Abstract

Hyperlenses and hyperbolic media endoscopes can overcome the diffraction limit by supporting propagating high spatial frequency extraordinary waves. While hyperlenses can resolve subwavelength details far below the diffraction limit, images obtained from them are not perfect: resonant high spatial frequency slab modes as well as diffracting ordinary waves cause image distortion and artefacts. In order to use hyperlenses as broad-band subwavelength imaging devices, it is thus necessary to avoid or correct such unwanted artefacts. Here we introduce three methods, namely convolution, field averaging, and power averaging, to remove imaging artefacts over wide frequency bands, and numerically demonstrate their effectiveness based on simulations of a wire medium endoscope. We also define a projection in spatial Fourier space to effectively filter out all ordinary waves, leading to considerable reduction in image distortion. These methods are outlined and demonstrated for simple and complex apertures.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrabroadband perfect imaging in terahertz wire media using single-cycle pulses

Korbinian J. Kaltenecker, Alessandro Tuniz, Simon C. Fleming, Alexander Argyros, Boris T. Kuhlmey, Markus Walther, and Bernd M. Fischer
Optica 3(5) 458-464 (2016)

Metal selection for wire array metamaterials for infrared frequencies

Juliano G. Hayashi, Simon Fleming, Boris T. Kuhlmey, and Alexander Argyros
Opt. Express 23(23) 29867-29881 (2015)

Imaging performance of finite uniaxial metamaterials with large anisotropy

Alessandro Tuniz, Damian Ireland, Leon Poladian, Alexander Argyros, C. Martijn de Sterke, and Boris T. Kuhlmey
Opt. Lett. 39(11) 3286-3289 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
    [Crossref] [PubMed]
  2. P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73(3), 033108 (2006).
    [Crossref]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  5. D. Melville and R. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
    [Crossref] [PubMed]
  6. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
    [Crossref] [PubMed]
  7. V. A. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30(1), 75–77 (2005).
    [Crossref] [PubMed]
  8. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [Crossref] [PubMed]
  9. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  10. J. G. Hayashi, S. Fleming, B. T. Kuhlmey, and A. Argyros, “Metal selection for wire array metamaterials for infrared frequencies,” Opt. Express 23(23), 29867–29881 (2015).
    [Crossref] [PubMed]
  11. P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of sub-wavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
    [Crossref]
  12. P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97(19), 191905 (2010).
    [Crossref]
  13. A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at teraherthz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
    [Crossref]
  14. A. Tuniz, D. Ireland, L. Poladian, A. Argyros, C. Martijn de Sterke, and B. T. Kuhlmey, “Imaging performance of finite uniaxial metamaterials with large anisotropy,” Opt. Lett. 39(11), 3286–3289 (2014).
    [Crossref] [PubMed]
  15. K. J. Korbinian, M. Walther, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, and B. M. Fischer, “Ultra-broadband perfect imaging in THz wire media using single-cycle pulses,” Optica 3(5), 458–464 (2016).
    [Crossref]
  16. A. Tuniz and B. T. Kuhlmey, “Two-dimensional imaging in hyperbolic media-the role of field components and ordinary waves,” Sci. Rep. 5, 17690 (2015).
    [Crossref] [PubMed]
  17. P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
    [Crossref]
  18. M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
    [Crossref]
  19. X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75(4), 045103 (2007).
    [Crossref]
  20. R. Kotynski and T. Stefaniuk, “Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes,” J. Opt. A 11(1), 015001 (2009).
    [Crossref]
  21. J. R. Knab, A. J. L. Adam, M. Nagel, E. Shaner, M. A. Seo, D. S. Kim, and P. C. M. Planken, “Terahertz near-field vectorial imaging of subwavelength apertures and aperture arrays,” Opt. Express 17(17), 15072–15086 (2009).
    [Crossref] [PubMed]

2016 (1)

2015 (2)

J. G. Hayashi, S. Fleming, B. T. Kuhlmey, and A. Argyros, “Metal selection for wire array metamaterials for infrared frequencies,” Opt. Express 23(23), 29867–29881 (2015).
[Crossref] [PubMed]

A. Tuniz and B. T. Kuhlmey, “Two-dimensional imaging in hyperbolic media-the role of field components and ordinary waves,” Sci. Rep. 5, 17690 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

2010 (2)

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97(19), 191905 (2010).
[Crossref]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at teraherthz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

2009 (2)

R. Kotynski and T. Stefaniuk, “Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes,” J. Opt. A 11(1), 015001 (2009).
[Crossref]

J. R. Knab, A. J. L. Adam, M. Nagel, E. Shaner, M. A. Seo, D. S. Kim, and P. C. M. Planken, “Terahertz near-field vectorial imaging of subwavelength apertures and aperture arrays,” Opt. Express 17(17), 15072–15086 (2009).
[Crossref] [PubMed]

2007 (3)

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
[Crossref]

X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75(4), 045103 (2007).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

2006 (4)

P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73(3), 033108 (2006).
[Crossref]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[Crossref]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

2005 (4)

V. A. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30(1), 75–77 (2005).
[Crossref] [PubMed]

D. Melville and R. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of sub-wavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Adam, A. J. L.

