-7091 (2017)

Mode-locked Tm,Ho:YAP laser around 2.1 μm

K. J. Yang, D. C. Heinecke, C. Kölbl, T. Dekorsy, S. Z. Zhao, L. H. Zheng, J. Xu, and G. J. Zhao
Opt. Express 21(2) 1574-1580 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics Bishnu Pal (Ed.) (InTech, 2010), pp. 471–500.
  2. R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 νm,” Appl. Opt. 35(36), 7117–7127 (1996).
    [Crossref] [PubMed]
  3. V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
    [Crossref]
  4. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9-µm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17(5), 723–728 (2000).
    [Crossref]
  5. T. M. Taczak and D. K. Killinger, “Development of a tunable, narrow-linewidth, cw 2.066-μm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O,” Appl. Opt. 37(36), 8460–8476 (1998).
    [Crossref] [PubMed]
  6. V. Sudesh and K. Asai, “Spectroscopic and diode-pumped-laser properties of Tm,Ho:YLF; Tm,Ho:LuLF; and Tm,Ho:LuAG crystals: a comparative study,” J. Opt. Soc. Am. B 20(9), 1829–1837 (2003).
    [Crossref]
  7. S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
    [Crossref]
  8. A. Dergachev, “High-energy, kHz, picosecond, 2-μm laser pump source for mid-IR nonlinear optical devices,” Proc. SPIE 8599, 85990B (2013).
    [Crossref]
  9. F. Heine, E. Heumann, G. Huber, and K. L. Schepler, “Mode locking of room-temperature cw thulium and holmium lasers,” Appl. Phys. Lett. 60(10), 1161–1162 (1992).
    [Crossref]
  10. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
    [Crossref]
  11. K. Yang, D. Heinecke, J. Paajaste, C. Kölbl, T. Dekorsy, S. Suomalainen, and M. Guina, “Mode-locking of 2 μm Tm,Ho:YAG laser with GaInAs and GaSb-based SESAMs,” Opt. Express 21(4), 4311–4318 (2013).
    [Crossref] [PubMed]
  12. B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm: YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).
    [Crossref]
  13. X. Duan, J. Yuan, Z. Cui, B. Yao, T. Dai, J. Li, and Y. Pan, “Resonantly pumped actively mode-locked Ho:YAG ceramic laser at 2122.1 nm,” Appl. Opt. 55(8), 1953–1956 (2016).
    [Crossref] [PubMed]
  14. A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid-state Lasers,” J. Am. Ceram. Soc. 78(9), 2545–2547 (1995).
    [Crossref]
  15. W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
    [Crossref]
  16. X. J. Cheng, J. Q. Xu, M. J. Wang, B. X. Jiang, W. X. Zhang, and Y. B. Pan, “Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature,” Laser Phys. Lett. 7(5), 351–354 (2010).
    [Crossref]
  17. H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, and X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
    [Crossref] [PubMed]
  18. L. Wang, C. Gao, M. Gao, Y. Li, F. Yue, J. Zhang, and D. Tang, “A resonantly-pumped tunable Q-switched Ho:YAG ceramic laser with diffraction-limit beam quality,” Opt. Express 22(1), 254–261 (2014).
    [Crossref] [PubMed]
  19. Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton‐bombarded multiple quantum well structures,” Appl. Phys. Lett. 46(8), 701–703 (1985).
    [Crossref]
  20. A. Garnache, B. Sermage, R. Teissier, G. Saint-Giro, and I. Sagnes, “A new kind of fast quantum-well semiconductor saturable-absorber mirror with low losses for ps pulse generation,” International Conference on Indium Phosphide and Related Materials, May 2003, pp. 247–250 (2003).
    [Crossref]
  21. N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
    [Crossref]
  22. A. A. Lagatsky, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett, “Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm,” Opt. Express 19(10), 9995–10000 (2011).
    [Crossref] [PubMed]
  23. A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm,” Opt. Lett. 35(2), 172–174 (2010).
    [Crossref] [PubMed]
  24. A. A. Lagatsky, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, S. Calvez, M. D. Dawson, J. A. Gupta, C. T. A. Brown, and W. Sibbett, “Femtosecond (191 fs) NaY(WO4)2 Tm,Ho-codoped laser at 2060 nm,” Opt. Lett. 35(18), 3027–3029 (2010).
    [Crossref] [PubMed]
  25. A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
    [Crossref] [PubMed]
  26. V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
    [Crossref] [PubMed]
  27. Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
    [Crossref]
  28. J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
    [Crossref]
  29. J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(2), 294–297 (2012).
    [Crossref]
  30. J. Viheriälä, K. Haring, S. Suomalainen, R. Koskinen, T. Niemi, and M. Guina, “High Spectral Purity High-Power GaSb-Based DFB Laser Fabricated by Nanoimprint Lithography,” IEEE Photonics Technol. Lett. 28(11), 1233–1236 (2016).
    [Crossref]
  31. D. V. Donetsky, D. Westerfeld, G. L. Belenky, R. U. Martinelli, D. Z. Garbuzov, and J. C. Connolly, “Extraordinarily wide optical gain spectrum in 2.2–2.5 μm In(Al)GaAsSb/GaSb quantum-well ridge-waveguide lasers,” J. Appl. Phys. 90(8), 4281–4283 (2001).
    [Crossref]
  32. M. Schellhorn and A. Hirth, “Modeling of Intracavity-Pumped Quasi-Three-Level Lasers,” IEEE J. Quantum Electron. 38(11), 1455–1464 (2002).
    [Crossref]
  33. J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
    [Crossref]
  34. G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
    [Crossref] [PubMed]
  35. H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity,” Opt. Express 18(2), 1479–1486 (2010).
    [Crossref] [PubMed]
  36. L. C. Kong, Z. P. Qin, G. Q. Xie, X. D. Xu, J. Xu, P. Yuan, and L. J. Qian, “Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser,” Opt. Lett. 40(3), 356–358 (2015).
    [Crossref] [PubMed]
  37. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999).
    [Crossref]
  38. N. Coluccelli, A. Lagatsky, A. Di Lieto, M. Tonelli, G. Galzerano, W. Sibbett, and P. Laporta, “Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 µm,” Opt. Lett. 36(16), 3209–3211 (2011).
    [Crossref] [PubMed]

