Abstract

The knowledge of the pump power for which the population of thermally coupled energy levels (TCL) changes with power increase is of valuable importance for optical temperature sensors. In this paper, novel Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics was fabricated successfully, and its structure is studied by XRD, TEM and HRTEM analyses. The 2H11/2/4S3/2, 4F9/2(1)/4F9/2(2), and 4I9/2(1)/4I9/2(2) levels of Er3+ are proved as TCL by analyzing the temperature dependent fluorescence intensity ratios. The spectrum split, thermal quenching ratio, population stability, and temperature sensitivity from three TCL are observed to be dependent on the pump power. A new fitting method has been developed to establish the relation between fluorescence intensity ratios and temperature. It is found that the combined use of 2H11/2/4S3/2 and 4F9/2(1)/4F9/2(2) as thermally coupled energy levels will get a more precise temperature reading from 62.7 K to 800 K with the help of low excitation power at 66.8 mW/mm2.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controlling optical temperature behaviors of Er3+ doped Sr2CaWO6 through doping and changing excitation powers

Yemin Wang, Yuanjian Liu, Jianping Shen, Xiangfu Wang, and Xiaohong Yan
Opt. Mater. Express 8(7) 1926-1939 (2018)

Influence of excitation power and doping concentration on the upconversion emission and optical temperature sensing behavior of Er3+: BaGd2(MoO4)4 phosphors

Ruoshan Lei, Degang Deng, Xin Liu, Feifei Huang, Huanping Wang, Shilong Zhao, and Shiqing Xu
Opt. Mater. Express 8(10) 3023-3035 (2018)

Near-infrared to short-wavelength upconversion temperature sensing in transparent bulk glass ceramics containing hexagonal NaGdF4: Yb3+/Ho3+ nanocrystals

XinYue Li, Shuo Yuan, Fangfang Hu, Siqi Lu, Daqin Chen, and Min Yin
Opt. Mater. Express 7(8) 3023-3033 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Xia, J. Feng, Y. Wang, J. Li, Z. Jia, and C. Tu, “Evaluation of spectroscopic properties of Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 crystal for use in mid-infrared lasers,” Sci. Rep. 5, 13988 (2015).
    [Crossref] [PubMed]
  2. C. Yan, X. Liu, H. Li, X. Xia, H. Lu, and W. Zheng, “Color three-dimensional display with omnidirectional view based on a light-emitting diode projector,” Appl. Opt. 48(22), 4490–4495 (2009).
    [Crossref] [PubMed]
  3. X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
    [Crossref]
  4. J. C. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of Colloidal Upconverting NaYF4 Nanocrystals Doped with Er3+, Yb3+ and Tm3+, Yb3+ via Thermal Decomposition Of Lanthanide Trifluoroacetate Precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
    [Crossref] [PubMed]
  5. M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
    [Crossref] [PubMed]
  6. J. Feenstra, I. F. Six, M. A. H. Asselbergs, R. H. van Leest, J. de Wild, A. Meijerink, R. E. I. Schropp, A. E. Rowan, and J. J. Schermer, “Er(3+)/Yb(3+) upconverters for InGaP solar cells under concentrated broadband illumination,” Phys. Chem. Chem. Phys. 17(17), 11234–11243 (2015).
    [Crossref] [PubMed]
  7. X. Zhai, S. Liu, X. Liu, F. Wang, D. Zhang, G. Qin, and W. Qin, “Sub-10 nm BaYF5:Yb3+,Er3+ core–shell nanoparticles with intense 1.53 μm fluorescence for polymer-based waveguide amplifiers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(7), 1525–1530 (2013).
    [Crossref]
  8. D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er(3+):K(Y(1-x)Yb(x))3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
    [Crossref] [PubMed]
  9. W. Zhang, F. Ding, and S. Y. Chou, “Large Enhancement of Upconversion Luminescence of NaYF4:Yb3+/Er3+ Nanocrystal by 3D Plasmonic Nano-Antennas,” Adv. Mater. 24(35), 236–241 (2012).
    [Crossref]
  10. Y. Zhu, W. Xu, S. Cui, M. Liu, C. Lu, H. Song, and D. Kim, “Controlled size and morphology, and phase transition of YF3:Yb3+,Er3+ and YOF:Yb3+,Er3+ nanocrystals for fine color tuning,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 331–339 (2016).
    [Crossref]
  11. S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
    [Crossref]
  12. G. Y. Chen, H. J. Liang, H. C. Liu, G. Somesfalean, and Z. G. Zhang, “Anomalous power dependence of upconversion emissions in Gd2O3:Er3+ nanocrystals under diode laser excitation of 970 nm,” J. Appl. Phys. 105(11), 114315 (2009).
    [Crossref]
  13. G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Agren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
    [Crossref] [PubMed]
  14. Y. Qu, X. Kong, Y. Sun, Q. Zeng, and H. Zhang, “Effect of excitation power density on the upconversion luminescence of LaF3:Yb3+, Er3+ nanocrystals,” J. Alloys Compd. 485(1–2), 493–496 (2009).
    [Crossref]
  15. Y. Tian, R. Hua, J. Yu, J. Sun, and B. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2–3), 617–620 (2012).
    [Crossref]
  16. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref] [PubMed]
  17. K. Zheng, W. Song, G. He, Z. Yuan, and W. Qin, “Five-photon UV upconversion emissions of Er3+ for temperature sensing,” Opt. Express 23(6), 7653–7658 (2015).
    [Crossref] [PubMed]
  18. S. F. LeÓn-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
    [Crossref]
  19. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
    [Crossref] [PubMed]
  20. S. F. Leon-Luis, U. R. Rodríguez-Mendoza, P. Haro-González, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
    [Crossref]
  21. S. F. Leon-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
    [Crossref]
  22. F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
    [Crossref] [PubMed]
  23. P. Du, L. H. Luo, W. P. Li, Q. Y. Yue, and H. B. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
    [Crossref]
  24. V. K. Rai, A. Pandey, and R. Dey, “Photoluminescence study of Y2O3:Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications,” J. Appl. Phys. 113(8), 083104 (2013).
    [Crossref]
  25. R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
    [Crossref]
  26. V. Lojpur, G. Nikoli, and M. D. Dramianin, “Luminescence thermometry below room temperature via up-conversion emission of Y2O3:Yb3+,Er3+ nanophosphors,” J. Appl. Phys. 115(20), 203106 (2014).
    [Crossref]
  27. A. K. Soni, A. Kumari, and V. K. Rai, “Optical investigation in shuttle like BaMoO4:Er3+–Yb3+ phosphor in display and temperature sensing,” Sens. Actuators B Chem. 216, 64–71 (2015).
    [Crossref]
  28. B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
    [Crossref]
  29. L. A. Muradyan, B. A. Maksimov, B. F. Mamin, N. N. Bydanov, V. A. Sarin, B. P. Sobolev, and V. I. Simonov, “Atomic structure of nonstoichiometric phase Srsub (0, 69) Lasub (0, 31) Fsub (2, 31),” Kristallografiya 31(2), 248–251 (1986).
  30. X. F. Wang, X. H. Yan, Y. Y. Bu, J. Zhen, and Y. Xuan, “Fabrication, photoluminescence, and potential application in white light emitting diode of Dy3+–Tm3+ doped transparent glass ceramics containing GdSr2F7 nanocrystals,” Appl. Phys., A Mater. Sci. Process. 112(2), 317–322 (2013).
    [Crossref]
  31. K. P. O’Donnell and V. Dierolf, “Rare-Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications,” Springer, ISBN 978–90–481–2876–1, 124,1–355 (2010)
  32. M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27(11), 6635–6648 (1983).
    [Crossref]
  33. W. Xu, Z. Zhang, and W. Cao, “Excellent optical thermometry based on short-wavelength upconversion emissions in Er3+/Yb3+ codoped CaWO4.,” Opt. Lett. 37(23), 4865–4867 (2012).
    [Crossref] [PubMed]
  34. L. Xing, Y. Xu, R. Wang, and W. Xu, “Influence of temperature on upconversion multicolor luminescence in Ho3+/Yb3+/Tm(3+)-doped LiNbO3 single crystal,” Opt. Lett. 38(14), 2535–2537 (2013).
    [Crossref] [PubMed]
  35. J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
    [Crossref]
  36. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
    [Crossref]
  37. G. K. Liu and X. Y. Chen, “Chapter 233: Spectroscopic properties of lanthanides in nanomaterials,” Handbook on the Physics and Chemistry of Rare Earths 37(07), 99–169, (2007).

