Abstract

We drastically improve the mode overlap between independently seeded, gain-switched laser diodes operating at gigahertz repetition rates by implementing a pulsed light seeding technique. Injecting pulsed light reduces the emission time jitter and enables frequency chirp synchronization while maintaining random optical phases of the emitted laser pulses. We measure interference of these pulsed sources both in the macroscopic regime, where we demonstrate near perfect mode overlap, and in the single photon regime, where we achieve a Hong-Ou-Mandel dip visibility of 0.499 ± 0.004, thus saturating the theoretical limit of 0.5. The measurement results are reproduced by Monte-Carlo simulations with no free parameters. Our light source is an ideal solution for generation of high rate, indistinguishable coherent pulses for quantum information applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors

Magued B. Nasr, Olga Minaeva, Gregory N. Goltsman, Alexander V. Sergienko, Bahaa E. A. Saleh, and Malvin C. Teich
Opt. Express 16(19) 15104-15108 (2008)

Bright filter-free source of indistinguishable photon pairs

F. Wolfgramm, X. Xing, A. Cerè, A. Predojević, A. M. Steinberg, and M. W. Mitchell
Opt. Express 16(22) 18145-18151 (2008)

High visibility Hong-Ou-Mandel interference via a time-resolved coincidence measurement

Yoshiaki Tsujimoto, Yukihiro Sugiura, Motoki Tanaka, Rikizo Ikuta, Shigehito Miki, Taro Yamashita, Hirotaka Terai, Mikio Fujiwara, Takashi Yamamoto, Masato Koashi, Masahide Sasaki, and Nobuyuki Imoto
Opt. Express 25(11) 12069-12080 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [Crossref] [PubMed]
  2. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
    [Crossref]
  3. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref] [PubMed]
  4. S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
    [Crossref] [PubMed]
  5. H. K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
    [Crossref] [PubMed]
  6. C. Hong, Z. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref] [PubMed]
  7. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  8. T. F. da Silva, D. Vitoreti, G. Xavier, G. do Amaral, G. Temporão, and J. von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
    [Crossref]
  9. Y. liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
    [Crossref] [PubMed]
  10. A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
    [Crossref] [PubMed]
  11. Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H.-K. Lo, “Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 112, 190503 (2014).
    [Crossref] [PubMed]
  12. C. Wang, X.-T. Song, Z. Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z. F. Han, “Phase-reference-free experiment of measurement-device-indpendent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
    [Crossref]
  13. Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).
  14. Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. Fröhlich, A. Plews, and A. J. Shields, “Robust random number generation using steady-state emission of gain-switched laser diodes,” Appl. Phys. Lett. 104, 261112 (2014).
    [Crossref]
  15. Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. Fröhlich, M. B. Ward, and A. J. Shields, “Interference of short optical pulses from independent gain-switched laser diodes for quantum secure communications,” Phys. Rev. Appl. 2, 064006 (2014).
    [Crossref]
  16. L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum cryptography without detector vulnerabilities using optically-seeded lasers,” Nature Photon. 10, 312–315 (2016).
    [Crossref]
  17. J. Rarity, P. Tapster, and R. Loudon, “Non-classical interference between independent sources,” J. Opt. B 7, S171 (2005).
    [Crossref]
  18. E. A. Chauchard, J. S. Wey, C. H. Lee, and G. Burdge, “Coherent pulsed injection seeding of two gain-switched semiconductor lasers,” IEEE Photon. Technol. Lett. 3, 1069–1135 (1991).
    [Crossref]
  19. D.-S. Seo, D. Y. Kim, and H.-F. Liu, “Timing jitter reduction of gain-switched DFB laser by external injection-seeding,” Electron. Lett. 32, 44–45 (1996).
    [Crossref]
  20. G. P. Agrawal, Fiber-optic communication systems (John Wiley & Sons, Inc, 2002).
    [Crossref]
  21. K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

2016 (2)

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum cryptography without detector vulnerabilities using optically-seeded lasers,” Nature Photon. 10, 312–315 (2016).
[Crossref]

2015 (1)

