Abstract

We propose a polarization volume grating (PVG), which exhibits nearly 100% diffraction efficiency and large diffraction angle. Both reflective and transmissive PVGs can be configured depending on application preference. Such a PVG is polarization-sensitive so that it can split an incident unpolarized beam into two well-separated yet polarized beams. These outstanding features make PVG a strong candidate for photonic and display applications. To investigate and optimize the diffraction properties, we build a rigorous simulation model based on finite element method. To illustrate its potential applications, we propose a simple 2D/3D wearable display using a planar waveguide comprising of two reflective PVGs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays

Yun-Han Lee, Kun Yin, and Shin-Tson Wu
Opt. Express 25(22) 27008-27014 (2017)

Stratified volume diffractive optical elements as high-efficiency gratings

Diana M. Chambers and Gregory P. Nordin
J. Opt. Soc. Am. A 16(5) 1184-1193 (1999)

Photoanisotropic polarization gratings beyond the small recording angle regime

Man Xu, Dick K. G. de Boer, Chris M. van Heesch, Arthur J. H. Wachters, and H. Paul Urbach
Opt. Express 18(7) 6703-6721 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]
  2. M. G. Moharam and T. K. Gaylord, “Coupled-wave analysis of reflection gratings,” Appl. Opt. 20(2), 240–244 (1981).
    [Crossref] [PubMed]
  3. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings - enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [Crossref]
  4. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 40–45 (2010).
    [Crossref]
  5. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U (2010).
    [Crossref]
  6. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Characterization of optically imprinted polarization gratings,” Appl. Opt. 48(21), 4062–4067 (2009).
    [Crossref] [PubMed]
  7. C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76(4), 043815 (2007).
    [Crossref]
  8. P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electro-optical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
    [Crossref]
  9. Y. Li, J. Kim, and M. Escuti, “Broadband orbital angular momentum manipulation using liquid crystal thin films,” Proc. SPIE 8274, 1–8 (2012).
  10. H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S.-T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
    [Crossref] [PubMed]
  11. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
    [Crossref] [PubMed]
  12. R. K. Komanduri, K. F. Lawler, and M. J. Escuti, “Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers,” Opt. Express 21(1), 404–420 (2013).
    [Crossref] [PubMed]
  13. J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).
    [Crossref]
  14. Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30(3), 367–375 (2003).
    [Crossref]
  15. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 2: Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence,” Appl. Opt. 23(24), 4588–4591 (1984).
    [Crossref] [PubMed]
  16. D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
    [Crossref]
  17. D. Katsis, D. U. Kim, H. P. Chen, L. J. Rothberg, S. H. Chen, and T. Tsutsui, “Circularly polarized photoluminescence from gradient-pitch chiral-nematic films,” Chem. Mater. 13(2), 643–647 (2001).
    [Crossref]
  18. C. L. Ting, T. H. Lin, C. C. Liao, and A. Y. G. Fuh, “Optical simulation of cholesteric liquid crystal displays using the finite-difference time-domain method,” Opt. Express 14(12), 5594–5606 (2006).
    [Crossref] [PubMed]
  19. D. Kasyanyuk, K. Slyusarenko, J. West, M. Vasnetsov, and Y. Reznikov, “Formation of liquid-crystal cholesteric pitch in the centimeter range,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022503 (2014).
    [Crossref] [PubMed]
  20. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
    [Crossref]
  21. Y. Amitai, S. Reinhorn, and A. A. Friesem, “Visor-display design based on planar holographic optics,” Appl. Opt. 34(8), 1352–1356 (1995).
    [Crossref] [PubMed]
  22. J. Han, J. Liu, X. Yao, and Y. Wang, “Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms,” Opt. Express 23(3), 3534–3549 (2015).
    [Crossref] [PubMed]

2016 (2)

2015 (1)

2014 (1)

D. Kasyanyuk, K. Slyusarenko, J. West, M. Vasnetsov, and Y. Reznikov, “Formation of liquid-crystal cholesteric pitch in the centimeter range,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022503 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

Y. Li, J. Kim, and M. Escuti, “Broadband orbital angular momentum manipulation using liquid crystal thin films,” Proc. SPIE 8274, 1–8 (2012).

