Abstract

A novel millimeter-wave radio over fiber (MMW-RoF) link at carrier frequency of 35-GHz is proposed with the use of remotely beating MMW generation from reference master and injected slave colorless laser diode (LD) carriers at orthogonally polarized dual-wavelength injection-locking. The slave colorless LD supports lasing one of the dual-wavelength master modes with orthogonal polarizations, which facilitates the single-mode direct modulation of the quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data. Such an injected single-carrier encoding and coupled dual-carrier transmission with orthogonal polarization effectively suppresses the cross-heterodyne mode-beating intensity noise, the nonlinear modulation (NLM) and four-wave mixing (FWM) sidemodes during injection locking and fiber transmission. In 25-km single-mode fiber (SMF) based wireline system, the dual-carrier under single-mode encoding provides baseband 24-Gbit/s 64-QAM OFDM transmission with an error vector magnitude (EVM) of 8.8%, a bit error rate (BER) of 3.7 × 10−3, a power penalty of <1.5 dB. After remotely self-beating for wireless transmission, the beat MMW carrier at 35 GHz can deliver the passband 16-QAM OFDM at 4 Gbit/s to show corresponding EVM and BER of 15.5% and 1.4 × 10−3, respectively, after 25-km SMF and 1.6-m free-space transmission.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Remote heterodyne millimeter-wave over fiber based OFDM-PON with master-to-slave injected dual-mode colorless FPLD pair

Hsiang-Yu Chen, Yu-Chieh Chi, and Gong-Ru Lin
Opt. Express 23(17) 22691-22705 (2015)

Dual-mode laser diode carrier with orthogonal polarization and single-mode modulation for remote-node heterodyne MMW-RoF

Huai-Yung Wang, Yu-Chieh Chi, and Gong-Ru Lin
Opt. Lett. 41(20) 4676-4679 (2016)

Two-color laser diode for 54-Gb/s fiber-wired and 16-Gb/s MMW wireless OFDM transmissions