2016 (3)

2015 (5)

2014 (2)

L. Wang, C. Gao, M. Gao, Y. Li, F. Yue, J. Zhang, and D. Tang, “A resonantly-pumped tunable Q-switched Ho:YAG ceramic laser with diffraction-limit beam quality,” Opt. Express 22(1), 254–261 (2014).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
[Crossref]

2013 (2)

2012 (2)

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[Crossref]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(2), 294–297 (2012).
[Crossref]

2011 (3)

2010 (6)

A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm,” Opt. Lett. 35(2), 172–174 (2010).
[Crossref] [PubMed]

A. A. Lagatsky, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, S. Calvez, M. D. Dawson, J. A. Gupta, C. T. A. Brown, and W. Sibbett, “Femtosecond (191 fs) NaY(WO4)2 Tm,Ho-codoped laser at 2060 nm,” Opt. Lett. 35(18), 3027–3029 (2010).
[Crossref] [PubMed]

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity,” Opt. Express 18(2), 1479–1486 (2010).
[Crossref] [PubMed]

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
[Crossref]

X. J. Cheng, J. Q. Xu, M. J. Wang, B. X. Jiang, W. X. Zhang, and Y. B. Pan, “Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature,” Laser Phys. Lett. 7(5), 351–354 (2010).
[Crossref]

2009 (1)

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[Crossref]

2008 (1)

2003 (1)

2002 (1)

M. Schellhorn and A. Hirth, “Modeling of Intracavity-Pumped Quasi-Three-Level Lasers,” IEEE J. Quantum Electron. 38(11), 1455–1464 (2002).
[Crossref]