2010 (2)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 40–45 (2010).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U (2010).
[Crossref]

2009 (3)

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electro-optical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Characterization of optically imprinted polarization gratings,” Appl. Opt. 48(21), 4062–4067 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76(4), 043815 (2007).
[Crossref]

2006 (1)

2003 (1)

Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30(3), 367–375 (2003).
[Crossref]

2001 (1)

D. Katsis, D. U. Kim, H. P. Chen, L. J. Rothberg, S. H. Chen, and T. Tsutsui, “Circularly polarized photoluminescence from gradient-pitch chiral-nematic films,” Chem. Mater. 13(2), 643–647 (2001).
[Crossref]

1995 (4)

1984 (1)

1981 (1)

Aiki, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Akutsu, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Amitai, Y.

Bos, P. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electro-optical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Broer, D. J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Chen, H.

Chen, H. P.

D. Katsis, D. U. Kim, H. P. Chen, L. J. Rothberg, S. H. Chen, and T. Tsutsui, “Circularly polarized photoluminescence from gradient-pitch chiral-nematic films,” Chem. Mater. 13(2), 643–647 (2001).
[Crossref]

Chen, S. H.

D. Katsis, D. U. Kim, H. P. Chen, L. J. Rothberg, S. H. Chen, and T. Tsutsui, “Circularly polarized photoluminescence from gradient-pitch chiral-nematic films,” Chem. Mater. 13(2), 643–647 (2001).
[Crossref]

Escuti, M.

Y. Li, J. Kim, and M. Escuti, “Broadband orbital angular momentum manipulation using liquid crystal thin films,” Proc. SPIE 8274, 1–8 (2012).

Escuti, M. J.

R. K. Komanduri, K. F. Lawler, and M. J. Escuti, “Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers,” Opt. Express 21(1), 404–420 (2013).
[Crossref] [PubMed]

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electro-optical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[Crossref] [PubMed]

C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76(4), 043815 (2007).
[Crossref]

Friesem, A. A.

Fuh, A. Y. G.

Gaylord, T. K.

Grann, E. B.

Han, J.

Heikenfeld, J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electro-optical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Hong, Q.

Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30(3), 367–375 (2003).
[Crossref]

Kasyanyuk, D.

D. Kasyanyuk, K. Slyusarenko, J. West, M. Vasnetsov, and Y. Reznikov, “Formation of liquid-crystal cholesteric pitch in the centimeter range,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022503 (2014).
[Crossref] [PubMed]

Katsis, D.

D. Katsis, D. U. Kim, H. P. Chen, L. J. Rothberg, S. H. Chen, and T. Tsutsui, “Circularly polarized photoluminescence from gradient-pitch chiral-nematic films,” Chem. Mater. 13(2), 643–647 (2001).
[Crossref]

Kim, D. U.

D. Katsis, D. U. Kim, H. P. Chen, L. J. Rothberg, S. H. Chen, and T. Tsutsui, “Circularly polarized photoluminescence from gradient-pitch chiral-nematic films,” Chem. Mater. 13(2), 643–647 (2001).
[Crossref]

Kim, J.

Y. Li, J. Kim, and M. Escuti, “Broadband orbital angular momentum manipulation using liquid crystal thin films,” Proc. SPIE 8274, 1–8 (2012).

Kimball, B. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 40–45 (2010).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U (2010).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Characterization of optically imprinted polarization gratings,” Appl. Opt. 48(21), 4062–4067 (2009).
[Crossref] [PubMed]

Kobashi, J.

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).
[Crossref]

Komanduri, R. K.

Kuwahara, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Lawler, K. F.

Li, Y.

Y. Li, J. Kim, and M. Escuti, “Broadband orbital angular momentum manipulation using liquid crystal thin films,” Proc. SPIE 8274, 1–8 (2012).

Liao, C. C.

Lin, T. H.

Liu, J.

Lub, J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Matsumura, I.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

McManamon, P. F.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electro-optical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Moharam, M. G.

Mol, G. N.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Mukawa, H.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Nakano, S.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Nersisyan, S. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U (2010).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 40–45 (2010).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Characterization of optically imprinted polarization gratings,” Appl. Opt. 48(21), 4062–4067 (2009).
[Crossref] [PubMed]

Nikolova, L.

Oh, C.

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[Crossref] [PubMed]

C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76(4), 043815 (2007).
[Crossref]

Ozaki, M.

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).
[Crossref]

Pommet, D. A.

Reinhorn, S.

Reznikov, Y.

D. Kasyanyuk, K. Slyusarenko, J. West, M. Vasnetsov, and Y. Reznikov, “Formation of liquid-crystal cholesteric pitch in the centimeter range,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022503 (2014).
[Crossref] [PubMed]

Rothberg, L. J.

