Abstract

An advanced fiber optic current sensor (FOCS) is proposed based on recirculating fiber loop architecture for significantly enhancing the current sensitivity. The recirculating loop is constructed by a 2X2 optical switch and the standard single mode fiber (SSMF) is used as the sensing head. The proposed FOCS is coupler-free with low insertion loss which results in a significantly improved current sensitivity. We experimentally obtained a sensitivity of 11.5 degrees/A for 1-Km SSMF FOCS and a sensitivity of 21.2 degrees/A for 500-m SSMF FOCS, both of which have been enhanced by more than ten times. The flexible switch control of recirculating can support the FOCS to work for different current scenarios with the same system and thus reconfigurable operation of the FOCS has been achieved. The significantly enhanced high sensitivity with reconfigurable operation capability makes the proposed FOCS a promising method for practical applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-current-sensitivity all-fiber current sensor based on fiber loop architecture

Hao Zhang, Yishen Qiu, Hui Li, Aixian Huang, Huaixi Chen, and Gaoming Li
Opt. Express 20(17) 18591-18599 (2012)

Novel configuration for an enhanced and compact all-fiber Faraday rotator with matched birefringence

Sagie Asraf, Yoav Sintov, and Zeev Zalevsky
Opt. Express 25(16) 18643-18655 (2017)

Development of a highly sensitive compact sized optical fiber current sensor

Pramod R. Watekar, Seongmin Ju, Su-Ah Kim, Seongmook Jeong, Youngwoong Kim, and Won-Taek Han
Opt. Express 18(16) 17096-17105 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66(5), 3097–3111 (1995).
    [Crossref]
  2. S. Ziegler, R. C. Woodward, H. H. C. Iu, and L. J. Borle, “Current sensing techniques: A review,” IEEE Sens. J. 9(4), 354–376 (2009).
    [Crossref]
  3. K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13(07), 1989–1995 (1998).
    [Crossref]
  4. K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” J. Lightwave Technol. 20(2), 267–276 (2002).
    [Crossref]
  5. N. Peng, Y. Huang, S. Wang, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
    [Crossref]
  6. V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
    [Crossref]
  7. D. Huang, S. Srinivasan, and J. E. Bowers, “Compact Tb doped fiber optic current sensor with high sensitivity,” Opt. Express 23(23), 29993–29999 (2015).
    [Crossref] [PubMed]
  8. W. Lin, H. Zhang, and B. Song, “Magnetic field sensor based on fiber taper coupler coated with magnetic fluid,” in International Conference on Optical Fibre Sensors (OFS24) (2015), paper 96347U.
  9. P. R. Watekar, H. Yang, S. Ju, and W.-T. Han, “Enhanced current sensitivity in the optical fiber doped with CdSe quantum dots,” Opt. Express 17(5), 3157–3164 (2009).
    [Crossref] [PubMed]
  10. K. Kurosawa, S. Yoshida, and K. Sakamoto, “Polarization properties of the flint glass fiber,” J. Lightwave Technol. 13(7), 1378–1384 (1995).
    [Crossref]
  11. K. Kurosawa, I. Masuda, and T. Yamashita, “Faraday effect current sensor using flint glass fiber for the sensing element,” in Proceedings of Optical Fiber Sensor Conference (1993), pp. 415–418.
  12. H. Zhang, Y. Dong, J. Leeson, L. Chen, and X. Bao, “High sensitivity optical fiber current sensor based on polarization diversity and a Faraday rotation mirror cavity,” Appl. Opt. 50(6), 924–929 (2011).
    [Crossref] [PubMed]
  13. H. Zhang, Y. Qiu, H. Li, A. Huang, H. Chen, and G. Li, “High-current-sensitivity all-fiber current sensor based on fiber loop architecture,” Opt. Express 20(17), 18591–18599 (2012).
    [Crossref] [PubMed]
  14. C. Wang, “Fiber Loop ringdown sensors and sensing,” in Cavity-Enhanced Spectroscopy and Sensing (Springer Berlin Heidelberg, 2014), pp. 411–461.
  15. N. S. Bergano and C. R. Davidson, “Circulating loop transmission experiments for the study of long-haul transmission systems using erbium-doped fiber amplifiers,” J. Lightwave Technol. 13(5), 879–888 (1995).
    [Crossref]
  16. J. Li, J. Du, S. Wang, L. Li, L. Sun, X. Fan, Q. Liu, and Z. He, “Improving the spatial resolution of an OFDR based on recirculating frequency shifter,” IEEE Photonics J. 7(5), 6901310 (2015).
  17. E. F. Burmeister, J. P. Mack, H. N. Poulsen, J. Klamkin, L. A. Coldren, D. J. Blumenthal, and J. E. Bowers, “SOA Gate Array Recirculating Buffer for Optical Packet Switching,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OWE4.
    [Crossref]
  18. R. Zhang, S. Yao, T. Liu, and L. Li, “The effect of linear birefringence on fiber optic current sensor based on Faraday mirror,” in SPIE/COS Photonics Asia. International Society for Optics and Photonics (2014), paper 92741N.
  19. P. R. Forman and F. C. Jahoda, “Linear birefringence effects on fiber-optic current sensors,” Appl. Opt. 27(15), 3088–3096 (1988).
    [Crossref] [PubMed]
  20. K. Bohnert, P. Gabus, L. Kostovic, and H. Brändle, “Optical fiber sensors for the electric power industry,” Opt. Lasers Eng. 43(3-5), 511–526 (2005).
    [Crossref]
  21. M. Belal, Z. Song, Y. Jung, G. Brambilla, and T. P. Newson, “Optical fiber microwire current sensor,” Opt. Lett. 35(18), 3045–3047 (2010).
    [Crossref] [PubMed]