Chung-Yu Lin, Yu-Chieh Chi, Cheng-Ting Tsai, Hsiang-Yu Chen, and Gong-Ru Lin
Photon. Res. 5(4) 271-279 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Park and T. S. Rappaport, “Short-range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave WPAN, and ZigBee,” IEEE Wirel. Commun. 14(4), 70–78 (2007).
    [Crossref]
  2. S. Mumtaz, K. M. Saidul Huq, and J. Rodriguez, “Direct mobile-to-mobile communication: paradigm for 5G,” IEEE Wirel. Commun. 21(5), 14–23 (2014).
    [Crossref]
  3. M. Farooq, M. I. Ahmed, and U. M. Al, “Future generations of mobile communication networks,” J. Acad. Contemporary Res. 2(1), 15–21 (2013).
  4. A. M. Mousa, “Prospective of fifth generation mobile communications,” Int. J. Next-Generation Netw. 4(3), 11–30 (2012).
    [Crossref]
  5. S. K. Mohapatra, B. R. Swain, N. Pati, and A. Pradhan, “Road towards millimeter wave communication for 5G network: a technological overview,” Trans. Mach. Learning Artif. Intell. 2(3), 48–60 (2014).
    [Crossref]
  6. A. Gohil, H. Modi, and S. K. Patel, “5G technology of mobile communication: a survey,” in Proceedings of IEEE International Conference on Intelligent Systems and Signal Processing (IEEE, 2013), pp. 288–292.
    [Crossref]
  7. J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
    [Crossref]
  8. S. Hossain, “5G wireless communication systems,” American J. Eng. Res. 2(10), 344–353 (2013).
  9. G. R. MacCartney, J. Zhang, S. Nie, and T. S. Rappaport, “Path loss models for 5G millimeter wave propagation channels in urban microcells,” in Proceedings of IEEE Global Communications Conference (IEEE, 2013), pp. 3948–3953.
    [Crossref]
  10. T. Rappaport, R. Shu Sun, Mayzus, Y. Hang Zhao, K. Azar, G. N. Wang, J. K. Wong, M. Schulz, Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!” IEEE Access 1, 335–349 (2013).
    [Crossref]
  11. Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave (mm wave) communications for 5G: opportunities and challenges,” Wirel. Netw. 21(8), 2657–2676 (2015).
    [Crossref]
  12. G. Hua, C. Yang, P. Lu, H. X. Zhou, and W. Hong, “Microstrip folded dipole antenna for 35 GHz MMW communication,” Int. J. Antennas Propag. 2013, 603654 (2013).
    [Crossref]
  13. N. Pleros, K. Vyrsokinos, K. Tsagkaris, and N. D. Tselikas, “A 60 GHz radio-over-fiber network architecture for seamless communication with high mobility,” J. Lightwave Technol. 27(12), 1957–1967 (2009).
    [Crossref]
  14. H. Y. Chen, Y. C. Chi, and G.-R. Lin, “Remote heterodyne millimeter-wave over fiber based OFDM-PON with master-to-slave injected dual-mode colorless FPLD pair,” Opt. Express 23(17), 22691–22705 (2015).
    [Crossref] [PubMed]
  15. J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
    [Crossref]
  16. X. Pang, M. Beltrán, J. Sánchez, E. Pellicer, J. J. Vegas Olmos, R. Llorente, and I. T. Monroy, “Centralized optical-frequency-comb-based RF carrier generator for DWDM fiber-wireless access systems,” J. Opt. Commun. Netw. 6(1), 1–7 (2014).
    [Crossref]
  17. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(13), 314–335 (2009).
    [Crossref]
  18. Y. F. Wu, C. H. Yeh, C. W. Chow, F. Y. Shih, and S. Chi, “Employing external injection-locked fabry–perot laser scheme for mm-wave generation,” Laser Phys. 21(4), 718–721 (2011).
    [Crossref]
  19. G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Cheng, “Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Technol. 27(14), 2779–2785 (2009).
    [Crossref]
  20. G.-R. Lin, T.-K. Cheng, Y.-C. Chi, G.-C. Lin, H.-L. Wang, and Y.-H. Lin, “200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE,” Opt. Express 17(20), 17739–17746 (2009).
    [Crossref] [PubMed]
  21. G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON application,” J. Lightwave Technol. 28(20), 2925–2932 (2010).
    [Crossref]
  22. G. H. Smith and D. Novak, “Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photonics Technol. Lett. 10(1), 141–143 (1998).
    [Crossref]
  23. H. Chi and J. Yao, “Frequency quadrupling and upconversion in a radio over fiber link,” J. Lightwave Technol. 26(15), 2706–2711 (2008).
    [Crossref]
  24. J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
    [Crossref]
  25. S. H. Fan, C. Liu, and G. K. Chang, “Heterodyne optical carrier suppression for millimeter-wave-over-fiber systems,” J. Lightwave Technol. 31(19), 1957–1967 (2013).
