Abstract

We report on a broadband OPCPA system, pumped at 515 nm by frequency doubled Yb:YAG thin disk lasers. The system delivers 11.3 mJ pulses at a central wavelength of 800 nm with a spatial beam quality of M2 = 1.25 and > 25% pump-to-signal conversion efficiency. The broadband pulses were demonstrated to be compressible to 12 fs using a chirped mirror compressor.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thin disk amplifier-based 40 mJ, 1 kHz, picosecond laser at 515 nm

Jakub Novák, Jonathan T. Green, Thomas Metzger, Tomáš Mazanec, Bedřich Himmel, Martin Horáček, Zbyněk Hubka, Robert Boge, Roman Antipenkov, František Batysta, Jack A. Naylon, Pavel Bakule, and Bedřich Rus
Opt. Express 24(6) 5728-5733 (2016)

Multipass OPCPA system at 100 kHz pumped by a CPA-free solid-state amplifier

J. Ahrens, O. Prochnow, T. Binhammer, T. Lang, B. Schulz, M. Frede, and U. Morgner
Opt. Express 24(8) 8074-8080 (2016)

Few-cycle OPCPA system at 143 kHz with more than 1 μJ of pulse energy

Marcel Schultze, Thomas Binhammer, Andy Steinmann, Guido Palmer, Moritz Emons, and Uwe Morgner
Opt. Express 18(3) 2836-2841 (2010)

References

  • View by:
  • |
  • |
  • |

  1. K. Sugioka and Y. Cheng, “Ultrafast lasers – reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  2. E. Gagnon, P. Ranitovic, X. M. Tong, C. L. Cocke, M. M. Murnane, H. C. Kapteyn, and A. S. Sandhu, “Soft X-ray-driven femtosecond molecular dynamics,” Science 317(5843), 1374–1378 (2007).
    [Crossref] [PubMed]
  3. H. J. Wörner, J. B. Bertrand, D. V. Kartashov, P. B. Corkum, and D. M. Villeneuve, “Following a chemical reaction using high-harmonic interferometry,” Nature 466(7306), 604–607 (2010).
    [Crossref] [PubMed]
  4. A. Jullien, A. Ricci, F. Böhle, J. P. Rousseau, S. Grabielle, N. Forget, H. Jacqmin, B. Mercier, and R. Lopez-Martens, “Carrier envelope-phase stable, high-contrast, double chirped-pulse-amplification laser system,” Opt. Lett. 39(13), 3774–3777 (2014).
    [Crossref] [PubMed]
  5. S. Adachi, N. Ishii, T. Kanai, A. Kosuge, J. Itatani, Y. Kobayashi, D. Yoshitomi, K. Torizuka, and S. Watanabe, “5-fs, multi-mJ, CEP-locked parametric chirped-pulse amplifier pumped by a 450-nm source at 1 kHz,” Opt. Express 16(19), 14341–14352 (2008).
    [Crossref] [PubMed]
  6. K. H. Hong, C. J. Lai, J. P. Siqueira, P. Krogen, J. Moses, C. L. Chang, G. J. Stein, L. E. Zapata, and F. X. Kärtner, “Multi-mJ, kHz, 2.1µm optical parametric chirped-pulse amplifier and high-flux soft X-ray high-harmonic generation,” Opt. Lett. 39(11), 3145–3148 (2014).
    [Crossref] [PubMed]
  7. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
    [Crossref]
  8. T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, and F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34(14), 2123–2125 (2009).
    [Crossref] [PubMed]
  9. J. Novák, J. T. Green, T. Metzger, T. Mazanec, B. Himmel, M. Horáček, R. Boge, R. Antipenkov, F. Batysta, J. A. Naylon, P. Bakule, and B. Rus, “Thin disk amplifier-based 40 mJ, 1 kHz, picosecond laser at 515 nm,” Opt. Express 24, 5728–5733 (2016).
    [Crossref] [PubMed]
  10. S. Prinz, M. Haefner, C. Y. Teisset, R. Bessing, K. Michel, Y. Lee, X. T. Geng, S. Kim, D. E. Kim, T. Metzger, and M. Schultze, “CEP-stable, sub-6 fs, 300-kHz OPCPA system with more than 15 W of average power,” Opt. Express 23(2), 1388–1394 (2015).
    [Crossref] [PubMed]
  11. H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D. E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Zs. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1(1), 45–63 (2014).
    [Crossref]
  12. J. Novák, P. Bakule, J. T. Green, F. Batysta, T. Metzger, J. Hřebíček, J. A. Naylon, T. Mazanec, M. Vítek, and B. Rus, “Thin disk picosecond pump laser for jitter stabilized kHz OPCPA,” Proc. SPIE 8780, 878020 (2013).
    [Crossref]
  13. A. V. Smith, “How to select nonlinear crystals and model their performance using SNLO software,” Proc. SPIE 3928, 62–69 (2000).
    [Crossref]
  14. F. Batysta, R. Antipenkov, J. T. Green, J. A. Naylon, J. Novák, T. Mazanec, P. Hříbek, Ch. Zervos, P. Bakule, and B. Rus, “Pulse synchronization system for picosecond pulse-pumped OPCPA with femtosecond-level relative timing jitter,” Opt. Express 22, 30281–30287 (2014).
    [Crossref]
  15. S. Prinz, M. Haefner, C. Y. Teisset, R. Bessing, K. Michel, Y. Lee, X. T. Geng, S. Kim, D. E. Kim, T. Metzger, and M. Schultze, “CEP-stable, sub-6 fs, 300-kHz OPCPA system with more than 15 W of average power,” Opt. Express 23, 1388–1394 (2014).
    [Crossref]

