Abstract

We report a broad comparative analysis of the spectroscopic and laser properties of solid solution Lutetium-Yttrium Aluminum Garnet (LuYAG, (LuxY1-x)3Al5O12) ceramics doped with Yb. The investigation was mainly aimed to assess the impact of the Lu/Y ratio on the Yb optical and laser properties. Therefore we analyzed a set of samples with different Y/Lu balance, namely 25/75, 50/50 and 75/25, with 15% Yb doping. We found that the Yb absorption and emission spectra changed from YAG to LuAG when gradually increasing in Lu content. Regarding the laser emission, remarkable results were achieved with all samples. Maximum output power was 8.2 W, 7.3 W and 8.7 W for Y/Lu balance 25/75, 50/50 and 75/25 respectively, at 1030 nm; the slope efficiency and the optical-to-optical efficiencies approached or exceeded 60% and 50% respectively. The tuning range was investigated using an intracavity ZnSe prism. The broadest tuning range (998 nm to 1063 nm) was obtained with Y/Lu balance 75/25, whereas the emission of the other two samples extended from 1000 nm to 1058 nm. To the best of our knowledge, this is the first comparative analysis of Yb:LuYAG ceramics or crystals as laser host across such a broad range of Y/Lu ratios.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Yb:LuAG laser ceramics: a promising high power laser gain medium

Dewei Luo, Jian Zhang, Changwen Xu, Hao Yang, Hui Lin, Haiyong Zhu, and Dingyuan Tang
Opt. Mater. Express 2(10) 1425-1431 (2012)

First laser emission of Yb0.15:(Lu0.5Y0.5)3Al5O12 ceramics

Guido Toci, Angela Pirri, Jiang Li, Tengfei Xie, Yubai Pan, Vladimir Babin, Alena Beitlerova, Martin Nikl, and Matteo Vannini
Opt. Express 24(9) 9611-9616 (2016)

Spectroscopy and CW first laser operation of Yb-doped Gd3(Al0.5Ga0.5)5O12 crystal