Alekseyev, L. V.

Alomainy, A.

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[Crossref]

Anthony, J.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at teraherthz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

Argyros, A.

Belov, P. A.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97(19), 191905 (2010).
[Crossref]

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
[Crossref]

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[Crossref]

P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73(3), 033108 (2006).
[Crossref]

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of sub-wavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
[Crossref]

Blaikie, R.

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Fischer, B. M.

K. J. Korbinian, M. Walther, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, and B. M. Fischer, “Ultra-broadband perfect imaging in THz wire media using single-cycle pulses,” Optica 3(5), 458–464 (2016).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

Fleming, S.

Fleming, S. C.

K. J. Korbinian, M. Walther, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, and B. M. Fischer, “Ultra-broadband perfect imaging in THz wire media using single-cycle pulses,” Optica 3(5), 458–464 (2016).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at teraherthz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

Hao, Y.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97(19), 191905 (2010).
[Crossref]

P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73(3), 033108 (2006).
[Crossref]

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[Crossref]

Hayashi, J. G.

He, S.

X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75(4), 045103 (2007).
[Crossref]

Hillenbrand, R.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Ikonen, P.

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of sub-wavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
[Crossref]

Ireland, D.

Jacob, Z.

Jin, Y.

X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75(4), 045103 (2007).
[Crossref]

Kaltenecker, K. J.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

Kim, D. S.

Knab, J. R.

Korbinian, K. J.

Korobkin, D.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Kotynski, R.

R. Kotynski and T. Stefaniuk, “Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes,” J. Opt. A 11(1), 015001 (2009).
[Crossref]

Kuhlmey, B. T.

K. J. Korbinian, M. Walther, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, and B. M. Fischer, “Ultra-broadband perfect imaging in THz wire media using single-cycle pulses,” Optica 3(5), 458–464 (2016).
[Crossref]

J. G. Hayashi, S. Fleming, B. T. Kuhlmey, and A. Argyros, “Metal selection for wire array metamaterials for infrared frequencies,” Opt. Express 23(23), 29867–29881 (2015).
[Crossref] [PubMed]

A. Tuniz and B. T. Kuhlmey, “Two-dimensional imaging in hyperbolic media-the role of field components and ordinary waves,” Sci. Rep. 5, 17690 (2015).
[Crossref] [PubMed]

A. Tuniz, D. Ireland, L. Poladian, A. Argyros, C. Martijn de Sterke, and B. T. Kuhlmey, “Imaging performance of finite uniaxial metamaterials with large anisotropy,” Opt. Lett. 39(11), 3286–3289 (2014).
[Crossref] [PubMed]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at teraherthz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Leonhardt, R.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at teraherthz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

Li, X.

X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75(4), 045103 (2007).
[Crossref]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Lwin, R.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at teraherthz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

Martijn de Sterke, C.

Melville, D.

Nagel, M.

Narimanov, E.

Narimanov, E. E.

Palikaras, G. K.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97(19), 191905 (2010).
[Crossref]

Parini, C.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97(19), 191905 (2010).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Planken, P. C. M.

Podolskiy, V. A.

Poladian, L.

Rahman, A.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97(19), 191905 (2010).
[Crossref]

Seo, M. A.

Shaner, E.

Shvets, G.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Silveirinha, M. G.

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
[Crossref]

Simovski, C. R.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97(19), 191905 (2010).
[Crossref]

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
[Crossref]

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of sub-wavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
[Crossref]

Stefaniuk, T.

R. Kotynski and T. Stefaniuk, “Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes,” J. Opt. A 11(1), 015001 (2009).
[Crossref]

Sudhakaran, S.

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[Crossref]

P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73(3), 033108 (2006).
[Crossref]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Taubner, T.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Tuniz, A.

K. J. Korbinian, M. Walther, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, and B. M. Fischer, “Ultra-broadband perfect imaging in THz wire media using single-cycle pulses,” Optica 3(5), 458–464 (2016).
[Crossref]

A. Tuniz and B. T. Kuhlmey, “Two-dimensional imaging in hyperbolic media-the role of field components and ordinary waves,” Sci. Rep. 5, 17690 (2015).
[Crossref] [PubMed]

A. Tuniz, D. Ireland, L. Poladian, A. Argyros, C. Martijn de Sterke, and B. T. Kuhlmey, “Imaging performance of finite uniaxial metamaterials with large anisotropy,” Opt. Lett. 39(11), 3286–3289 (2014).
[Crossref] [PubMed]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at teraherthz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

Urzhumov, Y.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Walther, M.