2015 (2)

J. Li, J. Du, S. Wang, L. Li, L. Sun, X. Fan, Q. Liu, and Z. He, “Improving the spatial resolution of an OFDR based on recirculating frequency shifter,” IEEE Photonics J. 7(5), 6901310 (2015).

D. Huang, S. Srinivasan, and J. E. Bowers, “Compact Tb doped fiber optic current sensor with high sensitivity,” Opt. Express 23(23), 29993–29999 (2015).
[Crossref] [PubMed]

2013 (1)

N. Peng, Y. Huang, S. Wang, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (1)

2009 (2)

P. R. Watekar, H. Yang, S. Ju, and W.-T. Han, “Enhanced current sensitivity in the optical fiber doped with CdSe quantum dots,” Opt. Express 17(5), 3157–3164 (2009).
[Crossref] [PubMed]

S. Ziegler, R. C. Woodward, H. H. C. Iu, and L. J. Borle, “Current sensing techniques: A review,” IEEE Sens. J. 9(4), 354–376 (2009).
[Crossref]

2006 (1)

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

2005 (1)

K. Bohnert, P. Gabus, L. Kostovic, and H. Brändle, “Optical fiber sensors for the electric power industry,” Opt. Lasers Eng. 43(3-5), 511–526 (2005).
[Crossref]

2002 (1)

1998 (1)

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13(07), 1989–1995 (1998).
[Crossref]

1995 (3)

K. Kurosawa, S. Yoshida, and K. Sakamoto, “Polarization properties of the flint glass fiber,” J. Lightwave Technol. 13(7), 1378–1384 (1995).
[Crossref]

N. S. Bergano and C. R. Davidson, “Circulating loop transmission experiments for the study of long-haul transmission systems using erbium-doped fiber amplifiers,” J. Lightwave Technol. 13(5), 879–888 (1995).
[Crossref]

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66(5), 3097–3111 (1995).
[Crossref]

1988 (1)

Bao, X.

Belal, M.

Bergano, N. S.

N. S. Bergano and C. R. Davidson, “Circulating loop transmission experiments for the study of long-haul transmission systems using erbium-doped fiber amplifiers,” J. Lightwave Technol. 13(5), 879–888 (1995).
[Crossref]

Bohnert, K.

K. Bohnert, P. Gabus, L. Kostovic, and H. Brändle, “Optical fiber sensors for the electric power industry,” Opt. Lasers Eng. 43(3-5), 511–526 (2005).
[Crossref]

K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” J. Lightwave Technol. 20(2), 267–276 (2002).
[Crossref]

Borle, L. J.