    [Crossref]
  26. J. Zhang, J. Yu, N. Chi, F. Li, and X. Li, “Experimental demonstration of 24-Gb/s CAP-64QAM radio-over-fiber system over 40-GHz mm-wave fiber-wireless transmission,” Opt. Express 21(22), 26888–26895 (2013).
    [Crossref] [PubMed]
  27. G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
    [Crossref]
  28. Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photonics Technol. Lett. 24(14), 1173–1175 (2012).
    [Crossref]
  29. W. Li, W. H. Sun, W. T. Wang, and N. H. Zhu, “All-optical frequency upconversion for radio-over-fiber applications based on cross-gain modulation and cross-polarization modulation in a semiconductor optical amplifier,” Opt. Lett. 39(9), 2672–2675 (2014).
    [Crossref] [PubMed]
  30. C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
    [Crossref]
  31. G.-R. Lin, T.-K. Cheng, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “A weak-resonant-cavity Fabry–Perot laser diode with injection-locking mode number-dependent transmission and noise performances,” J. Lightwave Technol. 28(9), 1349–1355 (2010).
    [Crossref]
  32. Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20(18), 20071–20077 (2012).
    [Crossref] [PubMed]
  33. C. T. Tsai, M. C. Cheng, Y. C. Chi, and G.-R. Lin, “A novel colorless FPLD packaged with TO-can for 30-Gbit/s preamplified 64-QAM-OFDM transmission,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1500313 (2015).
  34. S. Y. Lin, Y. C. Su, Y. C. Li, H. L. Wang, G. C. Lin, S. M. Chen, and G.-R. Lin, “10-Gbit/s direct modulation of a TO-56-can packed 600-μm long laser diode with 2% front-facet reflectance,” Opt. Express 21(21), 25197–25209 (2013).
    [Crossref] [PubMed]
  35. G. P. Agrawal, “Four-wave mixing and phase conjugation in semiconductor laser media,” Opt. Lett. 12(4), 260–262 (1987).
    [Crossref] [PubMed]
  36. H. Nakajima and R. Frey, “Collinear nearly degenerate four-wave mixing in intracavity amplifying media,” IEEE J. Quantum Electron. 22(8), 1349–1354 (1986).
    [Crossref]
  37. C.-Y. Lin, Y.-C. Chi, C.-T. Tsai, H.-Y. Wang, and G.-R. Lin, “39-GHz millimeter-wave carrier generation in dual-wavelength colorless laser diode for OFDM-MMWoF transmission,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1801810 (2015).
  38. T. Mukai and T. Saitoh, “Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-μm traveling-wave semiconductor laser amplifier,” IEEE J. Quantum Electron. 26(5), 865–875 (1990).
    [Crossref]
  39. M. Tsang and D. Psaltis, “Spectral phase conjugation with cross-phase modulation compensation,” Opt. Express 12(10), 2207–2219 (2004).
    [Crossref] [PubMed]
  40. C.-T. Tsai, Y. C. Chi, and G.-R. Lin, “Power fading mitigation of 40-Gbit/s 256-QAM OFDM carried by colorless laser diode under injection-locking,” Opt. Express 23(22), 29065–29078 (2015).
    [Crossref] [PubMed]
  41. L. Goldfeld, V. Lyandres, and D. Wulich, “Minimum BER power loading for OFDM in fading channel,” IEEE Trans. Commun. 50(11), 1729–1733 (2002).
    [Crossref]
  42. D. J. Love and R. W. Heath., “OFDM power loading using limited feedback,” IEEE Trans. Vehicular Technol. 54(5), 1773–1780 (2005).
    [Crossref]
  43. C. Wong, R. S. Cheng, K. B. Lataief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Sel. Areas Comm. 17(10), 1747–1758 (1999).
    [Crossref]
  44. Y. Ma, N. Yi, and R. Tafazolli, “Bit and power loading for OFDM-based three-node relaying communications,” IEEE Trans. Signal Process. 56(7), 3236–3247 (2008).
    [Crossref]
  45. X. Xue, W. Ji, Z. Kang, K. Huang, and X. Li, “High-efficiency optical coupling single-sideband modulation for OFDM–RoF–PON systems,” Opt. Commun. 356, 500–509 (2015).
    [Crossref]
  46. Y. T. Hsueh, Z. Jia, H. C. Chien, A. Chowdhury, J. Yu, and G. K. Chang, “Multiband 60-GHz wireless over fiber access system with high dispersion tolerance using frequency tripling technique,” J. Lightwave Technol. 29(8), 1105–1111 (2011).
    [Crossref]
  47. H. Y. Chen, Y. C. Chi, C. T. Tsai, and G.-R. Lin, “Four-wave-mixing suppression of master-to-slave injection-locked two-wavelength FPLD pair for MMW-PON,” J. Lightwave Technol. 34(19), 2549061 (2016).
  48. D. K. Borah, A. C. Boucouvalas, C. C. Davis, S. Hranilovic, and K. Yiannopoulos, “A review of communication-oriented optical wireless systems,” EURASIP J. Wirel. Commun. Netw. 2012(1), 1–28 (2012).
    [Crossref]