K. J. Korbinian, M. Walther, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, and B. M. Fischer, “Ultra-broadband perfect imaging in THz wire media using single-cycle pulses,” Optica 3(5), 458–464 (2016).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

Wang, A.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at teraherthz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhao, Y.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97(19), 191905 (2010).
[Crossref]

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[Crossref]

Appl. Phys. Lett. (3)

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97(19), 191905 (2010).
[Crossref]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at teraherthz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[Crossref]

P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, “Experimental study of the subwavelength imaging by a wire medium slab,” Appl. Phys. Lett. 89(26), 262109 (2006).
[Crossref]

J. Opt. A (1)

R. Kotynski and T. Stefaniuk, “Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes,” J. Opt. A 11(1), 015001 (2009).
[Crossref]

Nat. Commun. (1)

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Optica (1)

Phys. Rev. B (4)

P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73(3), 033108 (2006).
[Crossref]

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75(3), 035108 (2007).
[Crossref]

X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75(4), 045103 (2007).
[Crossref]

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of sub-wavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
[Crossref]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Sci. Rep. (1)

A. Tuniz and B. T. Kuhlmey, “Two-dimensional imaging in hyperbolic media-the role of field components and ordinary waves,” Sci. Rep. 5, 17690 (2015).
[Crossref] [PubMed]

Science (3)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313(5793), 1595 (2006).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (1865 KB)      Time evolution of the electric field through 1 mm hyperlens

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Geometry of wire array metamaterial. The 3D simulations contain a wire array metamaterial with an 11 × 11 square array of silver wires surrounded by air.
Fig. 2
Fig. 2 Simulated 2D image of the electric field at (a) 0.15 THz, and (b) 0.26 THz (frequencies shown by arrows on (c)). (c) Simulated electric field intensity as a function of position and frequency at the output of a 1 mm wire array metamaterial with a 200 µm aperture at the input. The dotted lines indicate the edges of the aperture.
Fig. 3
Fig. 3 Frame from Visualization 1: Time evolution of the electric field through 1 mm hyperlens (single-frame).
Fig. 4
Fig. 4 (a) Simulated electric field intensity as a function of position and time. Simulated electric field intensity after convolution for different widths of the gate pulse (b) 8 ps (c) 12 ps, and (d) 50 ps. (e) Simulated intensity profile of the bare aperture. The output is taken 50 µm away from the aperture. Simulated 2D image of the electric field at (f) 0.26 THz, and (g) after convolution at 0.26 THz.
Fig. 5
Fig. 5 Simulated electric field as a function of position and frequency after averaging electric field over (a) half a spectral range, and (b) full spectral range. (c) Simulated 2D image of the electric field after averaging field over full spectral range at 0.26 THz.
Fig. 6
Fig. 6 Simulated power average as a function of position and frequency over (a) half a spectral range, and (b) full spectral range. (c) Simulated 2D image of the electric field after averaging power over full spectral range at 0.26 THz.
Fig. 7
Fig. 7 FOM (Eq. (4) for different methods as a function of frequency. Arrows indicate Fabry-Perot resonances.
Fig. 8
Fig. 8 (a) Simulated line-scan of the electric field of two 200 µm diameter apertures with 100 µm inner-edge separation as a function of position and frequency. Simulated line-scan after (b) convolving field with the sinc function, (c) field average, and (d) power average over a full spectral range. Simulated 2D image (e) unprocessed, and after (f) convolution, (g) field average, and (h) power average at 0.26 THz. Dotted lines indicate location of the apertures (top row).
Fig. 9
Fig. 9 (a) Schematic of 1 mm wire array metamaterial with “V” shape aperture. Simulated 2D image of the electric field with the metamaterial fibre at (b) 0.30 THz, and (c) 0.26 THz. Simulated 2D image of the field at 0.26 THz of (d) the bare aperture, and the aperture with the wire array (e) after convolution, (f) field averaging, and (g) power averaging.
Fig. 10
Fig. 10 Ordinary waves (blue line) and extraordinary waves (red line) in Fourier space.
Fig. 11
Fig. 11 Normalized 2D images of power output, projected power and contribution of ordinary waves (left to right). Simulated 2D images of: Single aperture through a wire medium (top row), double aperture through a wire medium (second row), and double aperture without wire medium (third row), with dimensions and details described in the article. Bottom row: 2D images of a larger object imaged through a slab of hyperbolic medium of thickness 3.4 mm (bottom row). For single aperture and double aperture images are taken at 1.5 THz, while for the “THz” letters, images are taken at 0.58 THz. First three rows calculated using full CST simulations of a wire array, bottom row calculated using a transfer matrix method for hyperbolic media, with material parameters identical to those in Ref. 16. The maximum intensity of the extraordinary waves for single aperture, double aperture (with wire medium), double aperture (without wire medium), and “THz” letter are 11, 4, 4.8, and 4 times higher than that of ordinary waves respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

e (t)=e(t)Π( t τ )
Π(t)={ 0,t>τ,t<0 1 2 ,t=0,t=τ 1,0<t<τ
E (ω)=E(ω)(sinc(ωτ/2π)× e iωτ/2 )
FOM= ( 1+ (OI) 2 dx O 2 dx I 2 dx ) 1
E ˜ e ( k t )= E ˜ t ( k t ) k t | k t | 2 k t

Metrics