Abstract

An efficient three-dimensional shape measurement system is proposed, which is based on the combining projection of single digital speckle pattern and phase-shifting fringe patterns. At the beginning, the initial corresponding point for each pixel is obtained by a novel speckle-phase combination method. The initial information can be calculated by the single speckle pattern in a short time, while the phase information is used to ensure the results. Unlike the conventional methods, it is not necessary to obtain the unwrapped phase, therefore the number of projected patterns is reduced greatly. Then accurate corresponding coordinates are obtained according to the wrapped phase. Three cases are analyzed while adjusting the initial corresponding coordinates locally. Thus accuracy coordinates are obtained without missing or incorrect points. Experiments demonstrate that we can achieve accurate reconstruction results with reduced measurement time by the proposed method.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-speed 3D shape measurement using the optimized composite fringe patterns and stereo-assisted structured light system

Wei Yin, Shijie Feng, Tianyang Tao, Lei Huang, Maciej Trusiak, Qian Chen, and Chao Zuo
Opt. Express 27(3) 2411-2431 (2019)

Unambiguous 3D measurement from speckle-embedded fringe

Yueyi Zhang, Zhiwei Xiong, and Feng Wu
Appl. Opt. 52(32) 7797-7805 (2013)

Motion-oriented high speed 3-D measurements by binocular fringe projection using binary aperiodic patterns

Shijie Feng, Qian Chen, Chao Zuo, Tianyang Tao, Yan Hu, and Anand Asundi
Opt. Express 25(2) 540-559 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
    [Crossref]
  2. H. Hirschmüller, P. R. Innocent, and J. Garibaldi, “Real-Time Correlation-Based Stereo Vision with Reduced Border Errors,” Int. J. Comput. Vis. 47(1–3), 229–246 (2002).
    [Crossref]
  3. B. Pan, A. Asundi, H. Xie, and J. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47(7–8), 865–874 (2009).
    [Crossref]
  4. A. Wiegmann, H. Wagner, and R. Kowarschik, “Human face measurement by projecting bandlimited random patterns,” Opt. Express 14(17), 7692–7698 (2006).
    [Crossref] [PubMed]
  5. M. Schaffer, M. Grosse, B. Harendt, and R. Kowarschik, “Outdoor three-dimensional shape measurements using laser-based structured illumination,” Opt. Eng. 51(9), 090503 (2012).
    [Crossref]
  6. D. Li, C. Liu, and J. Tian, “Telecentric 3D profilometry based on phase-shifting fringe projection,” Opt. Express 22(26), 31826–31835 (2014).
    [Crossref] [PubMed]
  7. S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
    [Crossref]
  8. J. Pan, P. S. Huang, and F. P. Chiang, “Color-coded binary fringe projection technique for 3-D shape measurement,” Opt. Eng. 44(2), 023606 (2005).
    [Crossref]
  9. M. N. Helfrick, C. Niezrecki, P. Avitabile, and T. Schmidt, “3D digital image correlation methods for full-field vibration measurement,” Mech. Syst. Signal Process. 25(3), 917–927 (2011).
    [Crossref]
  10. S. Zhang and P. S. Huang, “Phase error compensation for a 3-D shape measurement system based on the phase-shifting method,” Opt. Eng. 46(6), 063601 (2007).
    [Crossref]
  11. D. Zheng and F. Da, “Gamma correction for two step phase shifting fringe projection profilometry,” Optik - International Journal for Light and Electron Optics. 124(13), 1392–1397 (2013).
    [Crossref]
  12. S. Lei and S. Zhang, “Digital sinusoidal fringe pattern generation: Defocusing binary patterns VS focusing sinusoidal patterns,” Opt. Lasers Eng. 48(5), 561–569 (2010).
    [Crossref]
  13. J. M. Huntley and H. Saldner, “Temporal phase-unwrapping algorithm for automated interferogram analysis,” Appl. Opt. 32(17), 3047–3052 (1993).
    [Crossref] [PubMed]
  14. J. Tian, X. Peng, and X. Zhao, “A generalized temporal phase unwrapping algorithm for three-dimensional profilometry,” Opt. Lasers Eng. 46(4), 336–342 (2008).
    [Crossref]
  15. G. Sansoni, M. Carocci, and R. Rodella, “Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors,” Appl. Opt. 38(31), 6565–6573 (1999).
    [Crossref] [PubMed]
  16. Y. Liu, X. Su, and Q. Zhang, “A novel encoded-phase technique for phase measuring profilometry,” Opt. Express 19(15), 14137–14144 (2011).
    [Crossref] [PubMed]
  17. C. E. Towers, D. P. Towers, and J. D. C. Jones, “Absolute fringe order calculation using optimised multi-frequency selection in full-field profilometry,” Opt. Lasers Eng. 43(7), 788–800 (2005).
    [Crossref]
  18. D. Zheng and F. Da, “Self-correction phase unwrapping method based on Gray-code light,” Opt. Lasers Eng. 50(8), 1130–1139 (2012).
    [Crossref]
  19. L. Yong, “A correspondence finding method based on space conversion in 3D shape measurement using fringe projection,” Opt. Express 23(11), 14188–14202 (2015).
    [Crossref] [PubMed]
  20. S. Zhang, “Composite phase-shifting algorithm for absolute phase measurement,” Opt. Lasers Eng. 50(11), 1538–1541 (2012).
    [Crossref]
  21. K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Lasers Eng. 51(11), 1213–1222 (2013).
    [Crossref]
  22. W. Lohry, V. Chen, and S. Zhang, “Absolute three-dimensional shape measurement using coded fringe patterns without phase unwrapping or projector calibration,” Opt. Express 22(2), 1287–1301 (2014).
    [Crossref] [PubMed]
  23. W. Lohry and S. Zhang, “High-speed absolute three-dimensional shape measurement using three binary dithered patterns,” Opt. Express 22(22), 26752–26762 (2014).
    [Crossref] [PubMed]