2016 (1)

H. Y. Chen, Y. C. Chi, C. T. Tsai, and G.-R. Lin, “Four-wave-mixing suppression of master-to-slave injection-locked two-wavelength FPLD pair for MMW-PON,” J. Lightwave Technol. 34(19), 2549061 (2016).

2015 (6)

X. Xue, W. Ji, Z. Kang, K. Huang, and X. Li, “High-efficiency optical coupling single-sideband modulation for OFDM–RoF–PON systems,” Opt. Commun. 356, 500–509 (2015).
[Crossref]

C.-T. Tsai, Y. C. Chi, and G.-R. Lin, “Power fading mitigation of 40-Gbit/s 256-QAM OFDM carried by colorless laser diode under injection-locking,” Opt. Express 23(22), 29065–29078 (2015).
[Crossref] [PubMed]

Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave (mm wave) communications for 5G: opportunities and challenges,” Wirel. Netw. 21(8), 2657–2676 (2015).
[Crossref]

H. Y. Chen, Y. C. Chi, and G.-R. Lin, “Remote heterodyne millimeter-wave over fiber based OFDM-PON with master-to-slave injected dual-mode colorless FPLD pair,” Opt. Express 23(17), 22691–22705 (2015).
[Crossref] [PubMed]

C. T. Tsai, M. C. Cheng, Y. C. Chi, and G.-R. Lin, “A novel colorless FPLD packaged with TO-can for 30-Gbit/s preamplified 64-QAM-OFDM transmission,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1500313 (2015).

C.-Y. Lin, Y.-C. Chi, C.-T. Tsai, H.-Y. Wang, and G.-R. Lin, “39-GHz millimeter-wave carrier generation in dual-wavelength colorless laser diode for OFDM-MMWoF transmission,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1801810 (2015).

2014 (5)

W. Li, W. H. Sun, W. T. Wang, and N. H. Zhu, “All-optical frequency upconversion for radio-over-fiber applications based on cross-gain modulation and cross-polarization modulation in a semiconductor optical amplifier,” Opt. Lett. 39(9), 2672–2675 (2014).
[Crossref] [PubMed]

X. Pang, M. Beltrán, J. Sánchez, E. Pellicer, J. J. Vegas Olmos, R. Llorente, and I. T. Monroy, “Centralized optical-frequency-comb-based RF carrier generator for DWDM fiber-wireless access systems,” J. Opt. Commun. Netw. 6(1), 1–7 (2014).
[Crossref]

S. Mumtaz, K. M. Saidul Huq, and J. Rodriguez, “Direct mobile-to-mobile communication: paradigm for 5G,” IEEE Wirel. Commun. 21(5), 14–23 (2014).
[Crossref]

S. K. Mohapatra, B. R. Swain, N. Pati, and A. Pradhan, “Road towards millimeter wave communication for 5G network: a technological overview,” Trans. Mach. Learning Artif. Intell. 2(3), 48–60 (2014).
[Crossref]

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

2013 (7)

S. Hossain, “5G wireless communication systems,” American J. Eng. Res. 2(10), 344–353 (2013).

T. Rappaport, R. Shu Sun, Mayzus, Y. Hang Zhao, K. Azar, G. N. Wang, J. K. Wong, M. Schulz, Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

M. Farooq, M. I. Ahmed, and U. M. Al, “Future generations of mobile communication networks,” J. Acad. Contemporary Res. 2(1), 15–21 (2013).

G. Hua, C. Yang, P. Lu, H. X. Zhou, and W. Hong, “Microstrip folded dipole antenna for 35 GHz MMW communication,” Int. J. Antennas Propag. 2013, 603654 (2013).
[Crossref]

S. H. Fan, C. Liu, and G. K. Chang, “Heterodyne optical carrier suppression for millimeter-wave-over-fiber systems,” J. Lightwave Technol. 31(19), 1957–1967 (2013).
[Crossref]

J. Zhang, J. Yu, N. Chi, F. Li, and X. Li, “Experimental demonstration of 24-Gb/s CAP-64QAM radio-over-fiber system over 40-GHz mm-wave fiber-wireless transmission,” Opt. Express 21(22), 26888–26895 (2013).
[Crossref] [PubMed]

S. Y. Lin, Y. C. Su, Y. C. Li, H. L. Wang, G. C. Lin, S. M. Chen, and G.-R. Lin, “10-Gbit/s direct modulation of a TO-56-can packed 600-μm long laser diode with 2% front-facet reflectance,” Opt. Express 21(21), 25197–25209 (2013).
[Crossref] [PubMed]

2012 (4)

Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20(18), 20071–20077 (2012).
[Crossref] [PubMed]

Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photonics Technol. Lett. 24(14), 1173–1175 (2012).
[Crossref]