2016 (1)

Y. Zhu, W. Xu, S. Cui, M. Liu, C. Lu, H. Song, and D. Kim, “Controlled size and morphology, and phase transition of YF3:Yb3+,Er3+ and YOF:Yb3+,Er3+ nanocrystals for fine color tuning,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 331–339 (2016).
[Crossref]

2015 (6)

J. Feenstra, I. F. Six, M. A. H. Asselbergs, R. H. van Leest, J. de Wild, A. Meijerink, R. E. I. Schropp, A. E. Rowan, and J. J. Schermer, “Er(3+)/Yb(3+) upconverters for InGaP solar cells under concentrated broadband illumination,” Phys. Chem. Chem. Phys. 17(17), 11234–11243 (2015).
[Crossref] [PubMed]

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er(3+):K(Y(1-x)Yb(x))3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

H. Xia, J. Feng, Y. Wang, J. Li, Z. Jia, and C. Tu, “Evaluation of spectroscopic properties of Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 crystal for use in mid-infrared lasers,” Sci. Rep. 5, 13988 (2015).
[Crossref] [PubMed]

K. Zheng, W. Song, G. He, Z. Yuan, and W. Qin, “Five-photon UV upconversion emissions of Er3+ for temperature sensing,” Opt. Express 23(6), 7653–7658 (2015).
[Crossref] [PubMed]

A. K. Soni, A. Kumari, and V. K. Rai, “Optical investigation in shuttle like BaMoO4:Er3+–Yb3+ phosphor in display and temperature sensing,” Sens. Actuators B Chem. 216, 64–71 (2015).
[Crossref]

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

2014 (4)

P. Du, L. H. Luo, W. P. Li, Q. Y. Yue, and H. B. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
[Crossref]

V. Lojpur, G. Nikoli, and M. D. Dramianin, “Luminescence thermometry below room temperature via up-conversion emission of Y2O3:Yb3+,Er3+ nanophosphors,” J. Appl. Phys. 115(20), 203106 (2014).
[Crossref]

S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

2013 (5)

X. Zhai, S. Liu, X. Liu, F. Wang, D. Zhang, G. Qin, and W. Qin, “Sub-10 nm BaYF5:Yb3+,Er3+ core–shell nanoparticles with intense 1.53 μm fluorescence for polymer-based waveguide amplifiers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(7), 1525–1530 (2013).
[Crossref]

L. Xing, Y. Xu, R. Wang, and W. Xu, “Influence of temperature on upconversion multicolor luminescence in Ho3+/Yb3+/Tm(3+)-doped LiNbO3 single crystal,” Opt. Lett. 38(14), 2535–2537 (2013).
[Crossref] [PubMed]

V. K. Rai, A. Pandey, and R. Dey, “Photoluminescence study of Y2O3:Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications,” J. Appl. Phys. 113(8), 083104 (2013).
[Crossref]

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

X. F. Wang, X. H. Yan, Y. Y. Bu, J. Zhen, and Y. Xuan, “Fabrication, photoluminescence, and potential application in white light emitting diode of Dy3+–Tm3+ doped transparent glass ceramics containing GdSr2F7 nanocrystals,” Appl. Phys., A Mater. Sci. Process. 112(2), 317–322 (2013).
[Crossref]

2012 (5)

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, P. Haro-González, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

W. Xu, Z. Zhang, and W. Cao, “Excellent optical thermometry based on short-wavelength upconversion emissions in Er3+/Yb3+ codoped CaWO4.,” Opt. Lett. 37(23), 4865–4867 (2012).
[Crossref] [PubMed]

Y. Tian, R. Hua, J. Yu, J. Sun, and B. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2–3), 617–620 (2012).
[Crossref]

W. Zhang, F. Ding, and S. Y. Chou, “Large Enhancement of Upconversion Luminescence of NaYF4:Yb3+/Er3+ Nanocrystal by 3D Plasmonic Nano-Antennas,” Adv. Mater. 24(35), 236–241 (2012).
[Crossref]

2011 (2)

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Agren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