2015 (1)

2014 (3)

2013 (2)

D. Zheng and F. Da, “Gamma correction for two step phase shifting fringe projection profilometry,” Optik - International Journal for Light and Electron Optics. 124(13), 1392–1397 (2013).
[Crossref]

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Lasers Eng. 51(11), 1213–1222 (2013).
[Crossref]

2012 (3)

S. Zhang, “Composite phase-shifting algorithm for absolute phase measurement,” Opt. Lasers Eng. 50(11), 1538–1541 (2012).
[Crossref]

M. Schaffer, M. Grosse, B. Harendt, and R. Kowarschik, “Outdoor three-dimensional shape measurements using laser-based structured illumination,” Opt. Eng. 51(9), 090503 (2012).
[Crossref]

D. Zheng and F. Da, “Self-correction phase unwrapping method based on Gray-code light,” Opt. Lasers Eng. 50(8), 1130–1139 (2012).
[Crossref]

2011 (2)

Y. Liu, X. Su, and Q. Zhang, “A novel encoded-phase technique for phase measuring profilometry,” Opt. Express 19(15), 14137–14144 (2011).
[Crossref] [PubMed]

M. N. Helfrick, C. Niezrecki, P. Avitabile, and T. Schmidt, “3D digital image correlation methods for full-field vibration measurement,” Mech. Syst. Signal Process. 25(3), 917–927 (2011).
[Crossref]

2010 (2)

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
[Crossref]

S. Lei and S. Zhang, “Digital sinusoidal fringe pattern generation: Defocusing binary patterns VS focusing sinusoidal patterns,” Opt. Lasers Eng. 48(5), 561–569 (2010).
[Crossref]

2009 (1)

B. Pan, A. Asundi, H. Xie, and J. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47(7–8), 865–874 (2009).
[Crossref]

2008 (1)

J. Tian, X. Peng, and X. Zhao, “A generalized temporal phase unwrapping algorithm for three-dimensional profilometry,” Opt. Lasers Eng. 46(4), 336–342 (2008).
[Crossref]