2001 (1)

D. V. Donetsky, D. Westerfeld, G. L. Belenky, R. U. Martinelli, D. Z. Garbuzov, and J. C. Connolly, “Extraordinarily wide optical gain spectrum in 2.2–2.5 μm In(Al)GaAsSb/GaSb quantum-well ridge-waveguide lasers,” J. Appl. Phys. 90(8), 4281–4283 (2001).
[Crossref]

2000 (1)

1999 (1)

1998 (1)

1996 (2)

R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 νm,” Appl. Opt. 35(36), 7117–7127 (1996).
[Crossref] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

1995 (1)

A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid-state Lasers,” J. Am. Ceram. Soc. 78(9), 2545–2547 (1995).
[Crossref]

1992 (1)

F. Heine, E. Heumann, G. Huber, and K. L. Schepler, “Mode locking of room-temperature cw thulium and holmium lasers,” Appl. Phys. Lett. 60(10), 1161–1162 (1992).
[Crossref]

1985 (1)

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton‐bombarded multiple quantum well structures,” Appl. Phys. Lett. 46(8), 701–703 (1985).
[Crossref]

Agnesi, A.

Aleksandrov, V.

Ames, L. L.

Asai, K.

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Belenky, G. L.

D. V. Donetsky, D. Westerfeld, G. L. Belenky, R. U. Martinelli, D. Z. Garbuzov, and J. C. Connolly, “Extraordinarily wide optical gain spectrum in 2.2–2.5 μm In(Al)GaAsSb/GaSb quantum-well ridge-waveguide lasers,” J. Appl. Phys. 90(8), 4281–4283 (2001).
[Crossref]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Brockman, P.

Brown, C. T. A.

Buchvarov, I.

Budni, P. A.

Calloway, R. S.

Calvez, S.

Cascales, C.

Chen, H.

Cheng, X. J.

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
[Crossref]

X. J. Cheng, J. Q. Xu, M. J. Wang, B. X. Jiang, W. X. Zhang, and Y. B. Pan, “Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature,” Laser Phys. Lett. 7(5), 351–354 (2010).
[Crossref]

Chicklis, E. P.

Coluccelli, N.

N. Coluccelli, A. Lagatsky, A. Di Lieto, M. Tonelli, G. Galzerano, W. Sibbett, and P. Laporta, “Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 µm,” Opt. Lett. 36(16), 3209–3211 (2011).
[Crossref] [PubMed]

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

Connolly, J. C.

D. V. Donetsky, D. Westerfeld, G. L. Belenky, R. U. Martinelli, D. Z. Garbuzov, and J. C. Connolly, “Extraordinarily wide optical gain spectrum in 2.2–2.5 μm In(Al)GaAsSb/GaSb quantum-well ridge-waveguide lasers,” J. Appl. Phys. 90(8), 4281–4283 (2001).
[Crossref]

Cui, Z.

X. Duan, J. Yuan, Z. Cui, B. Yao, T. Dai, J. Li, and Y. Pan, “Resonantly pumped actively mode-locked Ho:YAG ceramic laser at 2122.1 nm,” Appl. Opt. 55(8), 1953–1956 (2016).
[Crossref] [PubMed]

B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm: YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).
[Crossref]

Dai, T.

Dai, T. Y.

B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm: YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).
[Crossref]

Dawson, M. D.

Dekorsy, T.

Dergachev, A.

A. Dergachev, “High-energy, kHz, picosecond, 2-μm laser pump source for mid-IR nonlinear optical devices,” Proc. SPIE 8599, 85990B (2013).
[Crossref]

Di, J.

Di Lieto, A.

N. Coluccelli, A. Lagatsky, A. Di Lieto, M. Tonelli, G. Galzerano, W. Sibbett, and P. Laporta, “Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 µm,” Opt. Lett. 36(16), 3209–3211 (2011).
[Crossref] [PubMed]

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

Díaz, F.