A. M. Mousa, “Prospective of fifth generation mobile communications,” Int. J. Next-Generation Netw. 4(3), 11–30 (2012).
[Crossref]

D. K. Borah, A. C. Boucouvalas, C. C. Davis, S. Hranilovic, and K. Yiannopoulos, “A review of communication-oriented optical wireless systems,” EURASIP J. Wirel. Commun. Netw. 2012(1), 1–28 (2012).
[Crossref]

2011 (2)

Y. T. Hsueh, Z. Jia, H. C. Chien, A. Chowdhury, J. Yu, and G. K. Chang, “Multiband 60-GHz wireless over fiber access system with high dispersion tolerance using frequency tripling technique,” J. Lightwave Technol. 29(8), 1105–1111 (2011).
[Crossref]

Y. F. Wu, C. H. Yeh, C. W. Chow, F. Y. Shih, and S. Chi, “Employing external injection-locked fabry–perot laser scheme for mm-wave generation,” Laser Phys. 21(4), 718–721 (2011).
[Crossref]

2010 (3)

2009 (4)

2008 (2)

H. Chi and J. Yao, “Frequency quadrupling and upconversion in a radio over fiber link,” J. Lightwave Technol. 26(15), 2706–2711 (2008).
[Crossref]

Y. Ma, N. Yi, and R. Tafazolli, “Bit and power loading for OFDM-based three-node relaying communications,” IEEE Trans. Signal Process. 56(7), 3236–3247 (2008).
[Crossref]

2007 (1)

C. Park and T. S. Rappaport, “Short-range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave WPAN, and ZigBee,” IEEE Wirel. Commun. 14(4), 70–78 (2007).
[Crossref]

2006 (2)

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

2005 (1)

D. J. Love and R. W. Heath., “OFDM power loading using limited feedback,” IEEE Trans. Vehicular Technol. 54(5), 1773–1780 (2005).
[Crossref]

2004 (1)

2002 (1)

L. Goldfeld, V. Lyandres, and D. Wulich, “Minimum BER power loading for OFDM in fading channel,” IEEE Trans. Commun. 50(11), 1729–1733 (2002).
[Crossref]

1999 (1)

C. Wong, R. S. Cheng, K. B. Lataief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Sel. Areas Comm. 17(10), 1747–1758 (1999).
[Crossref]

1998 (1)

G. H. Smith and D. Novak, “Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photonics Technol. Lett. 10(1), 141–143 (1998).
[Crossref]

1997 (1)

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

1990 (1)

T. Mukai and T. Saitoh, “Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-μm traveling-wave semiconductor laser amplifier,” IEEE J. Quantum Electron. 26(5), 865–875 (1990).
[Crossref]

1987 (1)

1986 (1)

H. Nakajima and R. Frey, “Collinear nearly degenerate four-wave mixing in intracavity amplifying media,” IEEE J. Quantum Electron. 22(8), 1349–1354 (1986).
[Crossref]

Agrawal, G. P.

Ahmed, M. I.

M. Farooq, M. I. Ahmed, and U. M. Al, “Future generations of mobile communication networks,” J. Acad. Contemporary Res. 2(1), 15–21 (2013).

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

Al, U. M.

M. Farooq, M. I. Ahmed, and U. M. Al, “Future generations of mobile communication networks,” J. Acad. Contemporary Res. 2(1), 15–21 (2013).

Andrews, J. G.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

Azar, K.

T. Rappaport, R. Shu Sun, Mayzus, Y. Hang Zhao, K. Azar, G. N. Wang, J. K. Wong, M. Schulz, Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

Beltrán, M.

Borah, D. K.

D. K. Borah, A. C. Boucouvalas, C. C. Davis, S. Hranilovic, and K. Yiannopoulos, “A review of communication-oriented optical wireless systems,” EURASIP J. Wirel. Commun. Netw. 2012(1), 1–28 (2012).
[Crossref]

Boucouvalas, A. C.

D. K. Borah, A. C. Boucouvalas, C. C. Davis, S. Hranilovic, and K. Yiannopoulos, “A review of communication-oriented optical wireless systems,” EURASIP J. Wirel. Commun. Netw. 2012(1), 1–28 (2012).
[Crossref]

Buzzi, S.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

Chang, G. K.