2016 (1)

2015 (1)

2014 (6)

H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D. E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Zs. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1(1), 45–63 (2014).
[Crossref]

F. Batysta, R. Antipenkov, J. T. Green, J. A. Naylon, J. Novák, T. Mazanec, P. Hříbek, Ch. Zervos, P. Bakule, and B. Rus, “Pulse synchronization system for picosecond pulse-pumped OPCPA with femtosecond-level relative timing jitter,” Opt. Express 22, 30281–30287 (2014).
[Crossref]

S. Prinz, M. Haefner, C. Y. Teisset, R. Bessing, K. Michel, Y. Lee, X. T. Geng, S. Kim, D. E. Kim, T. Metzger, and M. Schultze, “CEP-stable, sub-6 fs, 300-kHz OPCPA system with more than 15 W of average power,” Opt. Express 23, 1388–1394 (2014).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers – reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

A. Jullien, A. Ricci, F. Böhle, J. P. Rousseau, S. Grabielle, N. Forget, H. Jacqmin, B. Mercier, and R. Lopez-Martens, “Carrier envelope-phase stable, high-contrast, double chirped-pulse-amplification laser system,” Opt. Lett. 39(13), 3774–3777 (2014).
[Crossref] [PubMed]

K. H. Hong, C. J. Lai, J. P. Siqueira, P. Krogen, J. Moses, C. L. Chang, G. J. Stein, L. E. Zapata, and F. X. Kärtner, “Multi-mJ, kHz, 2.1µm optical parametric chirped-pulse amplifier and high-flux soft X-ray high-harmonic generation,” Opt. Lett. 39(11), 3145–3148 (2014).
[Crossref] [PubMed]

2013 (1)

J. Novák, P. Bakule, J. T. Green, F. Batysta, T. Metzger, J. Hřebíček, J. A. Naylon, T. Mazanec, M. Vítek, and B. Rus, “Thin disk picosecond pump laser for jitter stabilized kHz OPCPA,” Proc. SPIE 8780, 878020 (2013).
[Crossref]

2010 (1)