Donetsky, D. V.

D. V. Donetsky, D. Westerfeld, G. L. Belenky, R. U. Martinelli, D. Z. Garbuzov, and J. C. Connolly, “Extraordinarily wide optical gain spectrum in 2.2–2.5 μm In(Al)GaAsSb/GaSb quantum-well ridge-waveguide lasers,” J. Appl. Phys. 90(8), 4281–4283 (2001).
[Crossref]

Du, Y. Q.

B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm: YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).
[Crossref]

Duan, X.

Duan, X. M.

B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm: YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).
[Crossref]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Forney, P.

Fuhrberg, P.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[Crossref]

Fusari, F.

Galzerano, G.

N. Coluccelli, A. Lagatsky, A. Di Lieto, M. Tonelli, G. Galzerano, W. Sibbett, and P. Laporta, “Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 µm,” Opt. Lett. 36(16), 3209–3211 (2011).
[Crossref] [PubMed]

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

Gao, C.

Gao, M.

Garbuzov, D. Z.

D. V. Donetsky, D. Westerfeld, G. L. Belenky, R. U. Martinelli, D. Z. Garbuzov, and J. C. Connolly, “Extraordinarily wide optical gain spectrum in 2.2–2.5 μm In(Al)GaAsSb/GaSb quantum-well ridge-waveguide lasers,” J. Appl. Phys. 90(8), 4281–4283 (2001).
[Crossref]

Garnache, A.

A. Garnache, B. Sermage, R. Teissier, G. Saint-Giro, and I. Sagnes, “A new kind of fast quantum-well semiconductor saturable-absorber mirror with low losses for ps pulse generation,” International Conference on Indium Phosphide and Related Materials, May 2003, pp. 247–250 (2003).
[Crossref]

Gatti, D.

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

Gluth, A.

Gorajek, L.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[Crossref]

Gossard, A. C.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton‐bombarded multiple quantum well structures,” Appl. Phys. Lett. 46(8), 701–703 (1985).
[Crossref]

Griebner, U.

Guina, M.

J. Viheriälä, K. Haring, S. Suomalainen, R. Koskinen, T. Niemi, and M. Guina, “High Spectral Purity High-Power GaSb-Based DFB Laser Fabricated by Nanoimprint Lithography,” IEEE Photonics Technol. Lett. 28(11), 1233–1236 (2016).
[Crossref]

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
[Crossref]

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
[Crossref] [PubMed]

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
[Crossref]

K. Yang, D. Heinecke, J. Paajaste, C. Kölbl, T. Dekorsy, S. Suomalainen, and M. Guina, “Mode-locking of 2 μm Tm,Ho:YAG laser with GaInAs and GaSb-based SESAMs,” Opt. Express 21(4), 4311–4318 (2013).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(2), 294–297 (2012).
[Crossref]

Guo, J.

Gupta, J. A.

Han, X.

Haring, K.

J. Viheriälä, K. Haring, S. Suomalainen, R. Koskinen, T. Niemi, and M. Guina, “High Spectral Purity High-Power GaSb-Based DFB Laser Fabricated by Nanoimprint Lithography,” IEEE Photonics Technol. Lett. 28(11), 1233–1236 (2016).
[Crossref]

Härkönen, A.

Hawley, J. G.

Heine, F.

F. Heine, E. Heumann, G. Huber, and K. L. Schepler, “Mode locking of room-temperature cw thulium and holmium lasers,” Appl. Phys. Lett. 60(10), 1161–1162 (1992).
[Crossref]

Heinecke, D.

Heumann, E.

F. Heine, E. Heumann, G. Huber, and K. L. Schepler, “Mode locking of room-temperature cw thulium and holmium lasers,” Appl. Phys. Lett. 60(10), 1161–1162 (1992).
[Crossref]

Hirth, A.

M. Schellhorn and A. Hirth, “Modeling of Intracavity-Pumped Quasi-Three-Level Lasers,” IEEE J. Quantum Electron. 38(11), 1455–1464 (2002).
[Crossref]

Hönninger, C.