Guido Toci, Angela Pirri, Witold Ryba-Romanowski, Marek Berkowski, and Matteo Vannini
Opt. Mater. Express 7(1) 170-178 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance [Invited],” Opt. Mater. Express 1(3), 489–502 (2011).
    [Crossref]
  2. J. Sanghera, J. Frantz, W. Kim, G. Villalobos, C. Baker, B. Shaw, B. Sadowski, M. Hunt, F. Miklos, A. Lutz, and I. Aggarwal, “10% Yb3+-Lu2O3 ceramic laser with 74% efficiency,” Opt. Lett. 36(4), 576–578 (2011).
    [Crossref] [PubMed]
  3. K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
    [Crossref]
  4. V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237, 879–883 (2002).
    [Crossref]
  5. H. Nakao, A. Shirakawa, K. Ueda, H. Yagi, and T. Yanagitani, “CW and mode-locked operation of Yb3+-doped Lu3Al5O12 ceramic laser,” Opt. Express 20(14), 15385–15391 (2012).
    [Crossref] [PubMed]
  6. A. Pirri, G. Toci, and M. Vannini, “First laser oscillation and broad tunability of 1 at. % Yb-doped Sc2O3 and Lu2O3 ceramics,” Opt. Lett. 36(21), 4284–4286 (2011).
    [Crossref] [PubMed]
  7. A. Pirri, M. Vannini, V. Babin, M. Nikl, and G. Toci, “CW and quasi-CW laser performance of 10 at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
    [Crossref]
  8. A. Pirri, G. Toci, M. Nikl, V. Babin, and M. Vannini, “Experimental evidence of a nonlinear loss mechanism in highly doped Yb:LuAG crystal,” Opt. Express 22(4), 4038–4049 (2014).
    [Crossref] [PubMed]
  9. M. Siebold, M. Loeser, F. Roeser, M. Seltmann, G. Harzendorf, I. Tsybin, S. Linke, S. Banerjee, P. D. Mason, P. J. Phillips, K. Ertel, J. C. Collier, and U. Schramm, “High-energy, ceramic-disk Yb:LuAG laser amplifier,” Opt. Express 20(20), 21992–22000 (2012).
    [Crossref] [PubMed]
  10. K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
    [Crossref]
  11. V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237, 879–883 (2002).
    [Crossref]
  12. U. Griebner, V. Petrov, K. Petermann, V. Peters, V. Peters, K. Petermann, and G. Huber, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express 12(14), 3125–3130 (2004).
    [Crossref] [PubMed]
  13. S. Cheng, X. Xu, D. Li, D. Zhou, F. Wu, Z. Zhao, and J. Xu, “Growth and spectroscopic properties of Yb:Lu1.5Y1.5Al5O12 mixed crystal,” Opt. Mater. 33(1), 112–115 (2010).
    [Crossref]
  14. F. Wang, Z. Qin, G. Xie, P. Yuan, L. Qian, X. Xu, and J. Xu, “8.5 W mode-locked Yb:Lu1.5Y1.5Al5O12 laser with master oscillator power amplifiers,” Appl. Opt. 54(5), 1041–1045 (2015).
    [Crossref] [PubMed]
  15. G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, V. Babin, A. Beitlerova, M. Nikl, and M. Vannini, “First laser emission of Yb0.15:(Lu0.5Y0.5)3Al5O12 ceramics,” Opt. Express 24(9), 9611–9616 (2016).
    [Crossref] [PubMed]
  16. G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, M. Nikl, V. Babin, A. Beitlerová, and M. Vannini, “First laser operation and spectroscopic characterization of mixed garnet Yb:LuYAG ceramics,” Proc. SPIE 9726, 97261N (2016).
    [Crossref]
  17. M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
    [Crossref]
  18. X. F. Yang, Y. Wang, D. Y. Shen, T. Zhao, X. D. Xu, D. H. Zhou, and J. Xu, “Efficient Er:LuYAG laser operating at 1648 and 1620 nm,” Laser Phys. Lett. 9(2), 131–134 (2012).
    [Crossref]
  19. J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
    [Crossref]
  20. Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
    [Crossref]
  21. H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
    [Crossref] [PubMed]
  22. G. Toci, “Lifetime measurements with the pinhole method in presence of radiation trapping: I—theoretical model,” Appl. Phys. B 106(1), 63–71 (2011).
    [Crossref]
  23. G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II—application to Yb3+ doped ceramics and crystals,” Appl. Phys. B 106(1), 73–79 (2011).
    [Crossref]
  24. J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D. Kloepfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B 29(9), 2493–2502 (2012).
    [Crossref]
  25. B. F. Aull and H. P. Jenssen, “Vibronic interaction Nd:YAG resulting in non reciprocity of absorption and stimulated emission cross section,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
    [Crossref]
  26. D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19(17), 1343–1345 (1994).
    [Crossref] [PubMed]
  27. K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express 18(20), 20712–20722 (2010).
    [Crossref] [PubMed]
  28. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
    [Crossref]
  29. A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Ródenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, “Growth, spectroscopic and laser properties of Yb3+-doped Lu3Al5O12 garnet crystal,” J. Opt. Soc. Am. B 23(4), 676–683 (2006).
    [Crossref]
  30. F. Euler and J. A. Bruce, “Oxygen coordinates of compounds with garnet structure,” Acta Crystallogr. 19(6), 971–978 (1965).
    [Crossref]

2016 (2)

G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, V. Babin, A. Beitlerova, M. Nikl, and M. Vannini, “First laser emission of Yb0.15:(Lu0.5Y0.5)3Al5O12 ceramics,” Opt. Express 24(9), 9611–9616 (2016).
[Crossref] [PubMed]

G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, M. Nikl, V. Babin, A. Beitlerová, and M. Vannini, “First laser operation and spectroscopic characterization of mixed garnet Yb:LuYAG ceramics,” Proc. SPIE 9726, 97261N (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (1)

A. Pirri, M. Vannini, V. Babin, M. Nikl, and G. Toci, “CW and quasi-CW laser performance of 10 at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
[Crossref]

2012 (5)

2011 (6)