2007 (1)

S. Zhang and P. S. Huang, “Phase error compensation for a 3-D shape measurement system based on the phase-shifting method,” Opt. Eng. 46(6), 063601 (2007).
[Crossref]

2006 (1)

2005 (2)

J. Pan, P. S. Huang, and F. P. Chiang, “Color-coded binary fringe projection technique for 3-D shape measurement,” Opt. Eng. 44(2), 023606 (2005).
[Crossref]

C. E. Towers, D. P. Towers, and J. D. C. Jones, “Absolute fringe order calculation using optimised multi-frequency selection in full-field profilometry,” Opt. Lasers Eng. 43(7), 788–800 (2005).
[Crossref]

2002 (1)

H. Hirschmüller, P. R. Innocent, and J. Garibaldi, “Real-Time Correlation-Based Stereo Vision with Reduced Border Errors,” Int. J. Comput. Vis. 47(1–3), 229–246 (2002).
[Crossref]

2000 (1)

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]

1999 (1)

1993 (1)

Asundi, A.

B. Pan, A. Asundi, H. Xie, and J. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47(7–8), 865–874 (2009).
[Crossref]

Avitabile, P.

M. N. Helfrick, C. Niezrecki, P. Avitabile, and T. Schmidt, “3D digital image correlation methods for full-field vibration measurement,” Mech. Syst. Signal Process. 25(3), 917–927 (2011).
[Crossref]

Brown, G. M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]

Carocci, M.

Chen, F.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]

Chen, V.

Chiang, F. P.

J. Pan, P. S. Huang, and F. P. Chiang, “Color-coded binary fringe projection technique for 3-D shape measurement,” Opt. Eng. 44(2), 023606 (2005).
[Crossref]

Da, F.

D. Zheng and F. Da, “Gamma correction for two step phase shifting fringe projection profilometry,” Optik - International Journal for Light and Electron Optics. 124(13), 1392–1397 (2013).
[Crossref]

D. Zheng and F. Da, “Self-correction phase unwrapping method based on Gray-code light,” Opt. Lasers Eng. 50(8), 1130–1139 (2012).
[Crossref]

Gao, J.

B. Pan, A. Asundi, H. Xie, and J. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47(7–8), 865–874 (2009).
[Crossref]

Garibaldi, J.

H. Hirschmüller, P. R. Innocent, and J. Garibaldi, “Real-Time Correlation-Based Stereo Vision with Reduced Border Errors,” Int. J. Comput. Vis. 47(1–3), 229–246 (2002).
[Crossref]

Grosse, M.

M. Schaffer, M. Grosse, B. Harendt, and R. Kowarschik, “Outdoor three-dimensional shape measurements using laser-based structured illumination,” Opt. Eng. 51(9), 090503 (2012).
[Crossref]

Harendt, B.

M. Schaffer, M. Grosse, B. Harendt, and R. Kowarschik, “Outdoor three-dimensional shape measurements using laser-based structured illumination,” Opt. Eng. 51(9), 090503 (2012).
[Crossref]

Helfrick, M. N.

M. N. Helfrick, C. Niezrecki, P. Avitabile, and T. Schmidt, “3D digital image correlation methods for full-field vibration measurement,” Mech. Syst. Signal Process. 25(3), 917–927 (2011).
[Crossref]

Hirschmüller, H.

H. Hirschmüller, P. R. Innocent, and J. Garibaldi, “Real-Time Correlation-Based Stereo Vision with Reduced Border Errors,” Int. J. Comput. Vis. 47(1–3), 229–246 (2002).
[Crossref]

Huang, P. S.

S. Zhang and P. S. Huang, “Phase error compensation for a 3-D shape measurement system based on the phase-shifting method,” Opt. Eng. 46(6), 063601 (2007).
[Crossref]

J. Pan, P. S. Huang, and F. P. Chiang, “Color-coded binary fringe projection technique for 3-D shape measurement,” Opt. Eng. 44(2), 023606 (2005).
[Crossref]

Huntley, J. M.