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Huber, G.

F. Heine, E. Heumann, G. Huber, and K. L. Schepler, “Mode locking of room-temperature cw thulium and holmium lasers,” Appl. Phys. Lett. 60(10), 1161–1162 (1992).
[Crossref]

Ikesue, A.

A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid-state Lasers,” J. Am. Ceram. Soc. 78(9), 2545–2547 (1995).
[Crossref]

Jabczynski, J. K.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[Crossref]

Jelínková, H.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[Crossref]

Jiang, B. X.

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
[Crossref]

X. J. Cheng, J. Q. Xu, M. J. Wang, B. X. Jiang, W. X. Zhang, and Y. B. Pan, “Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature,” Laser Phys. Lett. 7(5), 351–354 (2010).
[Crossref]

Jiang, M. H.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kamata, K.

A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid-state Lasers,” J. Am. Ceram. Soc. 78(9), 2545–2547 (1995).
[Crossref]

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Keller, U.

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Killinger, D. K.

Kisel, V. E.

Klein, S. H.

Kölbl, C.

Kong, L. C.

Koopmann, P.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[Crossref]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Koranda, P.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[Crossref]

Koskinen, R.

J. Viheriälä, K. Haring, S. Suomalainen, R. Koskinen, T. Niemi, and M. Guina, “High Spectral Purity High-Power GaSb-Based DFB Laser Fabricated by Nanoimprint Lithography,” IEEE Photonics Technol. Lett. 28(11), 1233–1236 (2016).
[Crossref]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(2), 294–297 (2012).
[Crossref]

Kuleshov, N. V.

Kurilchik, S. V.

Kwiatkowski, J.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[Crossref]

Lagatsky, A.

Lagatsky, A. A.

Lamrini, S.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[Crossref]

Laporta, P.

N. Coluccelli, A. Lagatsky, A. Di Lieto, M. Tonelli, G. Galzerano, W. Sibbett, and P. Laporta, “Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 µm,” Opt. Lett. 36(16), 3209–3211 (2011).
[Crossref] [PubMed]

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

Lemons, M. L.

Li, J.

Li, Y.

Liu, W.

B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm: YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).
[Crossref]

Liu, W. B.

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
[Crossref]

Loiko, P.

Luo, H.

Martinelli, R. U.

D. V. Donetsky, D. Westerfeld, G. L. Belenky, R. U. Martinelli, D. Z. Garbuzov, and J. C. Connolly, “Extraordinarily wide optical gain spectrum in 2.2–2.5 μm In(Al)GaAsSb/GaSb quantum-well ridge-waveguide lasers,” J. Appl. Phys. 90(8), 4281–4283 (2001).
[Crossref]

Mateos, X.

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Miller, C. A.

Miller, D. A. B.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton‐bombarded multiple quantum well structures,” Appl. Phys. Lett. 46(8), 701–703 (1985).
[Crossref]

Morier-Genoud, F.

Moser, M.

Mosto, J. R.

Nakamura, S.

Nemec, M.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[Crossref]

Niemi, T.

J. Viheriälä, K. Haring, S. Suomalainen, R. Koskinen, T. Niemi, and M. Guina, “High Spectral Purity High-Power GaSb-Based DFB Laser Fabricated by Nanoimprint Lithography,” IEEE Photonics Technol. Lett. 28(11), 1233–1236 (2016).
[Crossref]

Ogawa, T.

Otto, R. G.

Paajaste, J.

Pan, Y.

Pan, Y. B.

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
[Crossref]

X. J. Cheng, J. Q. Xu, M. J. Wang, B. X. Jiang, W. X. Zhang, and Y. B. Pan, “Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature,” Laser Phys. Lett. 7(5), 351–354 (2010).
[Crossref]

Paschotta, R.

Petrov, V.

Pomeranz, L. A.

Qian, L. J.