G. Toci, “Lifetime measurements with the pinhole method in presence of radiation trapping: I—theoretical model,” Appl. Phys. B 106(1), 63–71 (2011).
[Crossref]

G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II—application to Yb3+ doped ceramics and crystals,” Appl. Phys. B 106(1), 73–79 (2011).
[Crossref]

F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance [Invited],” Opt. Mater. Express 1(3), 489–502 (2011).
[Crossref]

J. Sanghera, J. Frantz, W. Kim, G. Villalobos, C. Baker, B. Shaw, B. Sadowski, M. Hunt, F. Miklos, A. Lutz, and I. Aggarwal, “10% Yb3+-Lu2O3 ceramic laser with 74% efficiency,” Opt. Lett. 36(4), 576–578 (2011).
[Crossref] [PubMed]

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

A. Pirri, G. Toci, and M. Vannini, “First laser oscillation and broad tunability of 1 at. % Yb-doped Sc2O3 and Lu2O3 ceramics,” Opt. Lett. 36(21), 4284–4286 (2011).
[Crossref] [PubMed]

2010 (2)

S. Cheng, X. Xu, D. Li, D. Zhou, F. Wu, Z. Zhao, and J. Xu, “Growth and spectroscopic properties of Yb:Lu1.5Y1.5Al5O12 mixed crystal,” Opt. Mater. 33(1), 112–115 (2010).
[Crossref]

K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express 18(20), 20712–20722 (2010).
[Crossref] [PubMed]

2007 (1)

2006 (1)

2004 (2)

U. Griebner, V. Petrov, K. Petermann, V. Peters, V. Peters, K. Petermann, and G. Huber, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express 12(14), 3125–3130 (2004).
[Crossref] [PubMed]

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

2002 (4)

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[Crossref]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237, 879–883 (2002).
[Crossref]

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[Crossref]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237, 879–883 (2002).
[Crossref]

1994 (1)

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

1982 (1)

B. F. Aull and H. P. Jenssen, “Vibronic interaction Nd:YAG resulting in non reciprocity of absorption and stimulated emission cross section,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

1965 (1)

F. Euler and J. A. Bruce, “Oxygen coordinates of compounds with garnet structure,” Acta Crystallogr. 19(6), 971–978 (1965).
[Crossref]

Aggarwal, I.

Alderighi, D.

G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II—application to Yb3+ doped ceramics and crystals,” Appl. Phys. B 106(1), 73–79 (2011).
[Crossref]

An, Y.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic interaction Nd:YAG resulting in non reciprocity of absorption and stimulated emission cross section,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Babin, V.

G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, M. Nikl, V. Babin, A. Beitlerová, and M. Vannini, “First laser operation and spectroscopic characterization of mixed garnet Yb:LuYAG ceramics,” Proc. SPIE 9726, 97261N (2016).
[Crossref]

G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, V. Babin, A. Beitlerova, M. Nikl, and M. Vannini, “First laser emission of Yb0.15:(Lu0.5Y0.5)3Al5O12 ceramics,” Opt. Express 24(9), 9611–9616 (2016).
[Crossref] [PubMed]

A. Pirri, G. Toci, M. Nikl, V. Babin, and M. Vannini, “Experimental evidence of a nonlinear loss mechanism in highly doped Yb:LuAG crystal,” Opt. Express 22(4), 4038–4049 (2014).
[Crossref] [PubMed]

A. Pirri, M. Vannini, V. Babin, M. Nikl, and G. Toci, “CW and quasi-CW laser performance of 10 at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
[Crossref]

Baker, C.

Banerjee, S.

Beil, K.

Beitlerova, A.

Beitlerová, A.

G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, M. Nikl, V. Babin, A. Beitlerová, and M. Vannini, “First laser operation and spectroscopic characterization of mixed garnet Yb:LuYAG ceramics,” Proc. SPIE 9726, 97261N (2016).
[Crossref]

Bolz, A.

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237, 879–883 (2002).
[Crossref]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237, 879–883 (2002).
[Crossref]

Boulon, G.

Brenier, A.