C. Wang, X.-T. Song, Z. Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z. F. Han, “Phase-reference-free experiment of measurement-device-indpendent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref]

2014 (3)

Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H.-K. Lo, “Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 112, 190503 (2014).
[Crossref] [PubMed]

Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. Fröhlich, A. Plews, and A. J. Shields, “Robust random number generation using steady-state emission of gain-switched laser diodes,” Appl. Phys. Lett. 104, 261112 (2014).
[Crossref]

Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. Fröhlich, M. B. Ward, and A. J. Shields, “Interference of short optical pulses from independent gain-switched laser diodes for quantum secure communications,” Phys. Rev. Appl. 2, 064006 (2014).
[Crossref]

2013 (3)

T. F. da Silva, D. Vitoreti, G. Xavier, G. do Amaral, G. Temporão, and J. von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Y. liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref] [PubMed]

2012 (3)

S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref] [PubMed]

H. K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

2005 (1)

J. Rarity, P. Tapster, and R. Loudon, “Non-classical interference between independent sources,” J. Opt. B 7, S171 (2005).
[Crossref]

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

1998 (1)

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

1996 (1)

D.-S. Seo, D. Y. Kim, and H.-F. Liu, “Timing jitter reduction of gain-switched DFB laser by external injection-seeding,” Electron. Lett. 32, 44–45 (1996).
[Crossref]

1993 (1)

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

1991 (1)

E. A. Chauchard, J. S. Wey, C. H. Lee, and G. Burdge, “Coherent pulsed injection seeding of two gain-switched semiconductor lasers,” IEEE Photon. Technol. Lett. 3, 1069–1135 (1991).
[Crossref]

1987 (1)

C. Hong, Z. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Agrawal, G. P.

G. P. Agrawal, Fiber-optic communication systems (John Wiley & Sons, Inc, 2002).
[Crossref]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Braunstein, S. L.

S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref] [PubMed]

Briegel, H. J.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Burdge, G.

E. A. Chauchard, J. S. Wey, C. H. Lee, and G. Burdge, “Coherent pulsed injection seeding of two gain-switched semiconductor lasers,” IEEE Photon. Technol. Lett. 3, 1069–1135 (1991).
[Crossref]

Chan, P.

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref] [PubMed]

Chauchard, E. A.

E. A. Chauchard, J. S. Wey, C. H. Lee, and G. Burdge, “Coherent pulsed injection seeding of two gain-switched semiconductor lasers,” IEEE Photon. Technol. Lett. 3, 1069–1135 (1991).
[Crossref]

Chen, S.-J.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).

Chen, T. Y.

Y. liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Chen, T.-Y.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).

Chen, W.

C. Wang, X.-T. Song, Z. Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z. F. Han, “Phase-reference-free experiment of measurement-device-indpendent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref]

Choi, I.

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

Cirac, J. I.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Comandar, L. C.

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum cryptography without detector vulnerabilities using optically-seeded lasers,” Nature Photon. 10, 312–315 (2016).
[Crossref]

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Cui, K.

Y. liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Curty, M.

H. K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

da Silva, T. F.

T. F. da Silva, D. Vitoreti, G. Xavier, G. do Amaral, G. Temporão, and J. von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Dixon, A. R.

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

do Amaral, G.

T. F. da Silva, D. Vitoreti, G. Xavier, G. do Amaral, G. Temporão, and J. von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Dür, W.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Dynes, J. F.

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum cryptography without detector vulnerabilities using optically-seeded lasers,” Nature Photon. 10, 312–315 (2016).
[Crossref]

Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. Fröhlich, A. Plews, and A. J. Shields, “Robust random number generation using steady-state emission of gain-switched laser diodes,” Appl. Phys. Lett. 104, 261112 (2014).
[Crossref]

Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. Fröhlich, M. B. Ward, and A. J. Shields, “Interference of short optical pulses from independent gain-switched laser diodes for quantum secure communications,” Phys. Rev. Appl. 2, 064006 (2014).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

Fejer, M. M.

