Abstract

In this paper, we demonstrate a high-efficiency and broadband circular polarizer based on cascaded tensor Huygens surface capable of operating in the near-infrared region. The high efficiency originates from the simultaneous excitation of the Mie-type electric and magnetic dipole resonances within an all-dielectric rotationally twisted strips array. Due to the symmetry breaking of the structure in the light propagation, one state of the circularly polarized light can pass through freely, while the other state is largely blocked. The maximum polarization transmission reaches 0.97 with a polarization suppression ratio of 911:1, which represents a major advance in the performance compared with previously reported circular polarizers. The proposed metamaterial possessing the merits of high efficiency and simple inclusions has potentials for applications in biological detector, optical communication and sensor.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency tunable circular asymmetric transmission using dielectric metasurface integrated with graphene sheet

Huan Jiang, Wenyu Zhao, and Yongyuan Jiang
Opt. Express 25(17) 19732-19739 (2017)

All-dielectric planar chiral metasurface with gradient geometric phase

Zhijie Ma, Yi Li, Yang Li, Yandong Gong, Stefan A. Maier, and Minghui Hong
Opt. Express 26(5) 6067-6078 (2018)

Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial

He-Xiu Xu, Guang-Ming Wang, Mei Qing Qi, Tong Cai, and Tie Jun Cui
Opt. Express 21(21) 24912-24921 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  4. L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
    [Crossref]
  5. J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
    [Crossref]
  6. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
    [Crossref] [PubMed]
  7. M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
    [Crossref]
  8. Y. Ye and S. He, “90 polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
    [Crossref]
  9. N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99(17), 171915 (2011).
    [Crossref]
  10. J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereo metamaterial-based polarization spectral filter,” Phys. Rev. B 86(3), 035103 (2012).
    [Crossref]
  11. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
    [Crossref] [PubMed]
  12. H. X. Xu, G. M. Wang, M. Q. Qi, T. Cai, and T. J. Cui, “Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial,” Opt. Express 21(21), 24912–24921 (2013).
    [Crossref] [PubMed]
  13. Y. R. Li and Y. C. Hung, “Dispersion-free broadband optical polarization rotation based on helix photonic metamaterials,” Opt. Express 23(13), 16772–16781 (2015).
    [Crossref] [PubMed]
  14. G. De Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric emulsions for colored displays,” Adv. Mater. 17(9), 1150–1152 (2005).
    [Crossref]
  15. S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26(9), 584–586 (2001).
    [Crossref] [PubMed]
  16. J. Kaschke, J. K. Gansel, and M. Wegener, “On metamaterial circular polarizers based on metal N-helices,” Opt. Express 20(23), 26012–26020 (2012).
    [Crossref] [PubMed]
  17. J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
    [Crossref]
  18. X. J. Huang, D. Yang, and H. L. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
    [Crossref]
  19. S. Yan and G. A. E. Vandenbosch, “Compact circular polarizer based on chiral twist double split-ring resonator,” Appl. Phys. Lett. 102(10), 103503 (2013).
    [Crossref]
  20. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
    [Crossref] [PubMed]
  21. M. Selvanayagam and G. V. Eleftheriades, “Chiral polarization control using cascaded tensor impedance surfaces,” in Microwave Symposium (IMS) (2015), pp. 1–4.
    [Crossref]
  22. A. S. Chadha, D. Zhao, and W. Zhou, “An all-dielectric broadband high-transmission efficiency circular polarizer,” SPIE OPTO 22, 89941–89948 (2014).
  23. A. S. Chadha, D. Zhao, and W. Zhou, “Comparative study of metallic and dielectric helix photonic metamaterial,” Opt. Mater. Express 4(12), 2460–2467 (2014).
    [Crossref]
  24. J. Wang, Z. Shen, W. Wu, and K. Feng, “Wideband circular polarizer based on dielectric gratings with periodic parallel strips,” Opt. Express 23(10), 12533–12543 (2015).
    [Crossref] [PubMed]
  25. C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces,” in Microwave Symposium Digest (IMS, 2013), pp. 1–4.
  26. M. Selvanayagam and G. V. Eleftheriades, “Polarization control using tensor Huygens surfaces,” IEEE Trans. Antennas Propagation 99, 1–14 (2014).
  27. J. P. Wong, M. Selvanayagam, and G. V. Eleftheriades, “Design of unit cells and demonstration of methods for synthesizing Huygens metasurfaces,” Photonics Nano - Fundamentals Appl. 12(4), 360–375 (2014).
    [Crossref]
  28. C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
    [Crossref] [PubMed]
  29. M. Kim, A. M. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients,” Phys. Rev. X 4(4), 041042 (2014).
    [Crossref]
  30. M. Selvanayagam and G. Eleftheriades, “Tensor huygens surfaces,” in IEEE Antennas and Propagation Society International Symposium (APSURSI, 2014), pp. 17–18.
    [Crossref]
  31. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency light-wave control with all-dielectric optical Huygens’ metasurfaces,” arXiv:1405. 5038 (2014).
  32. C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: With an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
    [Crossref]
  33. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  34. M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2014).
    [Crossref]