Qin, Z.

Qin, Z. P.

Robinson, P. A.

Sagnes, I.

A. Garnache, B. Sermage, R. Teissier, G. Saint-Giro, and I. Sagnes, “A new kind of fast quantum-well semiconductor saturable-absorber mirror with low losses for ps pulse generation,” International Conference on Indium Phosphide and Related Materials, May 2003, pp. 247–250 (2003).
[Crossref]

Saint-Giro, G.

A. Garnache, B. Sermage, R. Teissier, G. Saint-Giro, and I. Sagnes, “A new kind of fast quantum-well semiconductor saturable-absorber mirror with low losses for ps pulse generation,” International Conference on Indium Phosphide and Related Materials, May 2003, pp. 247–250 (2003).
[Crossref]

Schäfer, M.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[Crossref]

Schellhorn, M.

M. Schellhorn and A. Hirth, “Modeling of Intracavity-Pumped Quasi-Three-Level Lasers,” IEEE J. Quantum Electron. 38(11), 1455–1464 (2002).
[Crossref]

Schepler, K. L.

F. Heine, E. Heumann, G. Huber, and K. L. Schepler, “Mode locking of room-temperature cw thulium and holmium lasers,” Appl. Phys. Lett. 60(10), 1161–1162 (1992).
[Crossref]

Scholle, K.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[Crossref]

Sermage, B.

A. Garnache, B. Sermage, R. Teissier, G. Saint-Giro, and I. Sagnes, “A new kind of fast quantum-well semiconductor saturable-absorber mirror with low losses for ps pulse generation,” International Conference on Indium Phosphide and Related Materials, May 2003, pp. 247–250 (2003).
[Crossref]

Serrano, M. D.

Shen, D.

Sibbett, W.

Silberberg, Y.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton‐bombarded multiple quantum well structures,” Appl. Phys. Lett. 46(8), 701–703 (1985).
[Crossref]

Smith, P. W.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton‐bombarded multiple quantum well structures,” Appl. Phys. Lett. 46(8), 701–703 (1985).
[Crossref]

Steakley, B. C.

Steinmeyer, G.

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
[Crossref] [PubMed]

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
[Crossref]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(2), 294–297 (2012).
[Crossref]

Stone, R.

Sudesh, V.

Šulc, J.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[Crossref]

Suomalainen, S.

J. Viheriälä, K. Haring, S. Suomalainen, R. Koskinen, T. Niemi, and M. Guina, “High Spectral Purity High-Power GaSb-Based DFB Laser Fabricated by Nanoimprint Lithography,” IEEE Photonics Technol. Lett. 28(11), 1233–1236 (2016).
[Crossref]

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
[Crossref]

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
[Crossref] [PubMed]

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
[Crossref]

K. Yang, D. Heinecke, J. Paajaste, C. Kölbl, T. Dekorsy, S. Suomalainen, and M. Guina, “Mode-locking of 2 μm Tm,Ho:YAG laser with GaInAs and GaSb-based SESAMs,” Opt. Express 21(4), 4311–4318 (2013).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(2), 294–297 (2012).
[Crossref]

Swanson, D.

Taczak, T. M.

Tang, D.

Tang, D. Y.

Tao, X. T.

Targ, R.

Teissier, R.

A. Garnache, B. Sermage, R. Teissier, G. Saint-Giro, and I. Sagnes, “A new kind of fast quantum-well semiconductor saturable-absorber mirror with low losses for ps pulse generation,” International Conference on Indium Phosphide and Related Materials, May 2003, pp. 247–250 (2003).
[Crossref]

Tell, B.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton‐bombarded multiple quantum well structures,” Appl. Phys. Lett. 46(8), 701–703 (1985).
[Crossref]

Tonelli, M.

Veronesi, S.

Viheriälä, J.