Y. liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Fröhlich, B.

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum cryptography without detector vulnerabilities using optically-seeded lasers,” Nature Photon. 10, 312–315 (2016).
[Crossref]

Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. Fröhlich, M. B. Ward, and A. J. Shields, “Interference of short optical pulses from independent gain-switched laser diodes for quantum secure communications,” Phys. Rev. Appl. 2, 064006 (2014).
[Crossref]

Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. Fröhlich, A. Plews, and A. J. Shields, “Robust random number generation using steady-state emission of gain-switched laser diodes,” Appl. Phys. Lett. 104, 261112 (2014).
[Crossref]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Guo, G.-C.

C. Wang, X.-T. Song, Z. Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z. F. Han, “Phase-reference-free experiment of measurement-device-indpendent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref]

Han, Z. F.

C. Wang, X.-T. Song, Z. Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z. F. Han, “Phase-reference-free experiment of measurement-device-indpendent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref]

Hong, C.

C. Hong, Z. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Huang, M.-Q.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).

Jiang, X.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Kim, D. Y.

D.-S. Seo, D. Y. Kim, and H.-F. Liu, “Timing jitter reduction of gain-switched DFB laser by external injection-seeding,” Electron. Lett. 32, 44–45 (1996).
[Crossref]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Lee, C. H.

E. A. Chauchard, J. S. Wey, C. H. Lee, and G. Burdge, “Coherent pulsed injection seeding of two gain-switched semiconductor lasers,” IEEE Photon. Technol. Lett. 3, 1069–1135 (1991).
[Crossref]

Li, L.

Y. liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Liang, H.

Y. liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Liao, Z.

Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H.-K. Lo, “Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 112, 190503 (2014).
[Crossref] [PubMed]

Liu, H.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).

Liu, H.-F.

D.-S. Seo, D. Y. Kim, and H.-F. Liu, “Timing jitter reduction of gain-switched DFB laser by external injection-seeding,” Electron. Lett. 32, 44–45 (1996).
[Crossref]

Liu, N. L.

Y. liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Liu, Y.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).

Y. liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Lo, H. K.

H. K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

Lo, H.-K.

Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H.-K. Lo, “Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 112, 190503 (2014).
[Crossref] [PubMed]

Loudon, R.

J. Rarity, P. Tapster, and R. Loudon, “Non-classical interference between independent sources,” J. Opt. B 7, S171 (2005).
[Crossref]

Lu, C.-Y.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).

Lucamarini, M.

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum cryptography without detector vulnerabilities using optically-seeded lasers,” Nature Photon. 10, 312–315 (2016).
[Crossref]

Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. Fröhlich, A. Plews, and A. J. Shields, “Robust random number generation using steady-state emission of gain-switched laser diodes,” Appl. Phys. Lett. 104, 261112 (2014).
[Crossref]

Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. Fröhlich, M. B. Ward, and A. J. Shields, “Interference of short optical pulses from independent gain-switched laser diodes for quantum secure communications,” Phys. Rev. Appl. 2, 064006 (2014).
[Crossref]

Lucio-Martinez, I.

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref] [PubMed]

Ma, X.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).

Y. liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Mandel, L.

C. Hong, Z. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Ou, Z.

C. Hong, Z. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Pan, J.-W.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).

Y. liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Patel, K. A.

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

Pelc, J. S.

Y. liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Peng, C. Z.

Y. liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Penty, R. V.

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum cryptography without detector vulnerabilities using optically-seeded lasers,” Nature Photon. 10, 312–315 (2016).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Pirandola, S.

S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref] [PubMed]

Plews, A.

Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. Fröhlich, A. Plews, and A. J. Shields, “Robust random number generation using steady-state emission of gain-switched laser diodes,” Appl. Phys. Lett. 104, 261112 (2014).
[Crossref]

Qi, B.

Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H.-K. Lo, “Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 112, 190503 (2014).
[Crossref] [PubMed]

H. K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

Qian, L.

Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H.-K. Lo, “Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 112, 190503 (2014).
[Crossref] [PubMed]

Rarity, J.