S. Ziegler, R. C. Woodward, H. H. C. Iu, and L. J. Borle, “Current sensing techniques: A review,” IEEE Sens. J. 9(4), 354–376 (2009).
[Crossref]

Bowers, J. E.

Brambilla, G.

Brandle, H.

Brändle, H.

K. Bohnert, P. Gabus, L. Kostovic, and H. Brändle, “Optical fiber sensors for the electric power industry,” Opt. Lasers Eng. 43(3-5), 511–526 (2005).
[Crossref]

Chamorovsky, Y. K.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Chen, H.

Chen, L.

Davidson, C. R.

N. S. Bergano and C. R. Davidson, “Circulating loop transmission experiments for the study of long-haul transmission systems using erbium-doped fiber amplifiers,” J. Lightwave Technol. 13(5), 879–888 (1995).
[Crossref]

Dong, Y.

Du, J.

J. Li, J. Du, S. Wang, L. Li, L. Sun, X. Fan, Q. Liu, and Z. He, “Improving the spatial resolution of an OFDR based on recirculating frequency shifter,” IEEE Photonics J. 7(5), 6901310 (2015).

Fan, X.

J. Li, J. Du, S. Wang, L. Li, L. Sun, X. Fan, Q. Liu, and Z. He, “Improving the spatial resolution of an OFDR based on recirculating frequency shifter,” IEEE Photonics J. 7(5), 6901310 (2015).

Forman, P. R.

Fujita, K.

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13(07), 1989–1995 (1998).
[Crossref]

Gabus, P.

K. Bohnert, P. Gabus, L. Kostovic, and H. Brändle, “Optical fiber sensors for the electric power industry,” Opt. Lasers Eng. 43(3-5), 511–526 (2005).
[Crossref]

K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” J. Lightwave Technol. 20(2), 267–276 (2002).
[Crossref]

Grattan, K. T. V.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66(5), 3097–3111 (1995).
[Crossref]

Gubin, V. P.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Han, W.-T.

He, Z.

J. Li, J. Du, S. Wang, L. Li, L. Sun, X. Fan, Q. Liu, and Z. He, “Improving the spatial resolution of an OFDR based on recirculating frequency shifter,” IEEE Photonics J. 7(5), 6901310 (2015).

Hirao, K.

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13(07), 1989–1995 (1998).
[Crossref]

Huang, A.

Huang, D.

Huang, Y.

N. Peng, Y. Huang, S. Wang, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

Isaev, V. A.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Iu, H. H. C.

S. Ziegler, R. C. Woodward, H. H. C. Iu, and L. J. Borle, “Current sensing techniques: A review,” IEEE Sens. J. 9(4), 354–376 (2009).
[Crossref]

Jackson, D. A.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66(5), 3097–3111 (1995).
[Crossref]

Jahoda, F. C.

Ju, S.

Jung, Y.

Kostovic, L.

K. Bohnert, P. Gabus, L. Kostovic, and H. Brändle, “Optical fiber sensors for the electric power industry,” Opt. Lasers Eng. 43(3-5), 511–526 (2005).
[Crossref]

Kurosawa, K.

K. Kurosawa, S. Yoshida, and K. Sakamoto, “Polarization properties of the flint glass fiber,” J. Lightwave Technol. 13(7), 1378–1384 (1995).
[Crossref]

K. Kurosawa, I. Masuda, and T. Yamashita, “Faraday effect current sensor using flint glass fiber for the sensing element,” in Proceedings of Optical Fiber Sensor Conference (1993), pp. 415–418.

Leeson, J.

Li, G.

Li, H.

Li, J.

J. Li, J. Du, S. Wang, L. Li, L. Sun, X. Fan, Q. Liu, and Z. He, “Improving the spatial resolution of an OFDR based on recirculating frequency shifter,” IEEE Photonics J. 7(5), 6901310 (2015).

Li, L.

J. Li, J. Du, S. Wang, L. Li, L. Sun, X. Fan, Q. Liu, and Z. He, “Improving the spatial resolution of an OFDR based on recirculating frequency shifter,” IEEE Photonics J. 7(5), 6901310 (2015).

