Abstract

Inter-modal phase-matched third harmonic generation has been demonstrated in an exposed-core microstructured optical fiber. Our fiber, with a partially open core having a diameter of just 1.85 µm, shows efficient multi-peak third-harmonic generation between 500 nm and 530 nm, with a maximum visible-wavelength output of 0.96 μW. Mode images and simulations show strong agreement, confirming the phase-matching process and polarization dependence. We anticipate this work will lead to tailorable and tunable visible light sources by exploiting the open access to the optical fiber core, such as depositing thin-film coatings in order to shift the phase matching conditions.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase-matched third harmonic generation in microstructured fibers

Anatoly Efimov, Antoinette J. Taylor, Fiorenzo G. Omenetto, Jonathan C. Knight, William J. Wadsworth, and Philip St. J. Russell
Opt. Express 11(20) 2567-2576 (2003)

Widely tunable third-harmonic generation in a tellurite microstructured optical fiber

Tonglei Cheng, Dinghuan Deng, Xiaojie Xue, Morio Matsumoto, Hiroshige Tezuka, Takenobu Suzuki, and Yasutake Ohishi
Appl. Opt. 54(6) 1326-1330 (2015)

Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing

S. C. Warren-Smith, S. Afshar V., and T. M. Monro
Opt. Express 16(12) 9034-9045 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [Crossref] [PubMed]
  2. P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [Crossref]
  3. M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers - an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
    [Crossref]
  4. T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
    [Crossref]
  5. T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
    [Crossref]
  6. E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
    [Crossref]
  7. T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
    [Crossref]
  8. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
    [Crossref] [PubMed]
  9. M. Liao, C. Chaudhari, X. Yan, G. Qin, C. Kito, T. Suzuki, and Y. Ohishi, “A suspended core nanofiber with unprecedented large diameter ratio of holey region to core,” Opt. Express 18(9), 9088–9097 (2010).
    [Crossref] [PubMed]
  10. S. Afshar V, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34(22), 3577–3579 (2009).
    [Crossref] [PubMed]
  11. L. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express 16(24), 19629–19642 (2008).
    [Crossref] [PubMed]
  12. N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. S. J. Russell, “Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
    [Crossref] [PubMed]
  13. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19(21), 21003–21010 (2011).
    [Crossref] [PubMed]
  14. G. P. Agrawal, Nonlinear Fiber Optics (Third Edition) (Academic, 2001).
  15. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
    [Crossref]
  16. J. M. Gabriagues, “Third-harmonic and three-wave sum-frequency light generation in an elliptical-core optical fiber,” Opt. Lett. 8(3), 183–185 (1983).
    [Crossref] [PubMed]
  17. K. Bencheikh, S. Richard, G. Mélin, G. Krabshuis, F. Gooijer, and J. A. Levenson, “Phase-matched third-harmonic generation in highly germanium-doped fiber,” Opt. Lett. 37(3), 289–291 (2012).