S. F. LeÓn-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

2010 (1)

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

2009 (3)

Y. Qu, X. Kong, Y. Sun, Q. Zeng, and H. Zhang, “Effect of excitation power density on the upconversion luminescence of LaF3:Yb3+, Er3+ nanocrystals,” J. Alloys Compd. 485(1–2), 493–496 (2009).
[Crossref]

G. Y. Chen, H. J. Liang, H. C. Liu, G. Somesfalean, and Z. G. Zhang, “Anomalous power dependence of upconversion emissions in Gd2O3:Er3+ nanocrystals under diode laser excitation of 970 nm,” J. Appl. Phys. 105(11), 114315 (2009).
[Crossref]

C. Yan, X. Liu, H. Li, X. Xia, H. Lu, and W. Zheng, “Color three-dimensional display with omnidirectional view based on a light-emitting diode projector,” Appl. Opt. 48(22), 4490–4495 (2009).
[Crossref] [PubMed]

2008 (1)

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

2007 (1)

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

2006 (1)

J. C. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of Colloidal Upconverting NaYF4 Nanocrystals Doped with Er3+, Yb3+ and Tm3+, Yb3+ via Thermal Decomposition Of Lanthanide Trifluoroacetate Precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
[Crossref] [PubMed]

2005 (1)

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

2004 (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

1986 (1)

L. A. Muradyan, B. A. Maksimov, B. F. Mamin, N. N. Bydanov, V. A. Sarin, B. P. Sobolev, and V. I. Simonov, “Atomic structure of nonstoichiometric phase Srsub (0, 69) Lasub (0, 31) Fsub (2, 31),” Kristallografiya 31(2), 248–251 (1986).

1983 (1)

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27(11), 6635–6648 (1983).
[Crossref]

Aebischer, A.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Agren, H.

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Agren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Asselbergs, M. A. H.

J. Feenstra, I. F. Six, M. A. H. Asselbergs, R. H. van Leest, J. de Wild, A. Meijerink, R. E. I. Schropp, A. E. Rowan, and J. J. Schermer, “Er(3+)/Yb(3+) upconverters for InGaP solar cells under concentrated broadband illumination,” Phys. Chem. Chem. Phys. 17(17), 11234–11243 (2015).
[Crossref] [PubMed]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Bergey, E. J.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Boyer, J. C.

J. C. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of Colloidal Upconverting NaYF4 Nanocrystals Doped with Er3+, Yb3+ and Tm3+, Yb3+ via Thermal Decomposition Of Lanthanide Trifluoroacetate Precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
[Crossref] [PubMed]

Brown, R. N.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27(11), 6635–6648 (1983).
[Crossref]

Bu, Y.

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Bu, Y. Y.

X. F. Wang, X. H. Yan, Y. Y. Bu, J. Zhen, and Y. Xuan, “Fabrication, photoluminescence, and potential application in white light emitting diode of Dy3+–Tm3+ doped transparent glass ceramics containing GdSr2F7 nanocrystals,” Appl. Phys., A Mater. Sci. Process. 112(2), 317–322 (2013).
[Crossref]

Bydanov, N. N.

L. A. Muradyan, B. A. Maksimov, B. F. Mamin, N. N. Bydanov, V. A. Sarin, B. P. Sobolev, and V. I. Simonov, “Atomic structure of nonstoichiometric phase Srsub (0, 69) Lasub (0, 31) Fsub (2, 31),” Kristallografiya 31(2), 248–251 (1986).

Cao, W.

Capobianco, J. A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

J. C. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of Colloidal Upconverting NaYF4 Nanocrystals Doped with Er3+, Yb3+ and Tm3+, Yb3+ via Thermal Decomposition Of Lanthanide Trifluoroacetate Precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
[Crossref] [PubMed]

Chen, B.

Y. Tian, R. Hua, J. Yu, J. Sun, and B. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2–3), 617–620 (2012).
[Crossref]

Chen, D.

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er(3+):K(Y(1-x)Yb(x))3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

Chen, G.

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Agren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Chen, G. Y.

G. Y. Chen, H. J. Liang, H. C. Liu, G. Somesfalean, and Z. G. Zhang, “Anomalous power dependence of upconversion emissions in Gd2O3:Er3+ nanocrystals under diode laser excitation of 970 nm,” J. Appl. Phys. 105(11), 114315 (2009).
[Crossref]

Chen, H. B.

P. Du, L. H. Luo, W. P. Li, Q. Y. Yue, and H. B. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

Chou, S. Y.

W. Zhang, F. Ding, and S. Y. Chou, “Large Enhancement of Upconversion Luminescence of NaYF4:Yb3+/Er3+ Nanocrystal by 3D Plasmonic Nano-Antennas,” Adv. Mater. 24(35), 236–241 (2012).
[Crossref]

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Cuccia, L. A.

J. C. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of Colloidal Upconverting NaYF4 Nanocrystals Doped with Er3+, Yb3+ and Tm3+, Yb3+ via Thermal Decomposition Of Lanthanide Trifluoroacetate Precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
[Crossref] [PubMed]

Cui, S.

Y. Zhu, W. Xu, S. Cui, M. Liu, C. Lu, H. Song, and D. Kim, “Controlled size and morphology, and phase transition of YF3:Yb3+,Er3+ and YOF:Yb3+,Er3+ nanocrystals for fine color tuning,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 331–339 (2016).
[Crossref]

de Wild, J.

J. Feenstra, I. F. Six, M. A. H. Asselbergs, R. H. van Leest, J. de Wild, A. Meijerink, R. E. I. Schropp, A. E. Rowan, and J. J. Schermer, “Er(3+)/Yb(3+) upconverters for InGaP solar cells under concentrated broadband illumination,” Phys. Chem. Chem. Phys. 17(17), 11234–11243 (2015).
[Crossref] [PubMed]

Dey, R.

R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
[Crossref]

V. K. Rai, A. Pandey, and R. Dey, “Photoluminescence study of Y2O3:Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications,” J. Appl. Phys. 113(8), 083104 (2013).
[Crossref]

Ding, F.

W. Zhang, F. Ding, and S. Y. Chou, “Large Enhancement of Upconversion Luminescence of NaYF4:Yb3+/Er3+ Nanocrystal by 3D Plasmonic Nano-Antennas,” Adv. Mater. 24(35), 236–241 (2012).
[Crossref]

Dong, B.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Dramianin, M. D.