H. J. Wörner, J. B. Bertrand, D. V. Kartashov, P. B. Corkum, and D. M. Villeneuve, “Following a chemical reaction using high-harmonic interferometry,” Nature 466(7306), 604–607 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2007 (1)

E. Gagnon, P. Ranitovic, X. M. Tong, C. L. Cocke, M. M. Murnane, H. C. Kapteyn, and A. S. Sandhu, “Soft X-ray-driven femtosecond molecular dynamics,” Science 317(5843), 1374–1378 (2007).
[Crossref] [PubMed]

2003 (1)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[Crossref]

2000 (1)

A. V. Smith, “How to select nonlinear crystals and model their performance using SNLO software,” Proc. SPIE 3928, 62–69 (2000).
[Crossref]

Adachi, S.

Alismail, A.

Alsaif, B.

Antipenkov, R.

Arisholm, G.

Azzeer, A. M.

Bakule, P.

Barros, H. G.

Batysta, F.

Bertrand, J. B.

H. J. Wörner, J. B. Bertrand, D. V. Kartashov, P. B. Corkum, and D. M. Villeneuve, “Following a chemical reaction using high-harmonic interferometry,” Nature 466(7306), 604–607 (2010).
[Crossref] [PubMed]

Bessing, R.

Boge, R.

Böhle, F.

Brons, J.

Cerullo, G.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[Crossref]

Chang, C. L.

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers – reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Ciappina, M.

Cocke, C. L.

E. Gagnon, P. Ranitovic, X. M. Tong, C. L. Cocke, M. M. Murnane, H. C. Kapteyn, and A. S. Sandhu, “Soft X-ray-driven femtosecond molecular dynamics,” Science 317(5843), 1374–1378 (2007).
[Crossref] [PubMed]

Corkum, P. B.

H. J. Wörner, J. B. Bertrand, D. V. Kartashov, P. B. Corkum, and D. M. Villeneuve, “Following a chemical reaction using high-harmonic interferometry,” Nature 466(7306), 604–607 (2010).
[Crossref] [PubMed]

De Silvestri, S.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[Crossref]

Fattahi, H.

Forget, N.

Gagnon, E.

E. Gagnon, P. Ranitovic, X. M. Tong, C. L. Cocke, M. M. Murnane, H. C. Kapteyn, and A. S. Sandhu, “Soft X-ray-driven femtosecond molecular dynamics,” Science 317(5843), 1374–1378 (2007).
[Crossref] [PubMed]

Geng, X. T.

Gorjan, M.

Grabielle, S.

Green, J. T.

Haefner, M.

Himmel, B.

Hong, K. H.

Horácek, M.

Hrebícek, J.

J. Novák, P. Bakule, J. T. Green, F. Batysta, T. Metzger, J. Hřebíček, J. A. Naylon, T. Mazanec, M. Vítek, and B. Rus, “Thin disk picosecond pump laser for jitter stabilized kHz OPCPA,” Proc. SPIE 8780, 878020 (2013).
[Crossref]

Hríbek, P.

Ishii, N.

Itatani, J.

Jacqmin, H.

Jullien, A.

Kanai, T.

Kapteyn, H. C.

E. Gagnon, P. Ranitovic, X. M. Tong, C. L. Cocke, M. M. Murnane, H. C. Kapteyn, and A. S. Sandhu, “Soft X-ray-driven femtosecond molecular dynamics,” Science 317(5843), 1374–1378 (2007).
[Crossref] [PubMed]

Karpowicz, N.

Kartashov, D. V.

H. J. Wörner, J. B. Bertrand, D. V. Kartashov, P. B. Corkum, and D. M. Villeneuve, “Following a chemical reaction using high-harmonic interferometry,” Nature 466(7306), 604–607 (2010).
[Crossref] [PubMed]

Kärtner, F. X.

Kienberger, R.

Killi, A.

Kim, D. E.