    [Crossref] [PubMed]
  18. A. Borne, T. Katsura, C. Félix, B. Doppagne, P. Segonds, K. Bencheikh, J. A. Levenson, and B. Boulanger, “Ince-gauss based multiple intermodal phase-matched third-harmonic generations in a step-index silica optical fiber,” Opt. Commun. 358, 160–163 (2016).
    [Crossref]
  19. A. Borne, T. Katsura, C. Félix, B. Doppagne, P. Segonds, K. Bencheikh, J. A. Levenson, and B. Boulanger, “Anisotropy analysis of third-harmonic generation in a germanium-doped silica optical fiber,” Opt. Lett. 40(6), 982–985 (2015).
    [Crossref] [PubMed]
  20. A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: from silica experiments to highly nonlinear glass prospects,” Opt. Commun. 285(16), 3493–3497 (2012).
    [Crossref]
  21. V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007).
    [Crossref]
  22. A. Efimov, A. Taylor, F. Omenetto, J. Knight, W. Wadsworth, and P. Russell, “Phase-matched third harmonic generation in microstructured fibers,” Opt. Express 11(20), 2567–2576 (2003).
    [Crossref] [PubMed]
  23. F. Omenetto, A. Efimov, A. Taylor, J. Knight, W. Wadsworth, and P. Russell, “Polarization dependent harmonic generation in microstructured fibers,” Opt. Express 11(1), 61–67 (2003).
    [Crossref] [PubMed]
  24. F. G. Omenetto, A. J. Taylor, M. D. Moores, J. Arriaga, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber,” Opt. Lett. 26(15), 1158–1160 (2001).
    [Crossref] [PubMed]
  25. J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. S. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett. 35(17), 2922–2924 (2010).
    [Crossref] [PubMed]
  26. T. Lee, Y. Jung, C. A. Codemard, M. Ding, N. G. R. Broderick, and G. Brambilla, “Broadband third harmonic generation in tapered silica fibres,” Opt. Express 20(8), 8503–8511 (2012).
    [Crossref] [PubMed]
  27. W. Gao, T. Cheng, D. Deng, X. Xue, T. Suzuki, and Y. Ohishi, “Third-harmonic generation with a more than 500 nm tunable spectral range in a step-index tellurite fiber,” Laser Phys. Lett. 11(9), 095106 (2014).
    [Crossref]
  28. R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
    [Crossref]
  29. R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012).
    [Crossref]
  30. R. Kostecki, H. Ebendorff-Heidepriem, S. Afshar V, G. McAdam, C. Davis, and T. M. Monro, “Novel polymer functionalization method for exposed-core optical fiber,” Opt. Mater. Express 4(8), 1515–1525 (2014).
    [Crossref]
  31. S. C. Warren-Smith, R. Kostecki, L. V. Nguyen, and T. M. Monro, “Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core microstructured optical fibers,” Opt. Express 22(24), 29493–29504 (2014).
    [Crossref] [PubMed]
  32. C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
    [Crossref]
  33. L. V. Nguyen, K. Hill, S. Warren-Smith, and T. Monro, “Interferometric type optical biosensor based on exposed-core microstructured optical fiber,” Sensor. Actuat. Biol. Chem. 221, 320–327 (2015).
  34. S. C. Warren-Smith, R. M. André, C. Perrella, J. Dellith, and H. Bartelt, “Direct core structuring of microstructured optical fibers using focused ion beam milling,” Opt. Express 24(1), 378–387 (2016).
    [Crossref] [PubMed]