Liu, Q.

J. Li, J. Du, S. Wang, L. Li, L. Sun, X. Fan, Q. Liu, and Z. He, “Improving the spatial resolution of an OFDR based on recirculating frequency shifter,” IEEE Photonics J. 7(5), 6901310 (2015).

Masuda, I.

K. Kurosawa, I. Masuda, and T. Yamashita, “Faraday effect current sensor using flint glass fiber for the sensing element,” in Proceedings of Optical Fiber Sensor Conference (1993), pp. 415–418.

Matsuoka, N.

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13(07), 1989–1995 (1998).
[Crossref]

Morshnev, S. K.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Nehring, J.

Newson, T. P.

Ning, Y. N.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66(5), 3097–3111 (1995).
[Crossref]

Oussov, A. I.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Palmer, A. W.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66(5), 3097–3111 (1995).
[Crossref]

Peng, N.

N. Peng, Y. Huang, S. Wang, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

Qiu, Y.

Sakamoto, K.

K. Kurosawa, S. Yoshida, and K. Sakamoto, “Polarization properties of the flint glass fiber,” J. Lightwave Technol. 13(7), 1378–1384 (1995).
[Crossref]

Sazonov, A. I.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Soga, N.

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13(07), 1989–1995 (1998).
[Crossref]

Song, Z.

Srinivasan, S.

Starostin, N. I.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Sun, L.

J. Li, J. Du, S. Wang, L. Li, L. Sun, X. Fan, Q. Liu, and Z. He, “Improving the spatial resolution of an OFDR based on recirculating frequency shifter,” IEEE Photonics J. 7(5), 6901310 (2015).

Tanaka, K.

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13(07), 1989–1995 (1998).
[Crossref]

Wang, L.

N. Peng, Y. Huang, S. Wang, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

Wang, S.

J. Li, J. Du, S. Wang, L. Li, L. Sun, X. Fan, Q. Liu, and Z. He, “Improving the spatial resolution of an OFDR based on recirculating frequency shifter,” IEEE Photonics J. 7(5), 6901310 (2015).

N. Peng, Y. Huang, S. Wang, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

Wang, Z. P.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66(5), 3097–3111 (1995).
[Crossref]

Watekar, P. R.

Woodward, R. C.

S. Ziegler, R. C. Woodward, H. H. C. Iu, and L. J. Borle, “Current sensing techniques: A review,” IEEE Sens. J. 9(4), 354–376 (2009).
[Crossref]

Yamashita, T.

K. Kurosawa, I. Masuda, and T. Yamashita, “Faraday effect current sensor using flint glass fiber for the sensing element,” in Proceedings of Optical Fiber Sensor Conference (1993), pp. 415–418.

Yang, H.

Yoshida, S.

K. Kurosawa, S. Yoshida, and K. Sakamoto, “Polarization properties of the flint glass fiber,” J. Lightwave Technol. 13(7), 1378–1384 (1995).
[Crossref]

Zhang, H.

Ziegler, S.

S. Ziegler, R. C. Woodward, H. H. C. Iu, and L. J. Borle, “Current sensing techniques: A review,” IEEE Sens. J. 9(4), 354–376 (2009).
[Crossref]

Appl. Opt. (2)

IEEE Photonics J. (1)

J. Li, J. Du, S. Wang, L. Li, L. Sun, X. Fan, Q. Liu, and Z. He, “Improving the spatial resolution of an OFDR based on recirculating frequency shifter,” IEEE Photonics J. 7(5), 6901310 (2015).