Kim, S.

Kobayashi, Y.

Kosuge, A.

Krausz, F.

Krogen, P.

Lai, C. J.

Lee, Y.

Lopez-Martens, R.

Major, Zs.

Mazanec, T.

Mercier, B.

Metzger, T.

J. Novák, J. T. Green, T. Metzger, T. Mazanec, B. Himmel, M. Horáček, R. Boge, R. Antipenkov, F. Batysta, J. A. Naylon, P. Bakule, and B. Rus, “Thin disk amplifier-based 40 mJ, 1 kHz, picosecond laser at 515 nm,” Opt. Express 24, 5728–5733 (2016).
[Crossref] [PubMed]

S. Prinz, M. Haefner, C. Y. Teisset, R. Bessing, K. Michel, Y. Lee, X. T. Geng, S. Kim, D. E. Kim, T. Metzger, and M. Schultze, “CEP-stable, sub-6 fs, 300-kHz OPCPA system with more than 15 W of average power,” Opt. Express 23(2), 1388–1394 (2015).
[Crossref] [PubMed]

H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D. E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Zs. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1(1), 45–63 (2014).
[Crossref]

S. Prinz, M. Haefner, C. Y. Teisset, R. Bessing, K. Michel, Y. Lee, X. T. Geng, S. Kim, D. E. Kim, T. Metzger, and M. Schultze, “CEP-stable, sub-6 fs, 300-kHz OPCPA system with more than 15 W of average power,” Opt. Express 23, 1388–1394 (2014).
[Crossref]

J. Novák, P. Bakule, J. T. Green, F. Batysta, T. Metzger, J. Hřebíček, J. A. Naylon, T. Mazanec, M. Vítek, and B. Rus, “Thin disk picosecond pump laser for jitter stabilized kHz OPCPA,” Proc. SPIE 8780, 878020 (2013).
[Crossref]

T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, and F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34(14), 2123–2125 (2009).
[Crossref] [PubMed]

Michel, K.

Moses, J.

Murnane, M. M.

E. Gagnon, P. Ranitovic, X. M. Tong, C. L. Cocke, M. M. Murnane, H. C. Kapteyn, and A. S. Sandhu, “Soft X-ray-driven femtosecond molecular dynamics,” Science 317(5843), 1374–1378 (2007).
[Crossref] [PubMed]

Naylon, J. A.

Novák, J.

Nubbemeyer, T.

Prinz, S.

Pronin, O.

Ranitovic, P.

E. Gagnon, P. Ranitovic, X. M. Tong, C. L. Cocke, M. M. Murnane, H. C. Kapteyn, and A. S. Sandhu, “Soft X-ray-driven femtosecond molecular dynamics,” Science 317(5843), 1374–1378 (2007).
[Crossref] [PubMed]

Ricci, A.

Rousseau, J. P.

Rus, B.

Sandhu, A. S.

E. Gagnon, P. Ranitovic, X. M. Tong, C. L. Cocke, M. M. Murnane, H. C. Kapteyn, and A. S. Sandhu, “Soft X-ray-driven femtosecond molecular dynamics,” Science 317(5843), 1374–1378 (2007).
[Crossref] [PubMed]

Schultze, M.

Schwarz, A.

Siqueira, J. P.

Smith, A. V.

A. V. Smith, “How to select nonlinear crystals and model their performance using SNLO software,” Proc. SPIE 3928, 62–69 (2000).
[Crossref]

Stein, G. J.

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers – reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Sutter, D.

Teisset, C. Y.

Tong, X. M.

E. Gagnon, P. Ranitovic, X. M. Tong, C. L. Cocke, M. M. Murnane, H. C. Kapteyn, and A. S. Sandhu, “Soft X-ray-driven femtosecond molecular dynamics,” Science 317(5843), 1374–1378 (2007).
[Crossref] [PubMed]

Torizuka, K.