2016 (3)

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers - an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

A. Borne, T. Katsura, C. Félix, B. Doppagne, P. Segonds, K. Bencheikh, J. A. Levenson, and B. Boulanger, “Ince-gauss based multiple intermodal phase-matched third-harmonic generations in a step-index silica optical fiber,” Opt. Commun. 358, 160–163 (2016).
[Crossref]

S. C. Warren-Smith, R. M. André, C. Perrella, J. Dellith, and H. Bartelt, “Direct core structuring of microstructured optical fibers using focused ion beam milling,” Opt. Express 24(1), 378–387 (2016).
[Crossref] [PubMed]

2015 (4)

A. Borne, T. Katsura, C. Félix, B. Doppagne, P. Segonds, K. Bencheikh, J. A. Levenson, and B. Boulanger, “Anisotropy analysis of third-harmonic generation in a germanium-doped silica optical fiber,” Opt. Lett. 40(6), 982–985 (2015).
[Crossref] [PubMed]

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

L. V. Nguyen, K. Hill, S. Warren-Smith, and T. Monro, “Interferometric type optical biosensor based on exposed-core microstructured optical fiber,” Sensor. Actuat. Biol. Chem. 221, 320–327 (2015).

2014 (4)

2013 (1)

2012 (4)

2011 (1)

2010 (3)

2009 (2)

2008 (2)

L. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express 16(24), 19629–19642 (2008).
[Crossref] [PubMed]

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[Crossref]

2007 (1)

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007).
[Crossref]

2006 (1)

2003 (3)

2001 (1)

1999 (1)

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[Crossref]

1983 (1)

1962 (1)

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[Crossref]

Abell, A. D.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Afshar, S.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Afshar V, S.

André, R. M.

Argyros, A.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers - an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Arriaga, J.

Bartelt, H.

Bencheikh, K.

Bennett, P. J.

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[Crossref]

Borne, A.

A. Borne, T. Katsura, C. Félix, B. Doppagne, P. Segonds, K. Bencheikh, J. A. Levenson, and B. Boulanger, “Ince-gauss based multiple intermodal phase-matched third-harmonic generations in a step-index silica optical fiber,” Opt. Commun. 358, 160–163 (2016).
[Crossref]

A. Borne, T. Katsura, C. Félix, B. Doppagne, P. Segonds, K. Bencheikh, J. A. Levenson, and B. Boulanger, “Anisotropy analysis of third-harmonic generation in a germanium-doped silica optical fiber,” Opt. Lett. 40(6), 982–985 (2015).
[Crossref] [PubMed]

Boulanger, B.

A. Borne, T. Katsura, C. Félix, B. Doppagne, P. Segonds, K. Bencheikh, J. A. Levenson, and B. Boulanger, “Ince-gauss based multiple intermodal phase-matched third-harmonic generations in a step-index silica optical fiber,” Opt. Commun. 358, 160–163 (2016).
[Crossref]

A. Borne, T. Katsura, C. Félix, B. Doppagne, P. Segonds, K. Bencheikh, J. A. Levenson, and B. Boulanger, “Anisotropy analysis of third-harmonic generation in a germanium-doped silica optical fiber,” Opt. Lett. 40(6), 982–985 (2015).
[Crossref] [PubMed]

Brambilla, G.

Broderick, N. G. R.

Chang, W.

Chaudhari, C.

Chen, J. S. Y.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[Crossref]

Cheng, T.

W. Gao, T. Cheng, D. Deng, X. Xue, T. Suzuki, and Y. Ohishi, “Third-harmonic generation with a more than 500 nm tunable spectral range in a step-index tellurite fiber,” Laser Phys. Lett. 11(9), 095106 (2014).
[Crossref]

Codemard, C. A.

Coillet, A.

A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: from silica experiments to highly nonlinear glass prospects,” Opt. Commun. 285(16), 3493–3497 (2012).
[Crossref]

Coulombier, Q.

Davis, C.

Dellith, J.

Deng, D.

W. Gao, T. Cheng, D. Deng, X. Xue, T. Suzuki, and Y. Ohishi, “Third-harmonic generation with a more than 500 nm tunable spectral range in a step-index tellurite fiber,” Laser Phys. Lett. 11(9), 095106 (2014).
[Crossref]

Ding, M.

Dong, L.

Doppagne, B.

A. Borne, T. Katsura, C. Félix, B. Doppagne, P. Segonds, K. Bencheikh, J. A. Levenson, and B. Boulanger, “Ince-gauss based multiple intermodal phase-matched third-harmonic generations in a step-index silica optical fiber,” Opt. Commun. 358, 160–163 (2016).
[Crossref]

A. Borne, T. Katsura, C. Félix, B. Doppagne, P. Segonds, K. Bencheikh, J. A. Levenson, and B. Boulanger, “Anisotropy analysis of third-harmonic generation in a germanium-doped silica optical fiber,” Opt. Lett. 40(6), 982–985 (2015).
[Crossref] [PubMed]

Ebendorff-Heidepriem, H.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, S. Afshar V, G. McAdam, C. Davis, and T. M. Monro, “Novel polymer functionalization method for exposed-core optical fiber,” Opt. Mater. Express 4(8), 1515–1525 (2014).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012).
[Crossref]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

S. Afshar V, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34(22), 3577–3579 (2009).
[Crossref] [PubMed]

Efimov, A.