Bruce, J. A.

F. Euler and J. A. Bruce, “Oxygen coordinates of compounds with garnet structure,” Acta Crystallogr. 19(6), 971–978 (1965).
[Crossref]

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Camy, P.

Canibano, H.

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Cheng, S.

S. Cheng, X. Xu, D. Li, D. Zhou, F. Wu, Z. Zhao, and J. Xu, “Growth and spectroscopic properties of Yb:Lu1.5Y1.5Al5O12 mixed crystal,” Opt. Mater. 33(1), 112–115 (2010).
[Crossref]

Collier, J. C.

Courjaud, A.

Di, J. Q.

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

Doualan, J. L.

Druon, F.

Eganyan, A.

Ertel, K.

Euler, F.

F. Euler and J. A. Bruce, “Oxygen coordinates of compounds with garnet structure,” Acta Crystallogr. 19(6), 971–978 (1965).
[Crossref]

Fan, T. Y.

Fornasiero, L.

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[Crossref]

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[Crossref]

Frantz, J.

Fredrich-Thornton, S. T.

Georges, P.

Griebner, U.

Guyot, Y.

Harzendorf, G.

Hein, J.

Hu, X. H.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Huber, G.

K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express 18(20), 20712–20722 (2010).
[Crossref] [PubMed]

U. Griebner, V. Petrov, K. Petermann, V. Peters, V. Peters, K. Petermann, and G. Huber, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express 12(14), 3125–3130 (2004).
[Crossref] [PubMed]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237, 879–883 (2002).
[Crossref]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237, 879–883 (2002).
[Crossref]

Hunt, M.

Ishizawa, N.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

Jaque, D.

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic interaction Nd:YAG resulting in non reciprocity of absorption and stimulated emission cross section,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Kahle, M.

Kaluza, M. C.

Kim, W.

Kloepfel, D.

Koerner, J.

Kränkel, C.

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Kühn, H.

Kuwano, Y.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

Li, C.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Li, D.

S. Cheng, X. Xu, D. Li, D. Zhou, F. Wu, Z. Zhao, and J. Xu, “Growth and spectroscopic properties of Yb:Lu1.5Y1.5Al5O12 mixed crystal,” Opt. Mater. 33(1), 112–115 (2010).
[Crossref]

Li, D. Z.

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

Li, J.

G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, M. Nikl, V. Babin, A. Beitlerová, and M. Vannini, “First laser operation and spectroscopic characterization of mixed garnet Yb:LuYAG ceramics,” Proc. SPIE 9726, 97261N (2016).
[Crossref]

G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, V. Babin, A. Beitlerova, M. Nikl, and M. Vannini, “First laser emission of Yb0.15:(Lu0.5Y0.5)3Al5O12 ceramics,” Opt. Express 24(9), 9611–9616 (2016).
[Crossref] [PubMed]

Li, X. H.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Liebetrau, H.

Linke, S.

Liu, Y.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Loeser, M.

Long, J. Y.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Lutz, A.

Ma, H. F.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Mason, P. D.

Miklos, F.

Mix, E.

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[Crossref]

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[Crossref]

Moncorgé, R.

Mottay, E.

Nakao, H.

Nikl, M.

G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, M. Nikl, V. Babin, A. Beitlerová, and M. Vannini, “First laser operation and spectroscopic characterization of mixed garnet Yb:LuYAG ceramics,” Proc. SPIE 9726, 97261N (2016).
[Crossref]

G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, V. Babin, A. Beitlerova, M. Nikl, and M. Vannini, “First laser emission of Yb0.15:(Lu0.5Y0.5)3Al5O12 ceramics,” Opt. Express 24(9), 9611–9616 (2016).
[Crossref] [PubMed]

A. Pirri, G. Toci, M. Nikl, V. Babin, and M. Vannini, “Experimental evidence of a nonlinear loss mechanism in highly doped Yb:LuAG crystal,” Opt. Express 22(4), 4038–4049 (2014).
[Crossref] [PubMed]

A. Pirri, M. Vannini, V. Babin, M. Nikl, and G. Toci, “CW and quasi-CW laser performance of 10 at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
[Crossref]

Pan, Y.