Innocent, P. R.

H. Hirschmüller, P. R. Innocent, and J. Garibaldi, “Real-Time Correlation-Based Stereo Vision with Reduced Border Errors,” Int. J. Comput. Vis. 47(1–3), 229–246 (2002).
[Crossref]

Jones, J. D. C.

C. E. Towers, D. P. Towers, and J. D. C. Jones, “Absolute fringe order calculation using optimised multi-frequency selection in full-field profilometry,” Opt. Lasers Eng. 43(7), 788–800 (2005).
[Crossref]

Kowarschik, R.

M. Schaffer, M. Grosse, B. Harendt, and R. Kowarschik, “Outdoor three-dimensional shape measurements using laser-based structured illumination,” Opt. Eng. 51(9), 090503 (2012).
[Crossref]

A. Wiegmann, H. Wagner, and R. Kowarschik, “Human face measurement by projecting bandlimited random patterns,” Opt. Express 14(17), 7692–7698 (2006).
[Crossref] [PubMed]

Lei, S.

S. Lei and S. Zhang, “Digital sinusoidal fringe pattern generation: Defocusing binary patterns VS focusing sinusoidal patterns,” Opt. Lasers Eng. 48(5), 561–569 (2010).
[Crossref]

Lei, Y.

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Lasers Eng. 51(11), 1213–1222 (2013).
[Crossref]

Li, D.

Li, Z.

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Lasers Eng. 51(11), 1213–1222 (2013).
[Crossref]

Liu, C.

Liu, Y.

Lohry, W.

Niezrecki, C.

M. N. Helfrick, C. Niezrecki, P. Avitabile, and T. Schmidt, “3D digital image correlation methods for full-field vibration measurement,” Mech. Syst. Signal Process. 25(3), 917–927 (2011).
[Crossref]

Pan, B.

B. Pan, A. Asundi, H. Xie, and J. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47(7–8), 865–874 (2009).
[Crossref]

Pan, J.

J. Pan, P. S. Huang, and F. P. Chiang, “Color-coded binary fringe projection technique for 3-D shape measurement,” Opt. Eng. 44(2), 023606 (2005).
[Crossref]

Peng, X.

J. Tian, X. Peng, and X. Zhao, “A generalized temporal phase unwrapping algorithm for three-dimensional profilometry,” Opt. Lasers Eng. 46(4), 336–342 (2008).
[Crossref]

Rodella, R.

Saldner, H.

Sansoni, G.

Schaffer, M.

M. Schaffer, M. Grosse, B. Harendt, and R. Kowarschik, “Outdoor three-dimensional shape measurements using laser-based structured illumination,” Opt. Eng. 51(9), 090503 (2012).
[Crossref]

Schmidt, T.

M. N. Helfrick, C. Niezrecki, P. Avitabile, and T. Schmidt, “3D digital image correlation methods for full-field vibration measurement,” Mech. Syst. Signal Process. 25(3), 917–927 (2011).
[Crossref]

Shi, Y.

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Lasers Eng. 51(11), 1213–1222 (2013).
[Crossref]

Song, M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]

Su, X.

Tian, J.

D. Li, C. Liu, and J. Tian, “Telecentric 3D profilometry based on phase-shifting fringe projection,” Opt. Express 22(26), 31826–31835 (2014).
[Crossref] [PubMed]

J. Tian, X. Peng, and X. Zhao, “A generalized temporal phase unwrapping algorithm for three-dimensional profilometry,” Opt. Lasers Eng. 46(4), 336–342 (2008).
[Crossref]

Towers, C. E.

C. E. Towers, D. P. Towers, and J. D. C. Jones, “Absolute fringe order calculation using optimised multi-frequency selection in full-field profilometry,” Opt. Lasers Eng. 43(7), 788–800 (2005).
[Crossref]

Towers, D. P.