Euser, T. G.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[Crossref]

Farrer, N. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[Crossref]

Feinberg, J.

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007).
[Crossref]

Félix, C.

A. Borne, T. Katsura, C. Félix, B. Doppagne, P. Segonds, K. Bencheikh, J. A. Levenson, and B. Boulanger, “Ince-gauss based multiple intermodal phase-matched third-harmonic generations in a step-index silica optical fiber,” Opt. Commun. 358, 160–163 (2016).
[Crossref]

A. Borne, T. Katsura, C. Félix, B. Doppagne, P. Segonds, K. Bencheikh, J. A. Levenson, and B. Boulanger, “Anisotropy analysis of third-harmonic generation in a germanium-doped silica optical fiber,” Opt. Lett. 40(6), 982–985 (2015).
[Crossref] [PubMed]

Fermann, M. E.

François, A.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Fu, L.

Gabriagues, J. M.

Gao, W.

W. Gao, T. Cheng, D. Deng, X. Xue, T. Suzuki, and Y. Ohishi, “Third-harmonic generation with a more than 500 nm tunable spectral range in a step-index tellurite fiber,” Laser Phys. Lett. 11(9), 095106 (2014).
[Crossref]

Gooijer, F.

Granzow, N.

Grelu, P.

A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: from silica experiments to highly nonlinear glass prospects,” Opt. Commun. 285(16), 3493–3497 (2012).
[Crossref]

Griesser, H. P.

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

Grubsky, V.

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007).
[Crossref]

Hartl, I.

Heng, S.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Hill, K.

L. V. Nguyen, K. Hill, S. Warren-Smith, and T. Monro, “Interferometric type optical biosensor based on exposed-core microstructured optical fiber,” Sensor. Actuat. Biol. Chem. 221, 320–327 (2015).

Hölzer, P.

Joly, N. Y.

Jung, Y.

Katsura, T.

A. Borne, T. Katsura, C. Félix, B. Doppagne, P. Segonds, K. Bencheikh, J. A. Levenson, and B. Boulanger, “Ince-gauss based multiple intermodal phase-matched third-harmonic generations in a step-index silica optical fiber,” Opt. Commun. 358, 160–163 (2016).
[Crossref]

A. Borne, T. Katsura, C. Félix, B. Doppagne, P. Segonds, K. Bencheikh, J. A. Levenson, and B. Boulanger, “Anisotropy analysis of third-harmonic generation in a germanium-doped silica optical fiber,” Opt. Lett. 40(6), 982–985 (2015).
[Crossref] [PubMed]

Kito, C.

Klantsataya, E.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Knight, J.

Knight, J. C.

Kostecki, R.

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

S. C. Warren-Smith, R. Kostecki, L. V. Nguyen, and T. M. Monro, “Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core microstructured optical fibers,” Opt. Express 22(24), 29493–29504 (2014).
[Crossref] [PubMed]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, S. Afshar V, G. McAdam, C. Davis, and T. M. Monro, “Novel polymer functionalization method for exposed-core optical fiber,” Opt. Mater. Express 4(8), 1515–1525 (2014).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012).
[Crossref]

Krabshuis, G.

Lee, K. F.

Lee, T.

Levenson, J. A.

Liao, M.

Light, P. S.

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

Luiten, A. N.

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

Maker, P. D.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[Crossref]

McAdam, G.

Mélin, G.

Monro, T.

L. V. Nguyen, K. Hill, S. Warren-Smith, and T. Monro, “Interferometric type optical biosensor based on exposed-core microstructured optical fiber,” Sensor. Actuat. Biol. Chem. 221, 320–327 (2015).

Monro, T. M.