V. Lojpur, G. Nikoli, and M. D. Dramianin, “Luminescence thermometry below room temperature via up-conversion emission of Y2O3:Yb3+,Er3+ nanophosphors,” J. Appl. Phys. 115(20), 203106 (2014).
[Crossref]

Drexhage, M. G.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27(11), 6635–6648 (1983).
[Crossref]

Du, P.

P. Du, L. H. Luo, W. P. Li, Q. Y. Yue, and H. B. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

Feenstra, J.

J. Feenstra, I. F. Six, M. A. H. Asselbergs, R. H. van Leest, J. de Wild, A. Meijerink, R. E. I. Schropp, A. E. Rowan, and J. J. Schermer, “Er(3+)/Yb(3+) upconverters for InGaP solar cells under concentrated broadband illumination,” Phys. Chem. Chem. Phys. 17(17), 11234–11243 (2015).
[Crossref] [PubMed]

Feng, J.

H. Xia, J. Feng, Y. Wang, J. Li, Z. Jia, and C. Tu, “Evaluation of spectroscopic properties of Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 crystal for use in mid-infrared lasers,” Sci. Rep. 5, 13988 (2015).
[Crossref] [PubMed]

Fischer, S.

S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

Fröhlich, B.

S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

García Solé, J.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

García-Revilla, S.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Gerner, P.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Goldschmidt, J. C.

S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

Güdel, H. U.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Haro-González, P.

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, P. Haro-González, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

He, G.

Hua, R.

Y. Tian, R. Hua, J. Yu, J. Sun, and B. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2–3), 617–620 (2012).
[Crossref]

Huang, P.

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er(3+):K(Y(1-x)Yb(x))3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

Jaque, D.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Ji, Z.

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er(3+):K(Y(1-x)Yb(x))3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

Jia, Z.

H. Xia, J. Feng, Y. Wang, J. Li, Z. Jia, and C. Tu, “Evaluation of spectroscopic properties of Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 crystal for use in mid-infrared lasers,” Sci. Rep. 5, 13988 (2015).
[Crossref] [PubMed]

Juarranz de la Fuente, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Kachynski, A.

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Agren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Kim, D.

Y. Zhu, W. Xu, S. Cui, M. Liu, C. Lu, H. Song, and D. Kim, “Controlled size and morphology, and phase transition of YF3:Yb3+,Er3+ and YOF:Yb3+,Er3+ nanocrystals for fine color tuning,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 331–339 (2016).
[Crossref]

Kong, X.

Y. Qu, X. Kong, Y. Sun, Q. Zeng, and H. Zhang, “Effect of excitation power density on the upconversion luminescence of LaF3:Yb3+, Er3+ nanocrystals,” J. Alloys Compd. 485(1–2), 493–496 (2009).
[Crossref]

Krämer, K. W.

S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

Kumar, R.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Kumari, A.

A. K. Soni, A. Kumari, and V. K. Rai, “Optical investigation in shuttle like BaMoO4:Er3+–Yb3+ phosphor in display and temperature sensing,” Sens. Actuators B Chem. 216, 64–71 (2015).
[Crossref]

Lalla, E.

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

S. F. LeÓn-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Lavín, V.

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, P. Haro-González, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

S. F. LeÓn-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Leon-Luis, S. F.

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, P. Haro-González, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

LeÓn-Luis, S. F.

S. F. LeÓn-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Li, C. R.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Li, H.

Li, J.

H. Xia, J. Feng, Y. Wang, J. Li, Z. Jia, and C. Tu, “Evaluation of spectroscopic properties of Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 crystal for use in mid-infrared lasers,” Sci. Rep. 5, 13988 (2015).
[Crossref] [PubMed]

Li, W. P.

P. Du, L. H. Luo, W. P. Li, Q. Y. Yue, and H. B. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

Liang, H. J.

G. Y. Chen, H. J. Liang, H. C. Liu, G. Somesfalean, and Z. G. Zhang, “Anomalous power dependence of upconversion emissions in Gd2O3:Er3+ nanocrystals under diode laser excitation of 970 nm,” J. Appl. Phys. 105(11), 114315 (2009).
[Crossref]

Liu, C.-S.

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Liu, D. P.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Liu, H. C.

G. Y. Chen, H. J. Liang, H. C. Liu, G. Somesfalean, and Z. G. Zhang, “Anomalous power dependence of upconversion emissions in Gd2O3:Er3+ nanocrystals under diode laser excitation of 970 nm,” J. Appl. Phys. 105(11), 114315 (2009).
[Crossref]

Liu, M.

Y. Zhu, W. Xu, S. Cui, M. Liu, C. Lu, H. Song, and D. Kim, “Controlled size and morphology, and phase transition of YF3:Yb3+,Er3+ and YOF:Yb3+,Er3+ nanocrystals for fine color tuning,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 331–339 (2016).
[Crossref]

Liu, Q.

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Liu, S.

X. Zhai, S. Liu, X. Liu, F. Wang, D. Zhang, G. Qin, and W. Qin, “Sub-10 nm BaYF5:Yb3+,Er3+ core–shell nanoparticles with intense 1.53 μm fluorescence for polymer-based waveguide amplifiers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(7), 1525–1530 (2013).
[Crossref]

Liu, T.

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Liu, X.

X. Zhai, S. Liu, X. Liu, F. Wang, D. Zhang, G. Qin, and W. Qin, “Sub-10 nm BaYF5:Yb3+,Er3+ core–shell nanoparticles with intense 1.53 μm fluorescence for polymer-based waveguide amplifiers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(7), 1525–1530 (2013).
[Crossref]

C. Yan, X. Liu, H. Li, X. Xia, H. Lu, and W. Zheng, “Color three-dimensional display with omnidirectional view based on a light-emitting diode projector,” Appl. Opt. 48(22), 4490–4495 (2009).
[Crossref] [PubMed]

Lojpur, V.

V. Lojpur, G. Nikoli, and M. D. Dramianin, “Luminescence thermometry below room temperature via up-conversion emission of Y2O3:Yb3+,Er3+ nanophosphors,” J. Appl. Phys. 115(20), 203106 (2014).
[Crossref]

Lu, C.