G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, M. Nikl, V. Babin, A. Beitlerová, and M. Vannini, “First laser operation and spectroscopic characterization of mixed garnet Yb:LuYAG ceramics,” Proc. SPIE 9726, 97261N (2016).
[Crossref]

G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, V. Babin, A. Beitlerova, M. Nikl, and M. Vannini, “First laser emission of Yb0.15:(Lu0.5Y0.5)3Al5O12 ceramics,” Opt. Express 24(9), 9611–9616 (2016).
[Crossref] [PubMed]

Papadopoulos, D. N.

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Pellegrina, A.

Petermann, K.

K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express 18(20), 20712–20722 (2010).
[Crossref] [PubMed]

H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
[Crossref] [PubMed]

U. Griebner, V. Petrov, K. Petermann, V. Peters, V. Peters, K. Petermann, and G. Huber, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express 12(14), 3125–3130 (2004).
[Crossref] [PubMed]

U. Griebner, V. Petrov, K. Petermann, V. Peters, V. Peters, K. Petermann, and G. Huber, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express 12(14), 3125–3130 (2004).
[Crossref] [PubMed]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237, 879–883 (2002).
[Crossref]

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[Crossref]

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[Crossref]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237, 879–883 (2002).
[Crossref]

Peters, R.

Peters, V.

U. Griebner, V. Petrov, K. Petermann, V. Peters, V. Peters, K. Petermann, and G. Huber, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express 12(14), 3125–3130 (2004).
[Crossref] [PubMed]

U. Griebner, V. Petrov, K. Petermann, V. Peters, V. Peters, K. Petermann, and G. Huber, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express 12(14), 3125–3130 (2004).
[Crossref] [PubMed]

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[Crossref]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237, 879–883 (2002).
[Crossref]

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[Crossref]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237, 879–883 (2002).
[Crossref]

Petrosyan, A. G.

Petrov, V.

Phillips, P. J.

Pirri, A.

G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, V. Babin, A. Beitlerova, M. Nikl, and M. Vannini, “First laser emission of Yb0.15:(Lu0.5Y0.5)3Al5O12 ceramics,” Opt. Express 24(9), 9611–9616 (2016).
[Crossref] [PubMed]

G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, M. Nikl, V. Babin, A. Beitlerová, and M. Vannini, “First laser operation and spectroscopic characterization of mixed garnet Yb:LuYAG ceramics,” Proc. SPIE 9726, 97261N (2016).
[Crossref]

A. Pirri, G. Toci, M. Nikl, V. Babin, and M. Vannini, “Experimental evidence of a nonlinear loss mechanism in highly doped Yb:LuAG crystal,” Opt. Express 22(4), 4038–4049 (2014).
[Crossref] [PubMed]

A. Pirri, M. Vannini, V. Babin, M. Nikl, and G. Toci, “CW and quasi-CW laser performance of 10 at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
[Crossref]

G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II—application to Yb3+ doped ceramics and crystals,” Appl. Phys. B 106(1), 73–79 (2011).
[Crossref]

A. Pirri, G. Toci, and M. Vannini, “First laser oscillation and broad tunability of 1 at. % Yb-doped Sc2O3 and Lu2O3 ceramics,” Opt. Lett. 36(21), 4284–4286 (2011).
[Crossref] [PubMed]

Qian, L.

Qin, Z.

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Ricaud, S.

Ródenas, A.

Roeser, F.

Sadowski, B.

Sanghera, J.

Schramm, U.

Seifert, R.

Seltmann, M.

Shaw, B.

Shen, D. Y.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

X. F. Yang, Y. Wang, D. Y. Shen, T. Zhao, X. D. Xu, D. H. Zhou, and J. Xu, “Efficient Er:LuYAG laser operating at 1648 and 1620 nm,” Laser Phys. Lett. 9(2), 131–134 (2012).
[Crossref]

Shirakawa, A.

Siebold, M.

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Suda, K.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

Sumida, D. S.

Sun, M.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Tang, D. Y.