J. Viheriälä, K. Haring, S. Suomalainen, R. Koskinen, T. Niemi, and M. Guina, “High Spectral Purity High-Power GaSb-Based DFB Laser Fabricated by Nanoimprint Lithography,” IEEE Photonics Technol. Lett. 28(11), 1233–1236 (2016).
[Crossref]

Wada, S.

Wang, J.

B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm: YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).
[Crossref]

Wang, J. Y.

Wang, L.

L. Wang, C. Gao, M. Gao, Y. Li, F. Yue, J. Zhang, and D. Tang, “A resonantly-pumped tunable Q-switched Ho:YAG ceramic laser with diffraction-limit beam quality,” Opt. Express 22(1), 254–261 (2014).
[Crossref] [PubMed]

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
[Crossref]

Wang, M. J.

X. J. Cheng, J. Q. Xu, M. J. Wang, B. X. Jiang, W. X. Zhang, and Y. B. Pan, “Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature,” Laser Phys. Lett. 7(5), 351–354 (2010).
[Crossref]

Wang, Y.

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Westerfeld, D.

D. V. Donetsky, D. Westerfeld, G. L. Belenky, R. U. Martinelli, D. Z. Garbuzov, and J. C. Connolly, “Extraordinarily wide optical gain spectrum in 2.2–2.5 μm In(Al)GaAsSb/GaSb quantum-well ridge-waveguide lasers,” J. Appl. Phys. 90(8), 4281–4283 (2001).
[Crossref]

Wiegmann, W.

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton‐bombarded multiple quantum well structures,” Appl. Phys. Lett. 46(8), 701–703 (1985).
[Crossref]

Xie, G.

Xie, G. Q.

Xu, J.

Xu, J. Q.

X. J. Cheng, J. Q. Xu, M. J. Wang, B. X. Jiang, W. X. Zhang, and Y. B. Pan, “Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature,” Laser Phys. Lett. 7(5), 351–354 (2010).
[Crossref]

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
[Crossref]

Xu, X.

Xu, X. D.

Yang, H.

Yang, K.

Yang, X.

Yao, B.

Yao, B. Q.

B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm: YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).
[Crossref]

Yoshida, K.

A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid-state Lasers,” J. Am. Ceram. Soc. 78(9), 2545–2547 (1995).
[Crossref]

Yoshioka, H.

Yu, H. H.

Yuan, J.

Yuan, J. H.

B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm: YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).
[Crossref]

Yuan, P.

Yue, F.

Zaldo, C.

Zarifis, V.

Zendzian, W.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[Crossref]

Zhang, H. J.

Zhang, J.

Zhang, W. X.

X. J. Cheng, J. Q. Xu, M. J. Wang, B. X. Jiang, W. X. Zhang, and Y. B. Pan, “Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature,” Laser Phys. Lett. 7(5), 351–354 (2010).
[Crossref]

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
[Crossref]

Zhao, T.

Zhou, J.

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (2)

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012).
[Crossref]

N. Coluccelli, G. Galzerano, D. Gatti, A. Di Lieto, M. Tonelli, and P. Laporta, “Passive mode-locking of a diode-pumped Tm:GdLiF4 laser,” Appl. Phys. B 101(1-2), 75–78 (2010).
[Crossref]

Appl. Phys. Lett. (2)

Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton‐bombarded multiple quantum well structures,” Appl. Phys. Lett. 46(8), 701–703 (1985).
[Crossref]

F. Heine, E. Heumann, G. Huber, and K. L. Schepler, “Mode locking of room-temperature cw thulium and holmium lasers,” Appl. Phys. Lett. 60(10), 1161–1162 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Schellhorn and A. Hirth, “Modeling of Intracavity-Pumped Quasi-Three-Level Lasers,” IEEE J. Quantum Electron. 38(11), 1455–1464 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Viheriälä, K. Haring, S. Suomalainen, R. Koskinen, T. Niemi, and M. Guina, “High Spectral Purity High-Power GaSb-Based DFB Laser Fabricated by Nanoimprint Lithography,” IEEE Photonics Technol. Lett. 28(11), 1233–1236 (2016).
[Crossref]