S. H. Fan, C. Liu, and G. K. Chang, “Heterodyne optical carrier suppression for millimeter-wave-over-fiber systems,” J. Lightwave Technol. 31(19), 1957–1967 (2013).
[Crossref]

Y. T. Hsueh, Z. Jia, H. C. Chien, A. Chowdhury, J. Yu, and G. K. Chang, “Multiband 60-GHz wireless over fiber access system with high dispersion tolerance using frequency tripling technique,” J. Lightwave Technol. 29(8), 1105–1111 (2011).
[Crossref]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Chen, H. Y.

H. Y. Chen, Y. C. Chi, C. T. Tsai, and G.-R. Lin, “Four-wave-mixing suppression of master-to-slave injection-locked two-wavelength FPLD pair for MMW-PON,” J. Lightwave Technol. 34(19), 2549061 (2016).

H. Y. Chen, Y. C. Chi, and G.-R. Lin, “Remote heterodyne millimeter-wave over fiber based OFDM-PON with master-to-slave injected dual-mode colorless FPLD pair,” Opt. Express 23(17), 22691–22705 (2015).
[Crossref] [PubMed]

Chen, L.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Chen, S. M.

Chen, Y.-J.

Chen, Z.

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
[Crossref]

Cheng, M. C.

C. T. Tsai, M. C. Cheng, Y. C. Chi, and G.-R. Lin, “A novel colorless FPLD packaged with TO-can for 30-Gbit/s preamplified 64-QAM-OFDM transmission,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1500313 (2015).

Cheng, R. S.

C. Wong, R. S. Cheng, K. B. Lataief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Sel. Areas Comm. 17(10), 1747–1758 (1999).
[Crossref]

Cheng, T.-K.

Chi, H.

Chi, N.

Chi, S.

Y. F. Wu, C. H. Yeh, C. W. Chow, F. Y. Shih, and S. Chi, “Employing external injection-locked fabry–perot laser scheme for mm-wave generation,” Laser Phys. 21(4), 718–721 (2011).
[Crossref]

Chi, Y. C.

H. Y. Chen, Y. C. Chi, C. T. Tsai, and G.-R. Lin, “Four-wave-mixing suppression of master-to-slave injection-locked two-wavelength FPLD pair for MMW-PON,” J. Lightwave Technol. 34(19), 2549061 (2016).

C. T. Tsai, M. C. Cheng, Y. C. Chi, and G.-R. Lin, “A novel colorless FPLD packaged with TO-can for 30-Gbit/s preamplified 64-QAM-OFDM transmission,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1500313 (2015).

H. Y. Chen, Y. C. Chi, and G.-R. Lin, “Remote heterodyne millimeter-wave over fiber based OFDM-PON with master-to-slave injected dual-mode colorless FPLD pair,” Opt. Express 23(17), 22691–22705 (2015).
[Crossref] [PubMed]

C.-T. Tsai, Y. C. Chi, and G.-R. Lin, “Power fading mitigation of 40-Gbit/s 256-QAM OFDM carried by colorless laser diode under injection-locking,” Opt. Express 23(22), 29065–29078 (2015).
[Crossref] [PubMed]

Chi, Y.-C.

Chien, H. C.

Choi, W.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

Chow, C. W.

Y. F. Wu, C. H. Yeh, C. W. Chow, F. Y. Shih, and S. Chi, “Employing external injection-locked fabry–perot laser scheme for mm-wave generation,” Laser Phys. 21(4), 718–721 (2011).
[Crossref]

Chowdhury, A.

Cui, Y.

Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photonics Technol. Lett. 24(14), 1173–1175 (2012).
[Crossref]

Dai, J.

Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photonics Technol. Lett. 24(14), 1173–1175 (2012).
[Crossref]

Dai, Y.

Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photonics Technol. Lett. 24(14), 1173–1175 (2012).
[Crossref]

Davis, C. C.

D. K. Borah, A. C. Boucouvalas, C. C. Davis, S. Hranilovic, and K. Yiannopoulos, “A review of communication-oriented optical wireless systems,” EURASIP J. Wirel. Commun. Netw. 2012(1), 1–28 (2012).
[Crossref]

Fan, S. H.