J. Rarity, P. Tapster, and R. Loudon, “Non-classical interference between independent sources,” J. Opt. B 7, S171 (2005).
[Crossref]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Rubenok, A.

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref] [PubMed]

Seo, D.-S.

D.-S. Seo, D. Y. Kim, and H.-F. Liu, “Timing jitter reduction of gain-switched DFB laser by external injection-seeding,” Electron. Lett. 32, 44–45 (1996).
[Crossref]

Sharpe, A. W.

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum cryptography without detector vulnerabilities using optically-seeded lasers,” Nature Photon. 10, 312–315 (2016).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

Shentu, G. L.

Y. liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Shields, A. J.

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum cryptography without detector vulnerabilities using optically-seeded lasers,” Nature Photon. 10, 312–315 (2016).
[Crossref]

Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. Fröhlich, M. B. Ward, and A. J. Shields, “Interference of short optical pulses from independent gain-switched laser diodes for quantum secure communications,” Phys. Rev. Appl. 2, 064006 (2014).
[Crossref]

Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. Fröhlich, A. Plews, and A. J. Shields, “Robust random number generation using steady-state emission of gain-switched laser diodes,” Appl. Phys. Lett. 104, 261112 (2014).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

Slater, J. A.

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref] [PubMed]

Song, X.-T.

C. Wang, X.-T. Song, Z. Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z. F. Han, “Phase-reference-free experiment of measurement-device-indpendent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref]

Sun, X.-X.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).

Tam, S.

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum cryptography without detector vulnerabilities using optically-seeded lasers,” Nature Photon. 10, 312–315 (2016).
[Crossref]

Tang, Y.-L.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).

Tang, Z.

Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H.-K. Lo, “Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 112, 190503 (2014).
[Crossref] [PubMed]

Tapster, P.

J. Rarity, P. Tapster, and R. Loudon, “Non-classical interference between independent sources,” J. Opt. B 7, S171 (2005).
[Crossref]

Temporão, G.

T. F. da Silva, D. Vitoreti, G. Xavier, G. do Amaral, G. Temporão, and J. von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Tittel, W.

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Vitoreti, D.

T. F. da Silva, D. Vitoreti, G. Xavier, G. do Amaral, G. Temporão, and J. von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

von der Weid, J.

T. F. da Silva, D. Vitoreti, G. Xavier, G. do Amaral, G. Temporão, and J. von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Wang, C.

C. Wang, X.-T. Song, Z. Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z. F. Han, “Phase-reference-free experiment of measurement-device-indpendent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref]

Wang, J.

Y. liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Wang, L. J.

Y. liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Wang, S.

C. Wang, X.-T. Song, Z. Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z. F. Han, “Phase-reference-free experiment of measurement-device-indpendent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref]

Wang, Z.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).

Ward, M. B.

Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. Fröhlich, M. B. Ward, and A. J. Shields, “Interference of short optical pulses from independent gain-switched laser diodes for quantum secure communications,” Phys. Rev. Appl. 2, 064006 (2014).
[Crossref]

Wey, J. S.

E. A. Chauchard, J. S. Wey, C. H. Lee, and G. Burdge, “Coherent pulsed injection seeding of two gain-switched semiconductor lasers,” IEEE Photon. Technol. Lett. 3, 1069–1135 (1991).
[Crossref]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Xavier, G.

T. F. da Silva, D. Vitoreti, G. Xavier, G. do Amaral, G. Temporão, and J. von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Xu, F.

Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H.-K. Lo, “Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 112, 190503 (2014).
[Crossref] [PubMed]

Yin, H. L.

Y. liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Yin, H.-L.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).

Yin, Z. Q.

C. Wang, X.-T. Song, Z. Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z. F. Han, “Phase-reference-free experiment of measurement-device-indpendent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref]

You, L.-X.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).

Yuan, Z. L.

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum cryptography without detector vulnerabilities using optically-seeded lasers,” Nature Photon. 10, 312–315 (2016).
[Crossref]

Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. Fröhlich, A. Plews, and A. J. Shields, “Robust random number generation using steady-state emission of gain-switched laser diodes,” Appl. Phys. Lett. 104, 261112 (2014).
[Crossref]

Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. Fröhlich, M. B. Ward, and A. J. Shields, “Interference of short optical pulses from independent gain-switched laser diodes for quantum secure communications,” Phys. Rev. Appl. 2, 064006 (2014).
[Crossref]

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Zhang, C.-M.