J. Alloys Compd. (1)

W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloys Compd. 506(2), 745–748 (2010).
[Crossref]

J. Am. Ceram. Soc. (1)

A. Ikesue, K. Kamata, and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid-state Lasers,” J. Am. Ceram. Soc. 78(9), 2545–2547 (1995).
[Crossref]

J. Appl. Phys. (1)

D. V. Donetsky, D. Westerfeld, G. L. Belenky, R. U. Martinelli, D. Z. Garbuzov, and J. C. Connolly, “Extraordinarily wide optical gain spectrum in 2.2–2.5 μm In(Al)GaAsSb/GaSb quantum-well ridge-waveguide lasers,” J. Appl. Phys. 90(8), 4281–4283 (2001).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. D Appl. Phys. (1)

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
[Crossref]

Laser Phys. Lett. (3)

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009).
[Crossref]

X. J. Cheng, J. Q. Xu, M. J. Wang, B. X. Jiang, W. X. Zhang, and Y. B. Pan, “Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature,” Laser Phys. Lett. 7(5), 351–354 (2010).
[Crossref]

B. Q. Yao, Z. Cui, J. Wang, X. M. Duan, T. Y. Dai, Y. Q. Du, J. H. Yuan, and W. Liu, “An actively mode-locked Ho: YAG solid laser pumped by a Tm: YLF laser,” Laser Phys. Lett. 12(2), 025002 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Opt. Mater. Express (1)

Phys. Status Solidi., C Curr. Top. Solid State Phys. (1)

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 µm semiconductor disk lasers,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(2), 294–297 (2012).
[Crossref]

Proc. SPIE (1)

A. Dergachev, “High-energy, kHz, picosecond, 2-μm laser pump source for mid-IR nonlinear optical devices,” Proc. SPIE 8599, 85990B (2013).
[Crossref]

Prog. Quantum Electron. (1)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

Other (2)

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics Bishnu Pal (Ed.) (InTech, 2010), pp. 471–500.

A. Garnache, B. Sermage, R. Teissier, G. Saint-Giro, and I. Sagnes, “A new kind of fast quantum-well semiconductor saturable-absorber mirror with low losses for ps pulse generation,” International Conference on Indium Phosphide and Related Materials, May 2003, pp. 247–250 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Spectroscopic characterization of the 1% Ho-doped YAG ceramics in the 2-µm region. (a) Absorption σa and emission σe cross section. (b) Gain cross section σgain for different inversion levels β.
Fig. 2
Fig. 2 Scheme of the mode-locked Ho:YAG ceramic laser (L: lens; M1-M3: dichroic folding mirrors; OC: output coupler; Lyot-filter: birefringent filter).
Fig. 3
Fig. 3 Spectral tunability of the CW Ho:YAG ceramic laser obtained with a Lyot filter (1.5% OC) and reflectivity curve of the used GaSb-based SESAM.
Fig. 4
Fig. 4 Output power versus absorbed pump power of the mode-locked Ho:YAG ceramic laser for different output couplers (OCs) without the Lyot filter in the cavity. The vertical lines indicate the transition from CW to clean mode-locked operation (ML – mode locking).
Fig. 5
Fig. 5 SESAM mode-locked Ho:YAG ceramic laser. Autocorrelation traces without (a,b) and with a Lyot filter (c) in the cavity (OC: output coupler). (d) Emission spectra corresponding to (a), (b) and (c).
Fig. 6
Fig. 6 (a) Spectral tunability of the mode-locked Ho:YAG ceramic laser with the Lyot filter in the cavity (1.5% OC), (b) Autocorrelation trace and emission spectrum (inset) of the shortest pulses (0.5% OC).
Fig. 7
Fig. 7 Radio frequency spectra of the SESAM mode-locked Ho:YAG ceramic laser: (a) 1.1 GHz wide-span, (b) fundamental beat note (RBW: resolution bandwidth).

Metrics