2015 (2)

2014 (7)

M. Selvanayagam and G. V. Eleftheriades, “Polarization control using tensor Huygens surfaces,” IEEE Trans. Antennas Propagation 99, 1–14 (2014).

J. P. Wong, M. Selvanayagam, and G. V. Eleftheriades, “Design of unit cells and demonstration of methods for synthesizing Huygens metasurfaces,” Photonics Nano - Fundamentals Appl. 12(4), 360–375 (2014).
[Crossref]

A. S. Chadha, D. Zhao, and W. Zhou, “An all-dielectric broadband high-transmission efficiency circular polarizer,” SPIE OPTO 22, 89941–89948 (2014).

A. S. Chadha, D. Zhao, and W. Zhou, “Comparative study of metallic and dielectric helix photonic metamaterial,” Opt. Mater. Express 4(12), 2460–2467 (2014).
[Crossref]

M. Kim, A. M. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients,” Phys. Rev. X 4(4), 041042 (2014).
[Crossref]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2014).
[Crossref]

X. J. Huang, D. Yang, and H. L. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

2013 (5)

S. Yan and G. A. E. Vandenbosch, “Compact circular polarizer based on chiral twist double split-ring resonator,” Appl. Phys. Lett. 102(10), 103503 (2013).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

H. X. Xu, G. M. Wang, M. Q. Qi, T. Cai, and T. J. Cui, “Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial,” Opt. Express 21(21), 24912–24921 (2013).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

2012 (5)

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

J. Kaschke, J. K. Gansel, and M. Wegener, “On metamaterial circular polarizers based on metal N-helices,” Opt. Express 20(23), 26012–26020 (2012).
[Crossref] [PubMed]

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereo metamaterial-based polarization spectral filter,” Phys. Rev. B 86(3), 035103 (2012).
[Crossref]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

2011 (1)

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99(17), 171915 (2011).
[Crossref]

2010 (2)

Y. Ye and S. He, “90 polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
[Crossref] [PubMed]

2008 (1)

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2005 (3)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

G. De Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric emulsions for colored displays,” Adv. Mater. 17(9), 1150–1152 (2005).
[Crossref]

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: With an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
[Crossref]

2001 (2)

S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26(9), 584–586 (2001).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Akosman, A. E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Benedetti, A.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2014).
[Crossref]

Burger, S.

Cai, T.

Chadha, A. S.

A. S. Chadha, D. Zhao, and W. Zhou, “An all-dielectric broadband high-transmission efficiency circular polarizer,” SPIE OPTO 22, 89941–89948 (2014).

A. S. Chadha, D. Zhao, and W. Zhou, “Comparative study of metallic and dielectric helix photonic metamaterial,” Opt. Mater. Express 4(12), 2460–2467 (2014).
[Crossref]

Cheng, Y. Z.

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Chidichimo, G.