S. H. Fan, C. Liu, and G. K. Chang, “Heterodyne optical carrier suppression for millimeter-wave-over-fiber systems,” J. Lightwave Technol. 31(19), 1957–1967 (2013).
[Crossref]

Farooq, M.

M. Farooq, M. I. Ahmed, and U. M. Al, “Future generations of mobile communication networks,” J. Acad. Contemporary Res. 2(1), 15–21 (2013).

Frey, R.

H. Nakajima and R. Frey, “Collinear nearly degenerate four-wave mixing in intracavity amplifying media,” IEEE J. Quantum Electron. 22(8), 1349–1354 (1986).
[Crossref]

Gohil, A.

A. Gohil, H. Modi, and S. K. Patel, “5G technology of mobile communication: a survey,” in Proceedings of IEEE International Conference on Intelligent Systems and Signal Processing (IEEE, 2013), pp. 288–292.
[Crossref]

Goldfeld, L.

L. Goldfeld, V. Lyandres, and D. Wulich, “Minimum BER power loading for OFDM in fading channel,” IEEE Trans. Commun. 50(11), 1729–1733 (2002).
[Crossref]

Gutierrez, F.

T. Rappaport, R. Shu Sun, Mayzus, Y. Hang Zhao, K. Azar, G. N. Wang, J. K. Wong, M. Schulz, Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

Hang Zhao, Y.

T. Rappaport, R. Shu Sun, Mayzus, Y. Hang Zhao, K. Azar, G. N. Wang, J. K. Wong, M. Schulz, Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

Hanly, S. V.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

Heath, R. W.

D. J. Love and R. W. Heath., “OFDM power loading using limited feedback,” IEEE Trans. Vehicular Technol. 54(5), 1773–1780 (2005).
[Crossref]

Hong, C.

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
[Crossref]

Hong, W.

G. Hua, C. Yang, P. Lu, H. X. Zhou, and W. Hong, “Microstrip folded dipole antenna for 35 GHz MMW communication,” Int. J. Antennas Propag. 2013, 603654 (2013).
[Crossref]

Hossain, S.

S. Hossain, “5G wireless communication systems,” American J. Eng. Res. 2(10), 344–353 (2013).

Hranilovic, S.

D. K. Borah, A. C. Boucouvalas, C. C. Davis, S. Hranilovic, and K. Yiannopoulos, “A review of communication-oriented optical wireless systems,” EURASIP J. Wirel. Commun. Netw. 2012(1), 1–28 (2012).
[Crossref]

Hsueh, Y. T.

Hu, W.

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
[Crossref]

Hua, G.

G. Hua, C. Yang, P. Lu, H. X. Zhou, and W. Hong, “Microstrip folded dipole antenna for 35 GHz MMW communication,” Int. J. Antennas Propag. 2013, 603654 (2013).
[Crossref]

Huang, K.

X. Xue, W. Ji, Z. Kang, K. Huang, and X. Li, “High-efficiency optical coupling single-sideband modulation for OFDM–RoF–PON systems,” Opt. Commun. 356, 500–509 (2015).
[Crossref]

Huang, Y.-H.

Ji, W.

X. Xue, W. Ji, Z. Kang, K. Huang, and X. Li, “High-efficiency optical coupling single-sideband modulation for OFDM–RoF–PON systems,” Opt. Commun. 356, 500–509 (2015).
[Crossref]

Ji, Y.

Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photonics Technol. Lett. 24(14), 1173–1175 (2012).
[Crossref]

Jia, Z.

Y. T. Hsueh, Z. Jia, H. C. Chien, A. Chowdhury, J. Yu, and G. K. Chang, “Multiband 60-GHz wireless over fiber access system with high dispersion tolerance using frequency tripling technique,” J. Lightwave Technol. 29(8), 1105–1111 (2011).
[Crossref]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Jin, D.

Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave (mm wave) communications for 5G: opportunities and challenges,” Wirel. Netw. 21(8), 2657–2676 (2015).
[Crossref]

Kang, Z.

X. Xue, W. Ji, Z. Kang, K. Huang, and X. Li, “High-efficiency optical coupling single-sideband modulation for OFDM–RoF–PON systems,” Opt. Commun. 356, 500–509 (2015).
[Crossref]

Kuo, H.-C.