C. E. Towers, D. P. Towers, and J. D. C. Jones, “Absolute fringe order calculation using optimised multi-frequency selection in full-field profilometry,” Opt. Lasers Eng. 43(7), 788–800 (2005).
[Crossref]

Wagner, H.

Wang, C.

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Lasers Eng. 51(11), 1213–1222 (2013).
[Crossref]

Wiegmann, A.

Xie, H.

B. Pan, A. Asundi, H. Xie, and J. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47(7–8), 865–874 (2009).
[Crossref]

Yong, L.

Zhang, Q.

Zhang, S.

W. Lohry, V. Chen, and S. Zhang, “Absolute three-dimensional shape measurement using coded fringe patterns without phase unwrapping or projector calibration,” Opt. Express 22(2), 1287–1301 (2014).
[Crossref] [PubMed]

W. Lohry and S. Zhang, “High-speed absolute three-dimensional shape measurement using three binary dithered patterns,” Opt. Express 22(22), 26752–26762 (2014).
[Crossref] [PubMed]

S. Zhang, “Composite phase-shifting algorithm for absolute phase measurement,” Opt. Lasers Eng. 50(11), 1538–1541 (2012).
[Crossref]

S. Lei and S. Zhang, “Digital sinusoidal fringe pattern generation: Defocusing binary patterns VS focusing sinusoidal patterns,” Opt. Lasers Eng. 48(5), 561–569 (2010).
[Crossref]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
[Crossref]

S. Zhang and P. S. Huang, “Phase error compensation for a 3-D shape measurement system based on the phase-shifting method,” Opt. Eng. 46(6), 063601 (2007).
[Crossref]

Zhao, X.

J. Tian, X. Peng, and X. Zhao, “A generalized temporal phase unwrapping algorithm for three-dimensional profilometry,” Opt. Lasers Eng. 46(4), 336–342 (2008).
[Crossref]

Zheng, D.

D. Zheng and F. Da, “Gamma correction for two step phase shifting fringe projection profilometry,” Optik - International Journal for Light and Electron Optics. 124(13), 1392–1397 (2013).
[Crossref]

D. Zheng and F. Da, “Self-correction phase unwrapping method based on Gray-code light,” Opt. Lasers Eng. 50(8), 1130–1139 (2012).
[Crossref]

Zhong, K.

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Lasers Eng. 51(11), 1213–1222 (2013).
[Crossref]

Appl. Opt. (2)

Int. J. Comput. Vis. (1)

H. Hirschmüller, P. R. Innocent, and J. Garibaldi, “Real-Time Correlation-Based Stereo Vision with Reduced Border Errors,” Int. J. Comput. Vis. 47(1–3), 229–246 (2002).
[Crossref]

Mech. Syst. Signal Process. (1)

M. N. Helfrick, C. Niezrecki, P. Avitabile, and T. Schmidt, “3D digital image correlation methods for full-field vibration measurement,” Mech. Syst. Signal Process. 25(3), 917–927 (2011).
[Crossref]

Opt. Eng. (4)

S. Zhang and P. S. Huang, “Phase error compensation for a 3-D shape measurement system based on the phase-shifting method,” Opt. Eng. 46(6), 063601 (2007).
[Crossref]

M. Schaffer, M. Grosse, B. Harendt, and R. Kowarschik, “Outdoor three-dimensional shape measurements using laser-based structured illumination,” Opt. Eng. 51(9), 090503 (2012).
[Crossref]

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39(1), 10–22 (2000).
[Crossref]

J. Pan, P. S. Huang, and F. P. Chiang, “Color-coded binary fringe projection technique for 3-D shape measurement,” Opt. Eng. 44(2), 023606 (2005).
[Crossref]

Opt. Express (6)

Opt. Lasers Eng. (8)

S. Zhang, “Composite phase-shifting algorithm for absolute phase measurement,” Opt. Lasers Eng. 50(11), 1538–1541 (2012).
[Crossref]

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Lasers Eng. 51(11), 1213–1222 (2013).
[Crossref]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
[Crossref]