D. Katsis, D. U. Kim, H. P. Chen, L. J. Rothberg, S. H. Chen, and T. Tsutsui, “Circularly polarized photoluminescence from gradient-pitch chiral-nematic films,” Chem. Mater. 13(2), 643–647 (2001).
[Crossref]

Serati, S.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electro-optical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Slyusarenko, K.

D. Kasyanyuk, K. Slyusarenko, J. West, M. Vasnetsov, and Y. Reznikov, “Formation of liquid-crystal cholesteric pitch in the centimeter range,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022503 (2014).
[Crossref] [PubMed]

Steeves, D. M.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 40–45 (2010).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U (2010).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Characterization of optically imprinted polarization gratings,” Appl. Opt. 48(21), 4062–4067 (2009).
[Crossref] [PubMed]

Tabiryan, N. V.

H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S.-T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 40–45 (2010).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U (2010).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Characterization of optically imprinted polarization gratings,” Appl. Opt. 48(21), 4062–4067 (2009).
[Crossref] [PubMed]

Ting, C. L.

Todorov, T.

Tomova, N.

Tsutsui, T.

D. Katsis, D. U. Kim, H. P. Chen, L. J. Rothberg, S. H. Chen, and T. Tsutsui, “Circularly polarized photoluminescence from gradient-pitch chiral-nematic films,” Chem. Mater. 13(2), 643–647 (2001).
[Crossref]

Vasnetsov, M.

D. Kasyanyuk, K. Slyusarenko, J. West, M. Vasnetsov, and Y. Reznikov, “Formation of liquid-crystal cholesteric pitch in the centimeter range,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022503 (2014).
[Crossref] [PubMed]

Wang, Y.

Watson, E. A.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electro-optical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Weng, Y.

West, J.

D. Kasyanyuk, K. Slyusarenko, J. West, M. Vasnetsov, and Y. Reznikov, “Formation of liquid-crystal cholesteric pitch in the centimeter range,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022503 (2014).
[Crossref] [PubMed]

Wu, S. T.

Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30(3), 367–375 (2003).
[Crossref]

Wu, S.-T.

Wu, T. X.

Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30(3), 367–375 (2003).
[Crossref]

Xie, H.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electro-optical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Xu, D.

Yao, X.

Yoshida, H.

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).
[Crossref]

Yoshida, T.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Appl. Opt. (4)

Chem. Mater. (1)

D. Katsis, D. U. Kim, H. P. Chen, L. J. Rothberg, S. H. Chen, and T. Tsutsui, “Circularly polarized photoluminescence from gradient-pitch chiral-nematic films,” Chem. Mater. 13(2), 643–647 (2001).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Soc. Inf. Disp. (1)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Liq. Cryst. (1)

Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30(3), 367–375 (2003).
[Crossref]

Nat. Photonics (1)

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10(6), 389–392 (2016).
[Crossref]

Nature (1)

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Photonics News (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 40–45 (2010).
[Crossref]

Phys. Rev. A (1)

C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76(4), 043815 (2007).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. Kasyanyuk, K. Slyusarenko, J. West, M. Vasnetsov, and Y. Reznikov, “Formation of liquid-crystal cholesteric pitch in the centimeter range,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022503 (2014).
[Crossref] [PubMed]

Proc. IEEE (1)

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electro-optical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Proc. SPIE (2)

Y. Li, J. Kim, and M. Escuti, “Broadband orbital angular momentum manipulation using liquid crystal thin films,” Proc. SPIE 8274, 1–8 (2012).

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

A schematic diagram of the proposed PVG. The optical axis rotates in xz-plane; the rotating angle α changes continuously and periodically along x and y directions with periods of Λx and Λy, respectively. The refractive index distribution presents as a tilted volume grating with a tilt angle φ. Bragg diffraction can be established when the medium is thick enough to generate sufficient periodical refractive index planes.

Fig. 2
Fig. 2

Geometry and notation of diffraction orders for (a) reflective PVG and (b) transmissive PVG: θi is the incident angle and θdiff is the diffraction angle for the first-order. The 0th order is the transmitted beam without diffraction.

Fig. 3
Fig. 3

The surface alignment pattern. It is an interference pattern generated by two orthogonal circularly polarized beams, which can be recorded in a photoalignment material after exposure.

Fig. 4
Fig. 4

Schematic diagram of the polarization states of diffraction order for (a) reflective and (b) transmissive PVGs when the normally incident beam is left-handed circular polarization (LCP) and right-handed circular polarization (RCP), respectively. The handedness of the helical twist in both reflective and transmissive PVGs are assumed to be left-handed along the incident direction.