Y. Zhu, W. Xu, S. Cui, M. Liu, C. Lu, H. Song, and D. Kim, “Controlled size and morphology, and phase transition of YF3:Yb3+,Er3+ and YOF:Yb3+,Er3+ nanocrystals for fine color tuning,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 331–339 (2016).
[Crossref]

Lu, H.

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er(3+):K(Y(1-x)Yb(x))3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

C. Yan, X. Liu, H. Li, X. Xia, H. Lu, and W. Zheng, “Color three-dimensional display with omnidirectional view based on a light-emitting diode projector,” Appl. Opt. 48(22), 4490–4495 (2009).
[Crossref] [PubMed]

Luo, L. H.

P. Du, L. H. Luo, W. P. Li, Q. Y. Yue, and H. B. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

Maksimov, B. A.

L. A. Muradyan, B. A. Maksimov, B. F. Mamin, N. N. Bydanov, V. A. Sarin, B. P. Sobolev, and V. I. Simonov, “Atomic structure of nonstoichiometric phase Srsub (0, 69) Lasub (0, 31) Fsub (2, 31),” Kristallografiya 31(2), 248–251 (1986).

Mamin, B. F.

L. A. Muradyan, B. A. Maksimov, B. F. Mamin, N. N. Bydanov, V. A. Sarin, B. P. Sobolev, and V. I. Simonov, “Atomic structure of nonstoichiometric phase Srsub (0, 69) Lasub (0, 31) Fsub (2, 31),” Kristallografiya 31(2), 248–251 (1986).

Martín, I. R.

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, P. Haro-González, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

Martín Rodriguez, E.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Martinez Maestro, L.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Meijerink, A.

J. Feenstra, I. F. Six, M. A. H. Asselbergs, R. H. van Leest, J. de Wild, A. Meijerink, R. E. I. Schropp, A. E. Rowan, and J. J. Schermer, “Er(3+)/Yb(3+) upconverters for InGaP solar cells under concentrated broadband illumination,” Phys. Chem. Chem. Phys. 17(17), 11234–11243 (2015).
[Crossref] [PubMed]

Miao, S. M.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Muradyan, L. A.

L. A. Muradyan, B. A. Maksimov, B. F. Mamin, N. N. Bydanov, V. A. Sarin, B. P. Sobolev, and V. I. Simonov, “Atomic structure of nonstoichiometric phase Srsub (0, 69) Lasub (0, 31) Fsub (2, 31),” Kristallografiya 31(2), 248–251 (1986).

Naccache, R.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Nikoli, G.

V. Lojpur, G. Nikoli, and M. D. Dramianin, “Luminescence thermometry below room temperature via up-conversion emission of Y2O3:Yb3+,Er3+ nanophosphors,” J. Appl. Phys. 115(20), 203106 (2014).
[Crossref]

Nyk, M.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Ohulchanskyy, T. Y.

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Agren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Pandey, A.

R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
[Crossref]

V. K. Rai, A. Pandey, and R. Dey, “Photoluminescence study of Y2O3:Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications,” J. Appl. Phys. 113(8), 083104 (2013).
[Crossref]

Prasad, P. N.

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Agren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Qin, G.

X. Zhai, S. Liu, X. Liu, F. Wang, D. Zhang, G. Qin, and W. Qin, “Sub-10 nm BaYF5:Yb3+,Er3+ core–shell nanoparticles with intense 1.53 μm fluorescence for polymer-based waveguide amplifiers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(7), 1525–1530 (2013).
[Crossref]

Qin, W.

K. Zheng, W. Song, G. He, Z. Yuan, and W. Qin, “Five-photon UV upconversion emissions of Er3+ for temperature sensing,” Opt. Express 23(6), 7653–7658 (2015).
[Crossref] [PubMed]

X. Zhai, S. Liu, X. Liu, F. Wang, D. Zhang, G. Qin, and W. Qin, “Sub-10 nm BaYF5:Yb3+,Er3+ core–shell nanoparticles with intense 1.53 μm fluorescence for polymer-based waveguide amplifiers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(7), 1525–1530 (2013).
[Crossref]

Qu, Y.

Y. Qu, X. Kong, Y. Sun, Q. Zeng, and H. Zhang, “Effect of excitation power density on the upconversion luminescence of LaF3:Yb3+, Er3+ nanocrystals,” J. Alloys Compd. 485(1–2), 493–496 (2009).
[Crossref]

Rai, V. K.

A. K. Soni, A. Kumari, and V. K. Rai, “Optical investigation in shuttle like BaMoO4:Er3+–Yb3+ phosphor in display and temperature sensing,” Sens. Actuators B Chem. 216, 64–71 (2015).
[Crossref]

R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
[Crossref]

V. K. Rai, A. Pandey, and R. Dey, “Photoluminescence study of Y2O3:Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications,” J. Appl. Phys. 113(8), 083104 (2013).
[Crossref]

Rodríguez-Mendoza, U. R.

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, P. Haro-González, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

S. F. LeÓn-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

Rowan, A. E.

J. Feenstra, I. F. Six, M. A. H. Asselbergs, R. H. van Leest, J. de Wild, A. Meijerink, R. E. I. Schropp, A. E. Rowan, and J. J. Schermer, “Er(3+)/Yb(3+) upconverters for InGaP solar cells under concentrated broadband illumination,” Phys. Chem. Chem. Phys. 17(17), 11234–11243 (2015).
[Crossref] [PubMed]

Sanz-Rodríguez, F.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Sarin, V. A.

L. A. Muradyan, B. A. Maksimov, B. F. Mamin, N. N. Bydanov, V. A. Sarin, B. P. Sobolev, and V. I. Simonov, “Atomic structure of nonstoichiometric phase Srsub (0, 69) Lasub (0, 31) Fsub (2, 31),” Kristallografiya 31(2), 248–251 (1986).

Schermer, J. J.

J. Feenstra, I. F. Six, M. A. H. Asselbergs, R. H. van Leest, J. de Wild, A. Meijerink, R. E. I. Schropp, A. E. Rowan, and J. J. Schermer, “Er(3+)/Yb(3+) upconverters for InGaP solar cells under concentrated broadband illumination,” Phys. Chem. Chem. Phys. 17(17), 11234–11243 (2015).
[Crossref] [PubMed]

Schropp, R. E. I.