B. Pan, A. Asundi, H. Xie, and J. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47(7–8), 865–874 (2009).
[Crossref]

C. E. Towers, D. P. Towers, and J. D. C. Jones, “Absolute fringe order calculation using optimised multi-frequency selection in full-field profilometry,” Opt. Lasers Eng. 43(7), 788–800 (2005).
[Crossref]

D. Zheng and F. Da, “Self-correction phase unwrapping method based on Gray-code light,” Opt. Lasers Eng. 50(8), 1130–1139 (2012).
[Crossref]

S. Lei and S. Zhang, “Digital sinusoidal fringe pattern generation: Defocusing binary patterns VS focusing sinusoidal patterns,” Opt. Lasers Eng. 48(5), 561–569 (2010).
[Crossref]

J. Tian, X. Peng, and X. Zhao, “A generalized temporal phase unwrapping algorithm for three-dimensional profilometry,” Opt. Lasers Eng. 46(4), 336–342 (2008).
[Crossref]

Optik - International Journal for Light and Electron Optics. (1)

D. Zheng and F. Da, “Gamma correction for two step phase shifting fringe projection profilometry,” Optik - International Journal for Light and Electron Optics. 124(13), 1392–1397 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic diagram of the measuring system.
Fig. 2
Fig. 2 The speckle pattern.
Fig. 3
Fig. 3 Wrapped phase map in measurement experiment. (a)Wrapped map; (b)phase values on one epipolar line. Basic principle: The phase of the corresponding points is identical. Method:
Fig. 4
Fig. 4 Classification according to key values.
Fig. 5
Fig. 5 Schematic diagram of matching points.(a) speckle pattern. (b) wrapped phase map.
Fig. 6
Fig. 6 Schematic diagram of matching method (Φ1and Φ2are the phase of x1 and x2 respectively) (a) WhenΦ1>Φ2. (b) whenΦ1<Φ2.
Fig. 7
Fig. 7 Matching points at the edge of wrapped phase periods.
Fig. 8
Fig. 8 Four situations for phase processing:case 3 (at the edge of wrapped phase periods).
Fig. 9
Fig. 9 Phase information processing for situation of Fig. 8(a)
Fig. 10
Fig. 10 The stair stepping work-piece
Fig. 11
Fig. 11 Experimental results of a stair stepping workpiece. (a)The speckle pattern image from left camera;(b) wrapped phase map; (c)~(d) corresponding images from the right camera.
Fig. 12
Fig. 12 Measurement error of stair stepping work-piece. (a) Cross-section of the result by DIC method; (b) cross-section of the result by Gray-code method; (c) cross-section of the result by proposed method; (d)difference between the actual height and measurement results by DIC (blue),Gray-code (green) and proposed method(red).
Fig. 13
Fig. 13 Measurement result of Venus model. (a)Photograph of measured model from left camera; (b) speckle pattern; (c) wrapped phase map; (d)~(f) corresponding images from the right camera; (g) 3D reconstruction result.

Tables (2)

Tables Icon

Table 1 Experimental result of the stair stepping work-piece

Tables Icon

Table 2 Measurement time of the stair stepping work-piece

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I k ( x , y ) = I ' ( x , y ) + I " ( x , y ) cos ( φ ( x , y ) + k π /2) ( k = 1 , 2 , 3 , 4 )
φ ( x , y ) = tan - 1 [ k = 1 N I k sin ( k π / 2 ) k = 1 N I k cos ( k π / 2 ) ]
ρ ( l , r k ) = N = n n M = m m I l ( u l + N , v l + M ) × I r k ( u r k + N , v r k + M ) N = n n M = m m [ I l ( u l + N , v l + M ) ] 2 N = n n M = m m [ I r k ( u r k + N , v r k + M ) ] 2
u = u 2 + Φ 1 - Φ 2 Φ 3 - Φ 2 ( u 3 - u 2 )
u = u 3 + Φ 1 - Φ 3 Φ 2 - Φ 3 ( u 2 - u 3 )

Metrics