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, S. Afshar V, G. McAdam, C. Davis, and T. M. Monro, “Novel polymer functionalization method for exposed-core optical fiber,” Opt. Mater. Express 4(8), 1515–1525 (2014).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
[Crossref]

S. C. Warren-Smith, R. Kostecki, L. V. Nguyen, and T. M. Monro, “Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core microstructured optical fibers,” Opt. Express 22(24), 29493–29504 (2014).
[Crossref] [PubMed]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012).
[Crossref]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

S. Afshar V, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34(22), 3577–3579 (2009).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[Crossref]

Moores, M. D.

Nazarkin, A.

Nguyen, L. V.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

L. V. Nguyen, K. Hill, S. Warren-Smith, and T. Monro, “Interferometric type optical biosensor based on exposed-core microstructured optical fiber,” Sensor. Actuat. Biol. Chem. 221, 320–327 (2015).

S. C. Warren-Smith, R. Kostecki, L. V. Nguyen, and T. M. Monro, “Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core microstructured optical fibers,” Opt. Express 22(24), 29493–29504 (2014).
[Crossref] [PubMed]

Nisenoff, M.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[Crossref]

Nold, J.

Ohishi, Y.

W. Gao, T. Cheng, D. Deng, X. Xue, T. Suzuki, and Y. Ohishi, “Third-harmonic generation with a more than 500 nm tunable spectral range in a step-index tellurite fiber,” Laser Phys. Lett. 11(9), 095106 (2014).
[Crossref]

M. Liao, C. Chaudhari, X. Yan, G. Qin, C. Kito, T. Suzuki, and Y. Ohishi, “A suspended core nanofiber with unprecedented large diameter ratio of holey region to core,” Opt. Express 18(9), 9088–9097 (2010).
[Crossref] [PubMed]

Omenetto, F.

Omenetto, F. G.

Perrella, C.

S. C. Warren-Smith, R. M. André, C. Perrella, J. Dellith, and H. Bartelt, “Direct core structuring of microstructured optical fibers using focused ion beam milling,” Opt. Express 24(1), 378–387 (2016).
[Crossref] [PubMed]

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

Podlipensky, A.

Qin, G.

Reynolds, T.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Richard, S.

Richardson, D. J.

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[Crossref]

Rowland, K. J.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Russell, P.

Russell, P. S. J.

Sadler, P. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[Crossref]

Savage, C. M.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[Crossref]

Scharrer, M.

J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. S. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett. 35(17), 2922–2924 (2010).
[Crossref] [PubMed]

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[Crossref]

Schartner, E. P.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Schmidt, M. A.

Segonds, P.

A. Borne, T. Katsura, C. Félix, B. Doppagne, P. Segonds, K. Bencheikh, J. A. Levenson, and B. Boulanger, “Ince-gauss based multiple intermodal phase-matched third-harmonic generations in a step-index silica optical fiber,” Opt. Commun. 358, 160–163 (2016).
[Crossref]

A. Borne, T. Katsura, C. Félix, B. Doppagne, P. Segonds, K. Bencheikh, J. A. Levenson, and B. Boulanger, “Anisotropy analysis of third-harmonic generation in a germanium-doped silica optical fiber,” Opt. Lett. 40(6), 982–985 (2015).
[Crossref] [PubMed]

Sorin, F.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers - an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Stace, T. M.

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

Stark, S. P.

Suzuki, T.

W. Gao, T. Cheng, D. Deng, X. Xue, T. Suzuki, and Y. Ohishi, “Third-harmonic generation with a more than 500 nm tunable spectral range in a step-index tellurite fiber,” Laser Phys. Lett. 11(9), 095106 (2014).
[Crossref]

M. Liao, C. Chaudhari, X. Yan, G. Qin, C. Kito, T. Suzuki, and Y. Ohishi, “A suspended core nanofiber with unprecedented large diameter ratio of holey region to core,” Opt. Express 18(9), 9088–9097 (2010).
[Crossref] [PubMed]

Taylor, A.

Taylor, A. J.

Terhune, R. W.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[Crossref]

Thomas, B. K.

Toupin, P.

Troles, J.