C. Wang, X.-T. Song, Z. Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z. F. Han, “Phase-reference-free experiment of measurement-device-indpendent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref]

Zhang, L.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).

Zhang, Q.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).

Y. liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

Zhang, W.-J.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).

Zhao, Q.

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).

Zoller, P.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Appl. Phys. Lett. (1)

Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. Fröhlich, A. Plews, and A. J. Shields, “Robust random number generation using steady-state emission of gain-switched laser diodes,” Appl. Phys. Lett. 104, 261112 (2014).
[Crossref]

Electron. Lett. (1)

D.-S. Seo, D. Y. Kim, and H.-F. Liu, “Timing jitter reduction of gain-switched DFB laser by external injection-seeding,” Electron. Lett. 32, 44–45 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (1)

E. A. Chauchard, J. S. Wey, C. H. Lee, and G. Burdge, “Coherent pulsed injection seeding of two gain-switched semiconductor lasers,” IEEE Photon. Technol. Lett. 3, 1069–1135 (1991).
[Crossref]

J. Opt. B (1)

J. Rarity, P. Tapster, and R. Loudon, “Non-classical interference between independent sources,” J. Opt. B 7, S171 (2005).
[Crossref]

Nature (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Nature Photon. (1)

L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum cryptography without detector vulnerabilities using optically-seeded lasers,” Nature Photon. 10, 312–315 (2016).
[Crossref]

Phys. Rev. A (1)

T. F. da Silva, D. Vitoreti, G. Xavier, G. do Amaral, G. Temporão, and J. von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Phys. Rev. Appl. (1)

Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. Fröhlich, M. B. Ward, and A. J. Shields, “Interference of short optical pulses from independent gain-switched laser diodes for quantum secure communications,” Phys. Rev. Appl. 2, 064006 (2014).
[Crossref]

Phys. Rev. Lett. (9)

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Y. liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref] [PubMed]

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref] [PubMed]

Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H.-K. Lo, “Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 112, 190503 (2014).
[Crossref] [PubMed]

C. Wang, X.-T. Song, Z. Q. Yin, S. Wang, W. Chen, C.-M. Zhang, G.-C. Guo, and Z. F. Han, “Phase-reference-free experiment of measurement-device-indpendent quantum key distribution,” Phys. Rev. Lett. 115, 160502 (2015).
[Crossref]

S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref] [PubMed]

H. K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

C. Hong, Z. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Phys. Rev. X (2)

Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X 6, 011024 (2016).

K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Other (1)

G. P. Agrawal, Fiber-optic communication systems (John Wiley & Sons, Inc, 2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Experimental setup for rapid characterization of interference between independent pulsed light sources. The inset shows an interference output trace recorded by the oscilloscope at a sampling rate of 40 GSa/s. (b) Pulsed light seeding setup. Each light source consists of a pair of gain-switched laser diodes connected via an optical circulator. The master laser produces a phase-randomized pulse that is used to seed a short pulse from the slave laser. The seeding optical power is controlled by an attenuator. (c) A 5-μs data sample of the interference outcomes between two independently seeded, gain switched lasers with the oscilloscope sampling rate set to 1 GHz. All laser diodes shown here are electrically driven by a 1 GHz square wave voltages superimposed on a DC bias. O/E: Optical to Electrical Convertor; PG: Pulse Generator.
Fig. 2
Fig. 2 The effect of optical injection. (a) The spectra of the slave lasers in the absence of optical injection. The slave 2 shows a strong side mode at the wavelength of 1547 nm. (b) The spectra of the slave lasers in the presence of optical injection. Each master laser is temperature-tuned to allow its wavelength to be resonant with its slave laser. (c) Second-order intensity correlation (g(2)) of the interference output as a function of the time delay between the interfering light sources. The dashed line shows the theoretical maximum that can be obtained with perfectly indistinguishable coherent pulsed sources.
Fig. 3
Fig. 3 Second-order correlation traces measured for different filtering bandwidths. A flat-top filter with tunable bandwidth is placed before the optical-to-electrical convertor in the setup of Fig. 1(a).
Fig. 4
Fig. 4 Hong-Ou-Mandel interference coincidence counts using superconducting nanowire detectors, pulsed laser seeding and optical filters (11 GHz) for an acquisition time of 1 minute. The count rate at each detector is around 1 MHz.
Fig. 5
Fig. 5 Setup for interfering two independent light sources.