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

Tellkamp, F.

Toci, G.

G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, M. Nikl, V. Babin, A. Beitlerová, and M. Vannini, “First laser operation and spectroscopic characterization of mixed garnet Yb:LuYAG ceramics,” Proc. SPIE 9726, 97261N (2016).
[Crossref]

G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, V. Babin, A. Beitlerova, M. Nikl, and M. Vannini, “First laser emission of Yb0.15:(Lu0.5Y0.5)3Al5O12 ceramics,” Opt. Express 24(9), 9611–9616 (2016).
[Crossref] [PubMed]

A. Pirri, G. Toci, M. Nikl, V. Babin, and M. Vannini, “Experimental evidence of a nonlinear loss mechanism in highly doped Yb:LuAG crystal,” Opt. Express 22(4), 4038–4049 (2014).
[Crossref] [PubMed]

A. Pirri, M. Vannini, V. Babin, M. Nikl, and G. Toci, “CW and quasi-CW laser performance of 10 at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
[Crossref]

G. Toci, “Lifetime measurements with the pinhole method in presence of radiation trapping: I—theoretical model,” Appl. Phys. B 106(1), 63–71 (2011).
[Crossref]

G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II—application to Yb3+ doped ceramics and crystals,” Appl. Phys. B 106(1), 73–79 (2011).
[Crossref]

A. Pirri, G. Toci, and M. Vannini, “First laser oscillation and broad tunability of 1 at. % Yb-doped Sc2O3 and Lu2O3 ceramics,” Opt. Lett. 36(21), 4284–4286 (2011).
[Crossref] [PubMed]

Tsybin, I.

Ueda, K.

Vannini, M.

G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, M. Nikl, V. Babin, A. Beitlerová, and M. Vannini, “First laser operation and spectroscopic characterization of mixed garnet Yb:LuYAG ceramics,” Proc. SPIE 9726, 97261N (2016).
[Crossref]

G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, V. Babin, A. Beitlerova, M. Nikl, and M. Vannini, “First laser emission of Yb0.15:(Lu0.5Y0.5)3Al5O12 ceramics,” Opt. Express 24(9), 9611–9616 (2016).
[Crossref] [PubMed]

A. Pirri, G. Toci, M. Nikl, V. Babin, and M. Vannini, “Experimental evidence of a nonlinear loss mechanism in highly doped Yb:LuAG crystal,” Opt. Express 22(4), 4038–4049 (2014).
[Crossref] [PubMed]

A. Pirri, M. Vannini, V. Babin, M. Nikl, and G. Toci, “CW and quasi-CW laser performance of 10 at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
[Crossref]

G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II—application to Yb3+ doped ceramics and crystals,” Appl. Phys. B 106(1), 73–79 (2011).
[Crossref]

A. Pirri, G. Toci, and M. Vannini, “First laser oscillation and broad tunability of 1 at. % Yb-doped Sc2O3 and Lu2O3 ceramics,” Opt. Lett. 36(21), 4284–4286 (2011).
[Crossref] [PubMed]

Villalobos, G.

Vorholt, C.

Wang, F.

Wang, Y.

X. F. Yang, Y. Wang, D. Y. Shen, T. Zhao, X. D. Xu, D. H. Zhou, and J. Xu, “Efficient Er:LuYAG laser operating at 1648 and 1620 nm,” Laser Phys. Lett. 9(2), 131–134 (2012).
[Crossref]

Wang, Y. S.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Wu, F.

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

S. Cheng, X. Xu, D. Li, D. Zhou, F. Wu, Z. Zhao, and J. Xu, “Growth and spectroscopic properties of Yb:Lu1.5Y1.5Al5O12 mixed crystal,” Opt. Mater. 33(1), 112–115 (2010).
[Crossref]

Xie, G.

Xie, T.

G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, V. Babin, A. Beitlerova, M. Nikl, and M. Vannini, “First laser emission of Yb0.15:(Lu0.5Y0.5)3Al5O12 ceramics,” Opt. Express 24(9), 9611–9616 (2016).
[Crossref] [PubMed]

G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, M. Nikl, V. Babin, A. Beitlerová, and M. Vannini, “First laser operation and spectroscopic characterization of mixed garnet Yb:LuYAG ceramics,” Proc. SPIE 9726, 97261N (2016).
[Crossref]

Xu, J.