J. Feenstra, I. F. Six, M. A. H. Asselbergs, R. H. van Leest, J. de Wild, A. Meijerink, R. E. I. Schropp, A. E. Rowan, and J. J. Schermer, “Er(3+)/Yb(3+) upconverters for InGaP solar cells under concentrated broadband illumination,” Phys. Chem. Chem. Phys. 17(17), 11234–11243 (2015).
[Crossref] [PubMed]

Shinn, M. D.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27(11), 6635–6648 (1983).
[Crossref]

Sibley, W. A.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27(11), 6635–6648 (1983).
[Crossref]

Simonov, V. I.

L. A. Muradyan, B. A. Maksimov, B. F. Mamin, N. N. Bydanov, V. A. Sarin, B. P. Sobolev, and V. I. Simonov, “Atomic structure of nonstoichiometric phase Srsub (0, 69) Lasub (0, 31) Fsub (2, 31),” Kristallografiya 31(2), 248–251 (1986).

Six, I. F.

J. Feenstra, I. F. Six, M. A. H. Asselbergs, R. H. van Leest, J. de Wild, A. Meijerink, R. E. I. Schropp, A. E. Rowan, and J. J. Schermer, “Er(3+)/Yb(3+) upconverters for InGaP solar cells under concentrated broadband illumination,” Phys. Chem. Chem. Phys. 17(17), 11234–11243 (2015).
[Crossref] [PubMed]

Sobolev, B. P.

L. A. Muradyan, B. A. Maksimov, B. F. Mamin, N. N. Bydanov, V. A. Sarin, B. P. Sobolev, and V. I. Simonov, “Atomic structure of nonstoichiometric phase Srsub (0, 69) Lasub (0, 31) Fsub (2, 31),” Kristallografiya 31(2), 248–251 (1986).

Somesfalean, G.

G. Y. Chen, H. J. Liang, H. C. Liu, G. Somesfalean, and Z. G. Zhang, “Anomalous power dependence of upconversion emissions in Gd2O3:Er3+ nanocrystals under diode laser excitation of 970 nm,” J. Appl. Phys. 105(11), 114315 (2009).
[Crossref]

Song, H.

Y. Zhu, W. Xu, S. Cui, M. Liu, C. Lu, H. Song, and D. Kim, “Controlled size and morphology, and phase transition of YF3:Yb3+,Er3+ and YOF:Yb3+,Er3+ nanocrystals for fine color tuning,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 331–339 (2016).
[Crossref]

Song, W.

Soni, A. K.

A. K. Soni, A. Kumari, and V. K. Rai, “Optical investigation in shuttle like BaMoO4:Er3+–Yb3+ phosphor in display and temperature sensing,” Sens. Actuators B Chem. 216, 64–71 (2015).
[Crossref]

Sun, J.

Y. Tian, R. Hua, J. Yu, J. Sun, and B. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2–3), 617–620 (2012).
[Crossref]

Sun, Y.

Y. Qu, X. Kong, Y. Sun, Q. Zeng, and H. Zhang, “Effect of excitation power density on the upconversion luminescence of LaF3:Yb3+, Er3+ nanocrystals,” J. Alloys Compd. 485(1–2), 493–496 (2009).
[Crossref]

Suyver, J. F.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Tian, Y.

Y. Tian, R. Hua, J. Yu, J. Sun, and B. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2–3), 617–620 (2012).
[Crossref]

Tu, C.

H. Xia, J. Feng, Y. Wang, J. Li, Z. Jia, and C. Tu, “Evaluation of spectroscopic properties of Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 crystal for use in mid-infrared lasers,” Sci. Rep. 5, 13988 (2015).
[Crossref] [PubMed]

van Leest, R. H.

J. Feenstra, I. F. Six, M. A. H. Asselbergs, R. H. van Leest, J. de Wild, A. Meijerink, R. E. I. Schropp, A. E. Rowan, and J. J. Schermer, “Er(3+)/Yb(3+) upconverters for InGaP solar cells under concentrated broadband illumination,” Phys. Chem. Chem. Phys. 17(17), 11234–11243 (2015).
[Crossref] [PubMed]

Vetrone, F.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

J. C. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of Colloidal Upconverting NaYF4 Nanocrystals Doped with Er3+, Yb3+ and Tm3+, Yb3+ via Thermal Decomposition Of Lanthanide Trifluoroacetate Precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
[Crossref] [PubMed]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Wan, Z.

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er(3+):K(Y(1-x)Yb(x))3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

Wang, F.

X. Zhai, S. Liu, X. Liu, F. Wang, D. Zhang, G. Qin, and W. Qin, “Sub-10 nm BaYF5:Yb3+,Er3+ core–shell nanoparticles with intense 1.53 μm fluorescence for polymer-based waveguide amplifiers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(7), 1525–1530 (2013).
[Crossref]

Wang, R.

Wang, X.

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Wang, X. F.

X. F. Wang, X. H. Yan, Y. Y. Bu, J. Zhen, and Y. Xuan, “Fabrication, photoluminescence, and potential application in white light emitting diode of Dy3+–Tm3+ doped transparent glass ceramics containing GdSr2F7 nanocrystals,” Appl. Phys., A Mater. Sci. Process. 112(2), 317–322 (2013).
[Crossref]

Wang, X. J.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Wang, Y.

H. Xia, J. Feng, Y. Wang, J. Li, Z. Jia, and C. Tu, “Evaluation of spectroscopic properties of Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 crystal for use in mid-infrared lasers,” Sci. Rep. 5, 13988 (2015).
[Crossref] [PubMed]

Xia, H.

H. Xia, J. Feng, Y. Wang, J. Li, Z. Jia, and C. Tu, “Evaluation of spectroscopic properties of Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 crystal for use in mid-infrared lasers,” Sci. Rep. 5, 13988 (2015).
[Crossref] [PubMed]

Xia, X.

Xing, L.

Xu, W.

Xu, Y.

Xuan, Y.

X. F. Wang, X. H. Yan, Y. Y. Bu, J. Zhen, and Y. Xuan, “Fabrication, photoluminescence, and potential application in white light emitting diode of Dy3+–Tm3+ doped transparent glass ceramics containing GdSr2F7 nanocrystals,” Appl. Phys., A Mater. Sci. Process. 112(2), 317–322 (2013).
[Crossref]

Yan, C.

Yan, X.