G. De Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric emulsions for colored displays,” Adv. Mater. 17(9), 1150–1152 (2005).
[Crossref]

Chin, J. Y.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Cui, T. J.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

H. X. Xu, G. M. Wang, M. Q. Qi, T. Cai, and T. J. Cui, “Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial,” Opt. Express 21(21), 24912–24921 (2013).
[Crossref] [PubMed]

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereo metamaterial-based polarization spectral filter,” Phys. Rev. B 86(3), 035103 (2012).
[Crossref]

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Cuscunà, M.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2014).
[Crossref]

De Filpo, G.

G. De Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric emulsions for colored displays,” Adv. Mater. 17(9), 1150–1152 (2005).
[Crossref]

Dienstfrey, A.

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: With an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
[Crossref]

Duan, J.

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Eleftheriades, G. V.

M. Selvanayagam and G. V. Eleftheriades, “Polarization control using tensor Huygens surfaces,” IEEE Trans. Antennas Propagation 99, 1–14 (2014).

J. P. Wong, M. Selvanayagam, and G. V. Eleftheriades, “Design of unit cells and demonstration of methods for synthesizing Huygens metasurfaces,” Photonics Nano - Fundamentals Appl. 12(4), 360–375 (2014).
[Crossref]

M. Kim, A. M. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients,” Phys. Rev. X 4(4), 041042 (2014).
[Crossref]

M. Selvanayagam and G. V. Eleftheriades, “Chiral polarization control using cascaded tensor impedance surfaces,” in Microwave Symposium (IMS) (2015), pp. 1–4.
[Crossref]

Esposito, M.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2014).
[Crossref]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Fedotov, V. A.

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99(17), 171915 (2011).
[Crossref]

Feng, K.

Gansel, J. K.

Giorgi, M. D.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2014).
[Crossref]

Gong, R. Z.

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Grbic, A.

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces,” in Microwave Symposium Digest (IMS, 2013), pp. 1–4.

He, S.

Y. Ye and S. He, “90 polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Holloway, C. L.

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: With an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
[Crossref]

Huang, X. J.

X. J. Huang, D. Yang, and H. L. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

Hung, Y. C.

Jiang, W. X.

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereo metamaterial-based polarization spectral filter,” Phys. Rev. B 86(3), 035103 (2012).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kaschke, J.

Kim, M.

M. Kim, A. M. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients,” Phys. Rev. X 4(4), 041042 (2014).
[Crossref]

Kuester, E. F.

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: With an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
[Crossref]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Li, Y. R.

Linden, S.

Liu, X. C.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Lu, M.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Lv, T. T.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Ma, H. F.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereo metamaterial-based polarization spectral filter,” Phys. Rev. B 86(3), 035103 (2012).
[Crossref]

Magnusson, R.

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Mohamed, M. A.

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: With an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
[Crossref]

Mutlu, M.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Nicoletta, F. P.

G. De Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric emulsions for colored displays,” Adv. Mater. 17(9), 1150–1152 (2005).
[Crossref]

Ozbay, E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Passaseo, A.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2014).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces,” in Microwave Symposium Digest (IMS, 2013), pp. 1–4.

Plum, E.

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99(17), 171915 (2011).
[Crossref]

Qi, M. Q.

Sanvitto, D.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2014).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Selvanayagam, M.

M. Selvanayagam and G. V. Eleftheriades, “Polarization control using tensor Huygens surfaces,” IEEE Trans. Antennas Propagation 99, 1–14 (2014).

J. P. Wong, M. Selvanayagam, and G. V. Eleftheriades, “Design of unit cells and demonstration of methods for synthesizing Huygens metasurfaces,” Photonics Nano - Fundamentals Appl. 12(4), 360–375 (2014).
[Crossref]

M. Selvanayagam and G. V. Eleftheriades, “Chiral polarization control using cascaded tensor impedance surfaces,” in Microwave Symposium (IMS) (2015), pp. 1–4.
[Crossref]

Serebryannikov, A. E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shen, Z.