Ueffing, M.

Vámos, L.

Villeneuve, D. M.

H. J. Wörner, J. B. Bertrand, D. V. Kartashov, P. B. Corkum, and D. M. Villeneuve, “Following a chemical reaction using high-harmonic interferometry,” Nature 466(7306), 604–607 (2010).
[Crossref] [PubMed]

Vítek, M.

J. Novák, P. Bakule, J. T. Green, F. Batysta, T. Metzger, J. Hřebíček, J. A. Naylon, T. Mazanec, M. Vítek, and B. Rus, “Thin disk picosecond pump laser for jitter stabilized kHz OPCPA,” Proc. SPIE 8780, 878020 (2013).
[Crossref]

Watanabe, S.

Wörner, H. J.

H. J. Wörner, J. B. Bertrand, D. V. Kartashov, P. B. Corkum, and D. M. Villeneuve, “Following a chemical reaction using high-harmonic interferometry,” Nature 466(7306), 604–607 (2010).
[Crossref] [PubMed]

Yakovlev, V. S.

Yoshitomi, D.

Zapata, L. E.

Zervos, Ch.

Light Sci. Appl. (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers – reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Nature (1)

H. J. Wörner, J. B. Bertrand, D. V. Kartashov, P. B. Corkum, and D. M. Villeneuve, “Following a chemical reaction using high-harmonic interferometry,” Nature 466(7306), 604–607 (2010).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Optica (1)

Proc. SPIE (2)

J. Novák, P. Bakule, J. T. Green, F. Batysta, T. Metzger, J. Hřebíček, J. A. Naylon, T. Mazanec, M. Vítek, and B. Rus, “Thin disk picosecond pump laser for jitter stabilized kHz OPCPA,” Proc. SPIE 8780, 878020 (2013).
[Crossref]

A. V. Smith, “How to select nonlinear crystals and model their performance using SNLO software,” Proc. SPIE 3928, 62–69 (2000).
[Crossref]

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[Crossref]

Science (1)

E. Gagnon, P. Ranitovic, X. M. Tong, C. L. Cocke, M. M. Murnane, H. C. Kapteyn, and A. S. Sandhu, “Soft X-ray-driven femtosecond molecular dynamics,” Science 317(5843), 1374–1378 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Simplified layout of the laser system. CFBG: chirped fiber Bragg grating, YDFA: ytterbium doped fiber amplifier, PP: Pulse picker, DLC: delay control, ISO: optical isolator, ROT: Faraday rotator, PC: Pockels cell, LBO: lithium triborate crystal, SHG: second harmonic generation, BBO: β-barium borate crystal, CMC: chirped mirror compressor.
Fig. 2
Fig. 2 Measurement of the output energy over 20 minutes. Sampling rate: 1 kHz, the statistical distribution is represented by a color map.
Fig. 3
Fig. 3 (a) Blue line: spectrum of the linearly chirped, amplified signal. Green line: spectrum of the amplified signal when dispersion of the Dazzler is matched to the GDD ripples of the CMC. (b) Green line: phase of the compressed pulse. Red line: higher-order phase applied by the Dazzler to match the dispersion of CMC. (c) Reconstruction of the compressed pulse as measured by SPIDER (“FC Spider,” A.P.E).
Fig. 4
Fig. 4 M2 measurement of amplified beam at 11.3 mJ (left); beam profile of the uncompressed beam (right).

Tables (1)

Tables Icon

Table 1 Parameters of the OPCPA system. Ep: pump pulse energy, Es: energy of the amplified signal, dp pump beam diameter (FWHM), L: crystal thickness, α: pump tilt angle, θ: signal angle. The convention for crystal angles corresponds to that in SNLO [13]. †Because the average power of the 1 kHz amplified pulses in stage 1 is nearly 50 times lower than the average power of the 80 MHz background, this measurement may be inaccurate up to 1 µJ.

Metrics