F. Wang, Z. Qin, G. Xie, P. Yuan, L. Qian, X. Xu, and J. Xu, “8.5 W mode-locked Yb:Lu1.5Y1.5Al5O12 laser with master oscillator power amplifiers,” Appl. Opt. 54(5), 1041–1045 (2015).
[Crossref] [PubMed]

X. F. Yang, Y. Wang, D. Y. Shen, T. Zhao, X. D. Xu, D. H. Zhou, and J. Xu, “Efficient Er:LuYAG laser operating at 1648 and 1620 nm,” Laser Phys. Lett. 9(2), 131–134 (2012).
[Crossref]

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

S. Cheng, X. Xu, D. Li, D. Zhou, F. Wu, Z. Zhao, and J. Xu, “Growth and spectroscopic properties of Yb:Lu1.5Y1.5Al5O12 mixed crystal,” Opt. Mater. 33(1), 112–115 (2010).
[Crossref]

Xu, X.

F. Wang, Z. Qin, G. Xie, P. Yuan, L. Qian, X. Xu, and J. Xu, “8.5 W mode-locked Yb:Lu1.5Y1.5Al5O12 laser with master oscillator power amplifiers,” Appl. Opt. 54(5), 1041–1045 (2015).
[Crossref] [PubMed]

S. Cheng, X. Xu, D. Li, D. Zhou, F. Wu, Z. Zhao, and J. Xu, “Growth and spectroscopic properties of Yb:Lu1.5Y1.5Al5O12 mixed crystal,” Opt. Mater. 33(1), 112–115 (2010).
[Crossref]

Xu, X. D.

X. F. Yang, Y. Wang, D. Y. Shen, T. Zhao, X. D. Xu, D. H. Zhou, and J. Xu, “Efficient Er:LuYAG laser operating at 1648 and 1620 nm,” Laser Phys. Lett. 9(2), 131–134 (2012).
[Crossref]

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

Yagi, H.

Yamada, T.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

Yanagitani, T.

Yang, X. F.

X. F. Yang, Y. Wang, D. Y. Shen, T. Zhao, X. D. Xu, D. H. Zhou, and J. Xu, “Efficient Er:LuYAG laser operating at 1648 and 1620 nm,” Laser Phys. Lett. 9(2), 131–134 (2012).
[Crossref]

Yuan, P.

Zhao, T.

X. F. Yang, Y. Wang, D. Y. Shen, T. Zhao, X. D. Xu, D. H. Zhou, and J. Xu, “Efficient Er:LuYAG laser operating at 1648 and 1620 nm,” Laser Phys. Lett. 9(2), 131–134 (2012).
[Crossref]

Zhao, Z.

S. Cheng, X. Xu, D. Li, D. Zhou, F. Wu, Z. Zhao, and J. Xu, “Growth and spectroscopic properties of Yb:Lu1.5Y1.5Al5O12 mixed crystal,” Opt. Mater. 33(1), 112–115 (2010).
[Crossref]

Zhao, Z. W.

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

Zhou, D.

S. Cheng, X. Xu, D. Li, D. Zhou, F. Wu, Z. Zhao, and J. Xu, “Growth and spectroscopic properties of Yb:Lu1.5Y1.5Al5O12 mixed crystal,” Opt. Mater. 33(1), 112–115 (2010).
[Crossref]

Zhou, D. H.