Shi, J. H.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereo metamaterial-based polarization spectral filter,” Phys. Rev. B 86(3), 035103 (2012).
[Crossref]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Tarantini, I.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2014).
[Crossref]

Tasco, V.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2014).
[Crossref]

Tibuleac, S.

Todisco, F.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2014).
[Crossref]

Vandenbosch, G. A. E.

S. Yan and G. A. E. Vandenbosch, “Compact circular polarizer based on chiral twist double split-ring resonator,” Appl. Phys. Lett. 102(10), 103503 (2013).
[Crossref]

Wang, G. M.

Wang, J.

Wegener, M.

Wong, A. M.

M. Kim, A. M. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients,” Phys. Rev. X 4(4), 041042 (2014).
[Crossref]

Wong, J. P.

J. P. Wong, M. Selvanayagam, and G. V. Eleftheriades, “Design of unit cells and demonstration of methods for synthesizing Huygens metasurfaces,” Photonics Nano - Fundamentals Appl. 12(4), 360–375 (2014).
[Crossref]

Wu, L.

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Wu, W.

Xu, H. X.

Yan, S.

S. Yan and G. A. E. Vandenbosch, “Compact circular polarizer based on chiral twist double split-ring resonator,” Appl. Phys. Lett. 102(10), 103503 (2013).
[Crossref]

Yang, D.

X. J. Huang, D. Yang, and H. L. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

Yang, H. L.

X. J. Huang, D. Yang, and H. L. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

Yang, Z. Y.

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Ye, Y.

Y. Ye and S. He, “90 polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Yu, S. W.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Yuan, X. H.

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhao, D.

A. S. Chadha, D. Zhao, and W. Zhou, “An all-dielectric broadband high-transmission efficiency circular polarizer,” SPIE OPTO 22, 89941–89948 (2014).

A. S. Chadha, D. Zhao, and W. Zhou, “Comparative study of metallic and dielectric helix photonic metamaterial,” Opt. Mater. Express 4(12), 2460–2467 (2014).
[Crossref]

Zhao, M.

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Zheludev, N. I.

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99(17), 171915 (2011).
[Crossref]

Zheng, Y.

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Zhou, W.

A. S. Chadha, D. Zhao, and W. Zhou, “An all-dielectric broadband high-transmission efficiency circular polarizer,” SPIE OPTO 22, 89941–89948 (2014).

A. S. Chadha, D. Zhao, and W. Zhou, “Comparative study of metallic and dielectric helix photonic metamaterial,” Opt. Mater. Express 4(12), 2460–2467 (2014).
[Crossref]

Zhu, Z.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

ACS Photonics (1)

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2014).
[Crossref]

Adv. Mater. (1)

G. De Filpo, F. P. Nicoletta, and G. Chidichimo, “Cholesteric emulsions for colored displays,” Adv. Mater. 17(9), 1150–1152 (2005).
[Crossref]

Appl. Phys. Lett. (7)

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Y. Ye and S. He, “90 polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett. 99(17), 171915 (2011).
[Crossref]

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

S. Yan and G. A. E. Vandenbosch, “Compact circular polarizer based on chiral twist double split-ring resonator,” Appl. Phys. Lett. 102(10), 103503 (2013).
[Crossref]

IEEE Trans. Antennas Propagation (1)

M. Selvanayagam and G. V. Eleftheriades, “Polarization control using tensor Huygens surfaces,” IEEE Trans. Antennas Propagation 99, 1–14 (2014).