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Yan, X. H.

X. F. Wang, X. H. Yan, Y. Y. Bu, J. Zhen, and Y. Xuan, “Fabrication, photoluminescence, and potential application in white light emitting diode of Dy3+–Tm3+ doped transparent glass ceramics containing GdSr2F7 nanocrystals,” Appl. Phys., A Mater. Sci. Process. 112(2), 317–322 (2013).
[Crossref]

Yang, T.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Yu, H.

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er(3+):K(Y(1-x)Yb(x))3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

Yu, J.

Y. Tian, R. Hua, J. Yu, J. Sun, and B. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2–3), 617–620 (2012).
[Crossref]

Yuan, Z.

Yue, Q. Y.

P. Du, L. H. Luo, W. P. Li, Q. Y. Yue, and H. B. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

Zamarrón, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Zeng, Q.

Y. Qu, X. Kong, Y. Sun, Q. Zeng, and H. Zhang, “Effect of excitation power density on the upconversion luminescence of LaF3:Yb3+, Er3+ nanocrystals,” J. Alloys Compd. 485(1–2), 493–496 (2009).
[Crossref]

Zhai, X.

X. Zhai, S. Liu, X. Liu, F. Wang, D. Zhang, G. Qin, and W. Qin, “Sub-10 nm BaYF5:Yb3+,Er3+ core–shell nanoparticles with intense 1.53 μm fluorescence for polymer-based waveguide amplifiers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(7), 1525–1530 (2013).
[Crossref]

Zhang, D.

X. Zhai, S. Liu, X. Liu, F. Wang, D. Zhang, G. Qin, and W. Qin, “Sub-10 nm BaYF5:Yb3+,Er3+ core–shell nanoparticles with intense 1.53 μm fluorescence for polymer-based waveguide amplifiers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(7), 1525–1530 (2013).
[Crossref]

Zhang, H.

Y. Qu, X. Kong, Y. Sun, Q. Zeng, and H. Zhang, “Effect of excitation power density on the upconversion luminescence of LaF3:Yb3+, Er3+ nanocrystals,” J. Alloys Compd. 485(1–2), 493–496 (2009).
[Crossref]

Zhang, W.

W. Zhang, F. Ding, and S. Y. Chou, “Large Enhancement of Upconversion Luminescence of NaYF4:Yb3+/Er3+ Nanocrystal by 3D Plasmonic Nano-Antennas,” Adv. Mater. 24(35), 236–241 (2012).
[Crossref]

Zhang, Z.

Zhang, Z. G.

G. Y. Chen, H. J. Liang, H. C. Liu, G. Somesfalean, and Z. G. Zhang, “Anomalous power dependence of upconversion emissions in Gd2O3:Er3+ nanocrystals under diode laser excitation of 970 nm,” J. Appl. Phys. 105(11), 114315 (2009).
[Crossref]

Zhen, J.

X. F. Wang, X. H. Yan, Y. Y. Bu, J. Zhen, and Y. Xuan, “Fabrication, photoluminescence, and potential application in white light emitting diode of Dy3+–Tm3+ doped transparent glass ceramics containing GdSr2F7 nanocrystals,” Appl. Phys., A Mater. Sci. Process. 112(2), 317–322 (2013).
[Crossref]

Zheng, K.

Zheng, W.

Zhou, Y.

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er(3+):K(Y(1-x)Yb(x))3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

Zhu, Y.

Y. Zhu, W. Xu, S. Cui, M. Liu, C. Lu, H. Song, and D. Kim, “Controlled size and morphology, and phase transition of YF3:Yb3+,Er3+ and YOF:Yb3+,Er3+ nanocrystals for fine color tuning,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 331–339 (2016).
[Crossref]

ACS Nano (2)

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Agren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Adv. Mater. (1)

W. Zhang, F. Ding, and S. Y. Chou, “Large Enhancement of Upconversion Luminescence of NaYF4:Yb3+/Er3+ Nanocrystal by 3D Plasmonic Nano-Antennas,” Adv. Mater. 24(35), 236–241 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

P. Du, L. H. Luo, W. P. Li, Q. Y. Yue, and H. B. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

X. F. Wang, X. H. Yan, Y. Y. Bu, J. Zhen, and Y. Xuan, “Fabrication, photoluminescence, and potential application in white light emitting diode of Dy3+–Tm3+ doped transparent glass ceramics containing GdSr2F7 nanocrystals,” Appl. Phys., A Mater. Sci. Process. 112(2), 317–322 (2013).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

J. Alloys Compd. (1)

Y. Qu, X. Kong, Y. Sun, Q. Zeng, and H. Zhang, “Effect of excitation power density on the upconversion luminescence of LaF3:Yb3+, Er3+ nanocrystals,” J. Alloys Compd. 485(1–2), 493–496 (2009).
[Crossref]

J. Am. Chem. Soc. (1)

J. C. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, “Synthesis of Colloidal Upconverting NaYF4 Nanocrystals Doped with Er3+, Yb3+ and Tm3+, Yb3+ via Thermal Decomposition Of Lanthanide Trifluoroacetate Precursors,” J. Am. Chem. Soc. 128(23), 7444–7445 (2006).
[Crossref] [PubMed]

J. Appl. Phys. (4)

G. Y. Chen, H. J. Liang, H. C. Liu, G. Somesfalean, and Z. G. Zhang, “Anomalous power dependence of upconversion emissions in Gd2O3:Er3+ nanocrystals under diode laser excitation of 970 nm,” J. Appl. Phys. 105(11), 114315 (2009).
[Crossref]

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

V. Lojpur, G. Nikoli, and M. D. Dramianin, “Luminescence thermometry below room temperature via up-conversion emission of Y2O3:Yb3+,Er3+ nanophosphors,” J. Appl. Phys. 115(20), 203106 (2014).
[Crossref]

V. K. Rai, A. Pandey, and R. Dey, “Photoluminescence study of Y2O3:Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications,” J. Appl. Phys. 113(8), 083104 (2013).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (2)

Y. Zhu, W. Xu, S. Cui, M. Liu, C. Lu, H. Song, and D. Kim, “Controlled size and morphology, and phase transition of YF3:Yb3+,Er3+ and YOF:Yb3+,Er3+ nanocrystals for fine color tuning,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 331–339 (2016).
[Crossref]

X. Zhai, S. Liu, X. Liu, F. Wang, D. Zhang, G. Qin, and W. Qin, “Sub-10 nm BaYF5:Yb3+,Er3+ core–shell nanoparticles with intense 1.53 μm fluorescence for polymer-based waveguide amplifiers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(7), 1525–1530 (2013).
[Crossref]

J. Phys. Chem. C (1)

S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

Kristallografiya (1)

L. A. Muradyan, B. A. Maksimov, B. F. Mamin, N. N. Bydanov, V. A. Sarin, B. P. Sobolev, and V. I. Simonov, “Atomic structure of nonstoichiometric phase Srsub (0, 69) Lasub (0, 31) Fsub (2, 31),” Kristallografiya 31(2), 248–251 (1986).