X. F. Yang, Y. Wang, D. Y. Shen, T. Zhao, X. D. Xu, D. H. Zhou, and J. Xu, “Efficient Er:LuYAG laser operating at 1648 and 1620 nm,” Laser Phys. Lett. 9(2), 131–134 (2012).
[Crossref]

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

Acta Crystallogr. (1)

F. Euler and J. A. Bruce, “Oxygen coordinates of compounds with garnet structure,” Acta Crystallogr. 19(6), 971–978 (1965).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

G. Toci, “Lifetime measurements with the pinhole method in presence of radiation trapping: I—theoretical model,” Appl. Phys. B 106(1), 63–71 (2011).
[Crossref]

G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II—application to Yb3+ doped ceramics and crystals,” Appl. Phys. B 106(1), 73–79 (2011).
[Crossref]

IEEE J. Quantum Electron. (2)

B. F. Aull and H. P. Jenssen, “Vibronic interaction Nd:YAG resulting in non reciprocity of absorption and stimulated emission cross section,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

J. Cryst. Growth (3)

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1-2), 159–165 (2004).
[Crossref]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237, 879–883 (2002).
[Crossref]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237, 879–883 (2002).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. (2)

A. Pirri, M. Vannini, V. Babin, M. Nikl, and G. Toci, “CW and quasi-CW laser performance of 10 at.% Yb3+:LuAG ceramic,” Laser Phys. 23(9), 095002 (2013).
[Crossref]

J. Q. Di, X. D. Xu, D. Z. Li, D. H. Zhou, F. Wu, Z. W. Zhao, J. Xu, and D. Y. Tang, “CW Laser Properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG Mixed Crystals,” Laser Phys. 21(10), 1742–1744 (2011).
[Crossref]

Laser Phys. Lett. (2)

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm:LuYAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

X. F. Yang, Y. Wang, D. Y. Shen, T. Zhao, X. D. Xu, D. H. Zhou, and J. Xu, “Efficient Er:LuYAG laser operating at 1648 and 1620 nm,” Laser Phys. Lett. 9(2), 131–134 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Opt. Mater. (3)

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[Crossref]

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002).
[Crossref]

S. Cheng, X. Xu, D. Li, D. Zhou, F. Wu, Z. Zhao, and J. Xu, “Growth and spectroscopic properties of Yb:Lu1.5Y1.5Al5O12 mixed crystal,” Opt. Mater. 33(1), 112–115 (2010).
[Crossref]

Opt. Mater. Express (1)

Proc. SPIE (1)

G. Toci, A. Pirri, J. Li, T. Xie, Y. Pan, M. Nikl, V. Babin, A. Beitlerová, and M. Vannini, “First laser operation and spectroscopic characterization of mixed garnet Yb:LuYAG ceramics,” Proc. SPIE 9726, 97261N (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 FESEM micrographs of the fracture surfaces of Lu0.25 (a), Lu0.50 (b), Lu00.75 (c). FESEM micrographs of the polished and thermally etched surface of Lu0.75 (d).
Fig. 2
Fig. 2 Absorption coefficients in UV-range (a) and absorption cross sections (b) of the three LuYAG samples, and of the LuAG and YAG samples.
Fig. 3
Fig. 3 PLE and PL spectra of the sample set acquired at room temperature. The excitation (Ex) and emission (Em) wavelengths were 225 nm and 330 nm, respectively.
Fig. 4
Fig. 4 Emission cross sections of the samples. Two emission peaks are found at 1030 nm and 1048 nm. The peak at 968 nm is ascribed to the so-called zero-phonon absorption line.
Fig. 5
Fig. 5 Laser cavity. EM: end-mirror (flat); FM: folding mirror; OC: output coupler (flat); C denotes the lasing material. M1 and M2: power meters; DM: dicroich mirror acting as filter to cut the residual pump radiation. The magnification of the achromatic doublets set is 1:1. The inset on the right shows the arrangement for the tunable cavity.
Fig. 6
Fig. 6 Laser output power versus the absorption pump power. The measurements are acquired by pumping the ceramics in QCW (DF = 20%, 10 Hz).
Fig. 7
Fig. 7 CW laser output power versus the absorption pump power (Pabs). The maximum injected pump power was 10 W.
Fig. 8
Fig. 8 Tuning range. Two well-defined peaks are placed at 1032 nm and 1050 nm. The output power is normalized to the peak, which corresponds to 0.66 W for all the samples.

Tables (2)

Tables Icon

Table 1 Laser data in QCW

Tables Icon

Table 2 Laser data in CW

Metrics