IEEE Trans. Electromagn. Compat. (1)

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: With an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005).
[Crossref]

J. Appl. Phys. (1)

X. J. Huang, D. Yang, and H. L. Yang, “Multiple-band reflective polarization converter using U-shaped metamaterial,” J. Appl. Phys. 115(10), 103505 (2014).
[Crossref]

Nat. Commun. (1)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (1)

Photonics Nano - Fundamentals Appl. (1)

J. P. Wong, M. Selvanayagam, and G. V. Eleftheriades, “Design of unit cells and demonstration of methods for synthesizing Huygens metasurfaces,” Photonics Nano - Fundamentals Appl. 12(4), 360–375 (2014).
[Crossref]

Phys. Rev. B (1)

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereo metamaterial-based polarization spectral filter,” Phys. Rev. B 86(3), 035103 (2012).
[Crossref]

Phys. Rev. Lett. (2)

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. Kim, A. M. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients,” Phys. Rev. X 4(4), 041042 (2014).
[Crossref]

Science (3)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

SPIE OPTO (1)

A. S. Chadha, D. Zhao, and W. Zhou, “An all-dielectric broadband high-transmission efficiency circular polarizer,” SPIE OPTO 22, 89941–89948 (2014).

Other (5)

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces,” in Microwave Symposium Digest (IMS, 2013), pp. 1–4.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

M. Selvanayagam and G. Eleftheriades, “Tensor huygens surfaces,” in IEEE Antennas and Propagation Society International Symposium (APSURSI, 2014), pp. 17–18.
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency light-wave control with all-dielectric optical Huygens’ metasurfaces,” arXiv:1405. 5038 (2014).

M. Selvanayagam and G. V. Eleftheriades, “Chiral polarization control using cascaded tensor impedance surfaces,” in Microwave Symposium (IMS) (2015), pp. 1–4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The design methodology of the proposed circular polarizer. The circles represent the magnetic dipole resonances and the arrows represent the electric dipole resonances. These resonances are excited by the incident waves polarized along x- and y- direction. β is the angle between the strips on the second layer and the positive direction of y axis, which means the angle between the two layers. (b) The top view of a unit cell and the geometric parameters are chosen as w1 = 200 nm, l1 = 400 nm, w2 = 200 nm, l2 = 800 nm and period = 1100 nm. (c) The 3-D scheme of the proposed circular polarizer with two twisted silicon strips arrays.
Fig. 2
Fig. 2 Transmission coefficient spectra and transmission spectra of the proposed structure under the excitation of normally incident CPL. (a) t -- , t +- , t -+ , t ++ represent the transmission coefficients of left-to-left, left-to-right, right-to-left, right-to-right circularly polarized light. (b) Red and green solid lines represent transmission spectra of LCP and RCP light from CST, respectively. Pink and dark green dashed lines represent transmission spectra of LCP and RCP light from FDTD, respectively.
Fig. 3
Fig. 3 The field distributions of a unit cell under the excitation of CPL at the wavelength of 1.42 µm. The black dashed frames in crosscuts along -z direction marked the positions of strips. (a), (b) The electric field vectors driven by LCP light at y-z plane and x-z plane respectively, (c), (d) The electric field vectors driven by RCP light at y-z plane and x-z plane respectively, (e), (f) The magnetic field vectors driven by LCP light at y-z plane and x-z plane respectively, (g), (h) The magnetic field vectors driven by RCP light at y-z plane and x-z plane respectively.
Fig. 4
Fig. 4 Vector diagram depicts the decomposition of the transmitted electric field vector into the contributions from the electric ( E ed , green) and magnetic ( E md , watchet) resonances and the incident waves ( E in , black solid) at the wavelength of 1.42 µm. (a) For LCP wave excitation, the sum of the electric components of the electric and magnetic dipoles and the incident electric field vector is unit, which means T 1 . (b) For RCP wave excitation, the sum of the electric components of the electric and magnetic dipoles and the incident electric field vector is zero, which means T + 0 .
Fig. 5
Fig. 5 (a) The top view of a unit cell in the changed structure. (b) Transmission spectra of the changed structure excited by CPL. Red and green lines represent transmission spectra of LCP and RCP light, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t x = 1 ( k 0 /2) 2 α ex α my 1+ ( k 0 /2) 2 α ex α my i k 0 ( α my α ex )/2 , t y = 1 ( k 0 /2) 2 α mx α ey 1+ ( k 0 /2) 2 α mx α ey +i k 0 ( α ey α mx )/2 .

Metrics