Tsiminis, G.

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

Tverjanovich, A. S.

Wadsworth, W.

Wadsworth, W. J.

Wang, L.

Warren-Smith, S.

L. V. Nguyen, K. Hill, S. Warren-Smith, and T. Monro, “Interferometric type optical biosensor based on exposed-core microstructured optical fiber,” Sensor. Actuat. Biol. Chem. 221, 320–327 (2015).

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Warren-Smith, S. C.

White, A. G.

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

Wondraczek, L.

Wong, G. K. L.

Xue, X.

W. Gao, T. Cheng, D. Deng, X. Xue, T. Suzuki, and Y. Ohishi, “Third-harmonic generation with a more than 500 nm tunable spectral range in a step-index tellurite fiber,” Laser Phys. Lett. 11(9), 095106 (2014).
[Crossref]

Yan, X.

Zhang, W. Q.

Adv. Opt. Mater. (1)

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers - an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Electron. Lett. (1)

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[Crossref]

Int. J. Appl. Glass Sci. (1)

E. P. Schartner, G. Tsiminis, A. François, R. Kostecki, S. C. Warren-Smith, L. V. Nguyen, S. Heng, T. Reynolds, E. Klantsataya, K. J. Rowland, A. D. Abell, H. Ebendorff-Heidepriem, and T. M. Monro, “Taming the light in microstructured optical fibers for sensing,” Int. J. Appl. Glass Sci. 6(3), 229–239 (2015).
[Crossref]

J. Appl. Phys. (1)

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[Crossref]

J. Lightwave Technol. (1)

Laser Phys. Lett. (1)

W. Gao, T. Cheng, D. Deng, X. Xue, T. Suzuki, and Y. Ohishi, “Third-harmonic generation with a more than 500 nm tunable spectral range in a step-index tellurite fiber,” Laser Phys. Lett. 11(9), 095106 (2014).
[Crossref]

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

Opt. Commun. (3)

A. Borne, T. Katsura, C. Félix, B. Doppagne, P. Segonds, K. Bencheikh, J. A. Levenson, and B. Boulanger, “Ince-gauss based multiple intermodal phase-matched third-harmonic generations in a step-index silica optical fiber,” Opt. Commun. 358, 160–163 (2016).
[Crossref]

A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: from silica experiments to highly nonlinear glass prospects,” Opt. Commun. 285(16), 3493–3497 (2012).
[Crossref]

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007).
[Crossref]

Opt. Express (10)

L. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express 16(24), 19629–19642 (2008).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

F. Omenetto, A. Efimov, A. Taylor, J. Knight, W. Wadsworth, and P. Russell, “Polarization dependent harmonic generation in microstructured fibers,” Opt. Express 11(1), 61–67 (2003).
[Crossref] [PubMed]

A. Efimov, A. Taylor, F. Omenetto, J. Knight, W. Wadsworth, and P. Russell, “Phase-matched third harmonic generation in microstructured fibers,” Opt. Express 11(20), 2567–2576 (2003).
[Crossref] [PubMed]

M. Liao, C. Chaudhari, X. Yan, G. Qin, C. Kito, T. Suzuki, and Y. Ohishi, “A suspended core nanofiber with unprecedented large diameter ratio of holey region to core,” Opt. Express 18(9), 9088–9097 (2010).
[Crossref] [PubMed]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19(21), 21003–21010 (2011).
[Crossref] [PubMed]

T. Lee, Y. Jung, C. A. Codemard, M. Ding, N. G. R. Broderick, and G. Brambilla, “Broadband third harmonic generation in tapered silica fibres,” Opt. Express 20(8), 8503–8511 (2012).
[Crossref] [PubMed]

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. S. J. Russell, “Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
[Crossref] [PubMed]

S. C. Warren-Smith, R. Kostecki, L. V. Nguyen, and T. M. Monro, “Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core microstructured optical fibers,” Opt. Express 22(24), 29493–29504 (2014).
[Crossref] [PubMed]