Mater. Chem. Phys. (1)

Y. Tian, R. Hua, J. Yu, J. Sun, and B. Chen, “The effect of excitation power density on frequency upconversion in Yb3+/Er3+ codoped Gd6WO12 nanoparticles,” Mater. Chem. Phys. 133(2–3), 617–620 (2012).
[Crossref]

Nano Lett. (1)

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[Crossref] [PubMed]

Nanoscale (1)

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (2)

J. Feenstra, I. F. Six, M. A. H. Asselbergs, R. H. van Leest, J. de Wild, A. Meijerink, R. E. I. Schropp, A. E. Rowan, and J. J. Schermer, “Er(3+)/Yb(3+) upconverters for InGaP solar cells under concentrated broadband illumination,” Phys. Chem. Chem. Phys. 17(17), 11234–11243 (2015).
[Crossref] [PubMed]

D. Chen, Y. Zhou, Z. Wan, H. Yu, H. Lu, Z. Ji, and P. Huang, “Tunable upconversion luminescence in self-crystallized Er(3+):K(Y(1-x)Yb(x))3F10 nano-glass-ceramics,” Phys. Chem. Chem. Phys. 17(11), 7100–7103 (2015).
[Crossref] [PubMed]

Phys. Rev. B (2)

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27(11), 6635–6648 (1983).
[Crossref]

RSC Advances (1)

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Sci. Rep. (1)

H. Xia, J. Feng, Y. Wang, J. Li, Z. Jia, and C. Tu, “Evaluation of spectroscopic properties of Er(3+)/Yb(3+)/Pr(3+): SrGdGa3O7 crystal for use in mid-infrared lasers,” Sci. Rep. 5, 13988 (2015).
[Crossref] [PubMed]

Sens. Actuators B Chem. (5)

S. F. LeÓn-Luis, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[Crossref]

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, P. Haro-González, I. R. Martín, and V. Lavín, “Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors,” Sens. Actuators B Chem. 174, 176–186 (2012).
[Crossref]

S. F. Leon-Luis, U. R. Rodríguez-Mendoza, I. R. Martín, E. Lalla, and V. Lavín, “Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors,” Sens. Actuators B Chem. 176, 1167–1175 (2013).
[Crossref]

A. K. Soni, A. Kumari, and V. K. Rai, “Optical investigation in shuttle like BaMoO4:Er3+–Yb3+ phosphor in display and temperature sensing,” Sens. Actuators B Chem. 216, 64–71 (2015).
[Crossref]

R. Dey, A. Pandey, and V. K. Rai, “Er3+-Yb3+ and Eu3+-Er3+-Yb3+ codoped Y2O3 phosphors as optical heater,” Sens. Actuators B Chem. 190, 512–515 (2014).
[Crossref]

Other (2)

G. K. Liu and X. Y. Chen, “Chapter 233: Spectroscopic properties of lanthanides in nanomaterials,” Handbook on the Physics and Chemistry of Rare Earths 37(07), 99–169, (2007).

K. P. O’Donnell and V. Dierolf, “Rare-Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications,” Springer, ISBN 978–90–481–2876–1, 124,1–355 (2010)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) TEM and (b) HRTEM images of Er3+ doped Sr0.69La0.31F2.31 glass ceramics. (c) XRD pattern of Er3+ doped Sr0.69La0.31F2.31 glass ceramics. The below standard data for cubic Sr0.69La0.31F2.31 (JCPDS 78-1143). (d) The schematic views of unit cell of Sr0.69La0.31F2.31 structure along b-direction.
Fig. 2
Fig. 2 Transmission spectra of Er3+ doped Sr0.69La0.31F2.31 glass ceramics.
Fig. 3
Fig. 3 Temperature dependent photoluminescence spectra of Er3+ doped Sr0.69La0.31F2.31 glass ceramics (a) at low 66.8 mW/mm2 excitation power, and (b) at high 374.8 mW/mm2 excitation power.
Fig. 4
Fig. 4 CIE(X, Y) chromaticity coordinates diagrams (a) at low 66.8 mW/mm2 excitation power, and (b) at high 374.8 mW/mm2 excitation power.
Fig. 5
Fig. 5 Temperature and excitation power dependent photoluminescence spectra from 750 nm to 900 nm of Er3+ doped Sr0.69La0.31F2.31 glass ceramics. The black solid line represents the experimental data, and the colored dotted lines represent the fitting data.
Fig. 6
Fig. 6 Thermal quenching ratios (RQ) of Er3+ doped Sr0.69La0.31F2.31 glass ceramics (a) at low 66.8 mW/cm2 excitation power, and (b) at high 374.8 mW/cm2 excitation power.
Fig. 7
Fig. 7 Log–log plots of intensity and pumping power for (a) 522 nm, (b) 540 nm, (c) 650 nm, (d) 665 nm, (e) 800 nm, and (f) 820 nm emissions at different temperatures.
Fig. 8
Fig. 8 Population mechanism of Er3+ at high temperature under 980 nm excitation.
Fig. 9
Fig. 9 Arrhenius plots of temperature dependent emission intensity ratios of (a) 522 nm/540 nm, (b) 650 nm/665 nm, (c) 800 nm/820 nm at low 66.8 mW/cm2 excitation power and at high 374.8 mW/cm2 excitation power.
Fig. 10
Fig. 10 The excitation power dependence of sensitivity.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R Q = 1 I T I 0
I p n
R = A e Δ E k T + B
w i j = w 0 ( 1 e w / k T ) P
L n R = a T + b
S = d R d T = a T 2 e b T a T

Metrics