IEEE Photonics Technol. Lett. (1)

N. Peng, Y. Huang, S. Wang, and L. Wang, “Fiber optic current sensor based on special spun highly birefringent fiber,” IEEE Photonics Technol. Lett. 25(17), 1668–1671 (2013).
[Crossref]

IEEE Sens. J. (1)

S. Ziegler, R. C. Woodward, H. H. C. Iu, and L. J. Borle, “Current sensing techniques: A review,” IEEE Sens. J. 9(4), 354–376 (2009).
[Crossref]

J. Lightwave Technol. (3)

K. Kurosawa, S. Yoshida, and K. Sakamoto, “Polarization properties of the flint glass fiber,” J. Lightwave Technol. 13(7), 1378–1384 (1995).
[Crossref]

N. S. Bergano and C. R. Davidson, “Circulating loop transmission experiments for the study of long-haul transmission systems using erbium-doped fiber amplifiers,” J. Lightwave Technol. 13(5), 879–888 (1995).
[Crossref]

K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” J. Lightwave Technol. 20(2), 267–276 (2002).
[Crossref]

J. Mater. Res. (1)

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13(07), 1989–1995 (1998).
[Crossref]

Opt. Express (3)

Opt. Lasers Eng. (1)

K. Bohnert, P. Gabus, L. Kostovic, and H. Brändle, “Optical fiber sensors for the electric power industry,” Opt. Lasers Eng. 43(3-5), 511–526 (2005).
[Crossref]

Opt. Lett. (1)

Quantum Electron. (1)

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Rev. Sci. Instrum. (1)

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66(5), 3097–3111 (1995).
[Crossref]

Other (5)

K. Kurosawa, I. Masuda, and T. Yamashita, “Faraday effect current sensor using flint glass fiber for the sensing element,” in Proceedings of Optical Fiber Sensor Conference (1993), pp. 415–418.

C. Wang, “Fiber Loop ringdown sensors and sensing,” in Cavity-Enhanced Spectroscopy and Sensing (Springer Berlin Heidelberg, 2014), pp. 411–461.

W. Lin, H. Zhang, and B. Song, “Magnetic field sensor based on fiber taper coupler coated with magnetic fluid,” in International Conference on Optical Fibre Sensors (OFS24) (2015), paper 96347U.

E. F. Burmeister, J. P. Mack, H. N. Poulsen, J. Klamkin, L. A. Coldren, D. J. Blumenthal, and J. E. Bowers, “SOA Gate Array Recirculating Buffer for Optical Packet Switching,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OWE4.
[Crossref]

R. Zhang, S. Yao, T. Liu, and L. Li, “The effect of linear birefringence on fiber optic current sensor based on Faraday mirror,” in SPIE/COS Photonics Asia. International Society for Optics and Photonics (2014), paper 92741N.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Recirculating loop constructed by 2X2 switch and SSMF.

Fig. 2
Fig. 2

Schematic illustration of the recirculating loop based FOCS. (a): sensing pulse power evolution for different times of recirculating (different round trip pulses); (b): control pulse waveform; (c): polarization rotation evolution for different times of recirculating with enlarged polarization angle rotation.

Fig. 3
Fig. 3

The experimental setup of the proposed FOCS. FL: fiber laser; PC: polarization controller; AOM: acousto-optic modulator; AWG: arbitrary waveform generator; PBS: polarization beam splitter; PD: photodiode; DAQ: data acquisition.

Fig. 4
Fig. 4

The detected signal pulse waveforms and measured sensitivity when N = 8 for 1-Km SSMF. (a) and (b) corresponds to P1 and P2; (c): Relationship between current intensity and rotation angle.

Fig. 5
Fig. 5

Slope of 11.5 degrees/A is achieved when N = 10 for 1-Km SSMF.

Fig. 6
Fig. 6

The enhancement of sensitivity along with N for 1-Km SSMF.

Fig. 7
Fig. 7

Slope of 21.2 degrees/A is achieved when N = 12 for 0.5-Km SSMF. The inset picture shows the waveforms for P1 and P2, before and after 0.5-A current.

Fig. 8
Fig. 8

The enhancement of sensitivity along with N for 0.5-Km SSMF.

Fig. 9
Fig. 9

Reconfigurable operation of the FOCS for difference current measurement scenarios. The largest current is limited by the 180-degree polarization angle rotation.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

θ = V B d l
θ = V B d l
P 1 = P 0 cos 2 ( θ + φ )
P 2 = P 0 sin 2 ( θ + φ )
θ = 1 2 arc sin P B D
P B D = P 1 P 2 P 0 = cos ( 2 ( θ + φ ) )

Metrics