Tables (2)

Tables Icon

Table 1 Temporal characteristics of the gain-switched slave lasers with or without optical injection. Full width at half maximum (FWHM) values are used, and we measure these values with an 80 GHz bandwidth sampling oscilloscope which has an intrinsic time jitter of 2.5 ps.

Tables Icon

Table 2 Performance comparison of various experiments to achieve independent, indistinguishable coherent light pulses. Perfectly indistinguishable coherent sources produce VHOM = 0.5.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

g ( 2 ) = I 2 ( t ) I ( t ) 2 ,
V HOM = g ( 2 ) 1 .
I = 1 + cos ( Δ φ 0 ) exp [ ( Δ t ) 2 8 τ p 2 ( 1 + 16 β 2 τ p 4 ) ] ,
Δ ω ( β ) = Δ ω ( 0 ) 1 + 16 β 2 τ p 4
E a ( t ) = I ( t ) exp [ i ( ω t + β t 2 + θ a ) ] ,
E b ( t ) = I ( t ) exp [ i ( ω t + β t 2 + θ b ) ] ,
I ( t ) = I 0 τ p 2 π exp ( t 2 2 τ p 2 )
E c ( t ) = [ E a ( t Δ t 2 ) + E b ( t + Δ t 2 ) ] / 2 ,
E d ( t ) = [ E a ( t Δ t 2 ) E b ( t + Δ t 2 ) ] / 2 ,
I c ( t ) = | E c ( t ) | 2 = I ( t Δ t 2 ) + I ( t + Δ t 2 ) + [ E a * ( t Δ t 2 ) E b ( t + Δ t 2 ) + c . c . ] 2 = f + g [ e i ( ω t ω Δ t 2 + β t 2 + β Δ t 2 4 β t Δ t + θ a ) e i ( ω t + ω Δ t 2 + β t 2 + β Δ t 2 4 + β t Δ t + θ b ) + c . c . ] 2 = f + g [ e i ( ω Δ t + 2 β t Δ t + θ b θ a ) + c . c . ] 2 = f + 2 g cos ( ω Δ t + 2 β t Δ t + θ b a ) 2 ,
f = I ( t Δ t 2 ) + I ( t + Δ t 2 ) ,
g = I ( t Δ t 2 ) I ( t + Δ t 2 ) ,
θ b a = θ b θ a .
cos ( ω Δ t + 2 β t Δ t + θ b a ) = cos ( 2 β t Δ t ) cos ( ω Δ t + θ b a ) sin ( 2 β t Δ t ) sin ( ω Δ t + θ b a ) .
I c ( t ) T = 1 2 T / 2 T / 2 d t { f + 2 g cos ( 2 β t Δ t ) cos ( ω Δ t + θ b a ) } = I 0 2 + I 0 2 + I 0 cos ( ω Δ t + θ b a ) τ p 2 π × = T / 2 T / 2 d t exp [ ( t Δ t 2 ) 2 + ( t + Δ t 2 ) 2 4 τ p 2 ] cos ( 2 β t Δ t ) .
I c ( t ) T = I 0 { 1 + cos ( ω Δ t + θ b a ) exp [ Δ t 2 8 τ p 2 ( 1 + 16 β 2 τ p 4 ) ] } .
I d ( t ) T = I 0 { 1 cos ( ω Δ t + θ b a ) exp [ Δ t 2 8 τ p 2 ( 1 + 16 β 2 τ p 4 ) ] } .

Metrics