Fig. 5
Fig. 5

The simulated electric field distribution with different circularly polarized incident beam using COMSOL Multiphysics: (a) Left-handed circularly polarized light, and (b) right-handed circularly polarized light. Bragg reflection occurs when the incident beam has same handedness as the twist helix in the reflective PVG (right-handed in simulation). In simulation, we assume birefringence Δn = 0.2 (ne = 1.7, no = 1.5), PVG thickness d = 4 μm, refractive index of glass nglass = 1.57 and operation wavelength λ = 550 nm. Red arrows represent the power flow or Poynting vector.

Fig. 6
Fig. 6

Diffraction behavior of a reflective PVG for different diffraction angles in glass (n = 1.57): (a) diffraction efficiency spectra with normal incidence (0°) and (b) angular response with incident wavelength λ = 550nm. In (a) and (b) we assume the Bragg wavelength λB = 550 nm at normal incidence (0°) (c) Diffraction efficiency as a function of d/p for different operation wavelengths. When d/p > 7, diffraction efficiency over 98% can be achieved. The corresponding thickness required for the three specified diffraction angles (20°, 40°, 60° in glass (n = 1.57)) is 2.52 μm, 2.8 μm and 3.29 μm when λ = 550 nm, and 2.94 μm, 3.19 μm and 3.73 μm when λ = 633 nm. In simulation, we assume Δn = 0.2 (ne = 1.7, no = 1.5), and the incident beam has same handedness as the twist helix in the reflective PVG.

Fig. 7
Fig. 7

The effects of Δn on a reflective PVG: (a) Diffraction efficiency spectra and (b) diffraction efficiency with different incident angles. In simulation, no = 1.5, d = 4 μm and the diffraction angle is 60° at λ = 550 nm.

Fig. 8
Fig. 8

Simulated diffraction efficiency spectra of the reflective PVGs with uniform pitch and gradient pitch. For gradient pitch, two specific pitch range (p = 340~500 nm and p = 300~600 nm) are simulated. In simulation, we assumed birefringence Δn = 0.3, no = 1.5, and the thickness of reflective PVG is d = 8 μm.

Fig. 9
Fig. 9

Simulated far-field diffraction pattern for (a) CDW and (b) transmissive PVG. Two orthogonal circularly polarized beams at normal incidence (0°) were set as the incident light, respectively.

Fig. 10
Fig. 10

(a) Relation between −1st order diffraction efficiency and thickness for a transmissive PVG with different diffraction angles in air. Δn = 0.2. A right-handed circularly polarized light with λ = 550 nm was used as input. (b) The pitch length (or period length along y direction) requirement for different diffraction angles as d = 1.37 μm.

Fig. 11
Fig. 11

Diffraction behavior of a transmissive PVG for different diffraction angles in air: (a) diffraction efficiency spectra and (b) angular response for the −1st order. In simulation, the input circularly polarized light has the same handedness as the optical axis rotation in PVG. The Bragg wavelength for all diffraction angles is 550 nm and LC Δn is 0.2.

Fig. 12
Fig. 12

Δn effect of a transmissive PVG: (a) simulated diffraction efficiency spectra and (b) diffraction efficiency with different incident angles. In simulations, we assume no = 1.5, d = λB /(2Δn), and λB = 550 nm.

Fig. 13
Fig. 13

Simulated diffraction efficiency for different orders as a function of d/p. The input is a linearly polarized plane wave with λ = 550 nm. The birefringence Δn is 0.2 and thickness d = λ/(2Δn) = 1.37 μm. The values in top indicate the corresponding diffraction angles of the 1st order in air for some specific d/p ratios.

Fig. 14
Fig. 14

Schematic diagram of a 2D/3D wearable display using planar waveguides with the reflective PVGs.

Fig. 15
Fig. 15

Simulated results for the stacked two PVGs used as an in-coupled grating in a wearable display device. A linear polarized incident beam was split into two orthogonal circular polarized beam with two diffracted angles. In simulation, we assume birefringence Δn = 0.2 (ne = 1.7, no = 1.5), each PVG thickness is 4 μm, refractive index of glass nglass = 1.57 and operation wavelength λ = 550 nm. Red arrows represent the power flow or Poynting vector.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α= π Λ x x+ π Λ y y,
2 n e ff Λ B cosφ= λ B .
n e ff = ( n e 2 +2 n o 2 )/3 .
{ Λ x = Λ B /sinφ Λ y = Λ B /cosφ .
θ diff ={ 2φ 0φ< π 4 π2φ π 4 <φ< π 2 .
α gradient = π Λ x x+ π Λ y 0 y+( π Λ y 1 π Λ y 0 ) y 2 2d ,

Metrics