S. C. Warren-Smith, R. M. André, C. Perrella, J. Dellith, and H. Bartelt, “Direct core structuring of microstructured optical fibers using focused ion beam milling,” Opt. Express 24(1), 378–387 (2016).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Opt. Lett. (6)

Opt. Mater. Express (3)

Phys. Rev. Appl. (1)

C. Perrella, H. P. Griesser, P. S. Light, R. Kostecki, T. M. Stace, H. Ebendorff-Heidepriem, T. M. Monro, A. G. White, and A. N. Luiten, “Demonstration of an exposed-core fiber platform for two-photon rubidium spectroscopy,” Phys. Rev. Appl. 4(1), 014013 (2015).
[Crossref]

Phys. Rev. Lett. (1)

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[Crossref]

Sensor. Actuat. Biol. Chem. (1)

L. V. Nguyen, K. Hill, S. Warren-Smith, and T. Monro, “Interferometric type optical biosensor based on exposed-core microstructured optical fiber,” Sensor. Actuat. Biol. Chem. 221, 320–327 (2015).

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Third Edition) (Academic, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scanning electron microscope images of the silica glass exposed-core fiber. (a) The full cross-sectional geometry is shown. (b) The core region from within the yellow dashed line in (a). The yellow dashed square indicates the portion of the SEM that was used for numerical modelling (see Sec. 3). The arrows indicate the definition for horizontal (h) and vertical (v) polarization direction described in the following experimental and numerical work. The dashed yellow circle indicates the core diameter of 1.85 µm.

Fig. 2
Fig. 2

Spectral distribution of the output power (generated third harmonic wavelengths) for various input power for vertical input polarization [defined in Fig. 1(b)] in the green part of the visible spectrum. The average transmitted infra-red pump power, as measured on a power meter, is indicated in the legend (mW). Inset: Spectral domain of the laser pump wavelength (near IR domain). The yellow column indicates the wavelength range that is relevant for the observed THG-process.

Fig. 3
Fig. 3

Measured average third harmonic generated power for different coupled pump powers. A cubic polynomial fit of the form P THG =A+B P IN 3 is shown (R2 = 0.98), where P THG is the third harmonic generated power and P IN is the input power from the femtosecond laser.

Fig. 4
Fig. 4

Spectral distribution of the generated third harmonics for two orthogonal input polarizations (green: vertical polarization, purple: horizontal polarization). The polarization orientation corresponds to that shown in Fig. 1(b).

Fig. 5
Fig. 5

(a) Effective index dispersions of the various modes in the exposed core fiber in the visible part of the spectrum. The modes with a strong horizontal (vertical) polarization components in the center of the fiber are shown in purple (green). Modes outside of 1% phase matching conditions and with no local intensity peak at the center, which are not relevant for the discussion here, are shown in light gray. The vertical dashed gray line indicates the wavelength at which the mode patterns in Fig. 6 are calculated. (b) Effective index dispersions of the two orthogonal fundamental eigenmodes in the spectral domain of the pump laser.

Fig. 6
Fig. 6

Comparison of simulated mode patterns with the intensity distributions obtained in the experiment (top (bottom) row: refers to vertical (horizontal) input polarization, arrows in the lower-left corners indicate polarization as shown in Fig. 1). The fundamental and higher-order TH-modes have been calculated at 1527 nm (IR) and 509 nm (VIS), respectively. (a) Fundamental vertically-polarized mode. (b-c) Higher-order TH-modes with preferential vertical polarization in the center of the mode [(b) and (c) refer to modes labeled by v2 and v1 in Fig. 5(a)]. (d) Experimental measured image of the corresponding output mode. (e) Horizontal-polarized fundamental mode. (f-g) Higher-order horizontal TH-modes [(f) and (g) refer to modes labeled by h2 and h1 in Fig. 5(a)]. (h) Corresponding measured near-field pattern.

Metrics