Lataief, K. B.

C. Wong, R. S. Cheng, K. B. Lataief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Sel. Areas Comm. 17(10), 1747–1758 (1999).
[Crossref]

Li, F.

Li, L.

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
[Crossref]

Li, M.

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
[Crossref]

Li, W.

Li, X.

X. Xue, W. Ji, Z. Kang, K. Huang, and X. Li, “High-efficiency optical coupling single-sideband modulation for OFDM–RoF–PON systems,” Opt. Commun. 356, 500–509 (2015).
[Crossref]

J. Zhang, J. Yu, N. Chi, F. Li, and X. Li, “Experimental demonstration of 24-Gb/s CAP-64QAM radio-over-fiber system over 40-GHz mm-wave fiber-wireless transmission,” Opt. Express 21(22), 26888–26895 (2013).
[Crossref] [PubMed]

Li, Y.

Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave (mm wave) communications for 5G: opportunities and challenges,” Wirel. Netw. 21(8), 2657–2676 (2015).
[Crossref]

Li, Y. C.

Li, Y.-C.

Liao, Y.-S.

Lin, C.-Y.

C.-Y. Lin, Y.-C. Chi, C.-T. Tsai, H.-Y. Wang, and G.-R. Lin, “39-GHz millimeter-wave carrier generation in dual-wavelength colorless laser diode for OFDM-MMWoF transmission,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1801810 (2015).

Lin, G. C.

Lin, G.-C.

Lin, G.-R.

H. Y. Chen, Y. C. Chi, C. T. Tsai, and G.-R. Lin, “Four-wave-mixing suppression of master-to-slave injection-locked two-wavelength FPLD pair for MMW-PON,” J. Lightwave Technol. 34(19), 2549061 (2016).

C.-Y. Lin, Y.-C. Chi, C.-T. Tsai, H.-Y. Wang, and G.-R. Lin, “39-GHz millimeter-wave carrier generation in dual-wavelength colorless laser diode for OFDM-MMWoF transmission,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1801810 (2015).

C. T. Tsai, M. C. Cheng, Y. C. Chi, and G.-R. Lin, “A novel colorless FPLD packaged with TO-can for 30-Gbit/s preamplified 64-QAM-OFDM transmission,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1500313 (2015).

H. Y. Chen, Y. C. Chi, and G.-R. Lin, “Remote heterodyne millimeter-wave over fiber based OFDM-PON with master-to-slave injected dual-mode colorless FPLD pair,” Opt. Express 23(17), 22691–22705 (2015).
[Crossref] [PubMed]

C.-T. Tsai, Y. C. Chi, and G.-R. Lin, “Power fading mitigation of 40-Gbit/s 256-QAM OFDM carried by colorless laser diode under injection-locking,” Opt. Express 23(22), 29065–29078 (2015).
[Crossref] [PubMed]

S. Y. Lin, Y. C. Su, Y. C. Li, H. L. Wang, G. C. Lin, S. M. Chen, and G.-R. Lin, “10-Gbit/s direct modulation of a TO-56-can packed 600-μm long laser diode with 2% front-facet reflectance,” Opt. Express 21(21), 25197–25209 (2013).
[Crossref] [PubMed]

Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20(18), 20071–20077 (2012).
[Crossref] [PubMed]

G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON application,” J. Lightwave Technol. 28(20), 2925–2932 (2010).
[Crossref]

G.-R. Lin, T.-K. Cheng, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “A weak-resonant-cavity Fabry–Perot laser diode with injection-locking mode number-dependent transmission and noise performances,” J. Lightwave Technol. 28(9), 1349–1355 (2010).
[Crossref]

G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Cheng, “Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Technol. 27(14), 2779–2785 (2009).
[Crossref]

G.-R. Lin, T.-K. Cheng, Y.-C. Chi, G.-C. Lin, H.-L. Wang, and Y.-H. Lin, “200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE,” Opt. Express 17(20), 17739–17746 (2009).
[Crossref] [PubMed]

Lin, J.

Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photonics Technol. Lett. 24(14), 1173–1175 (2012).
[Crossref]

Lin, S. Y.

Lin, Y.-H.

Liu, C.

S. H. Fan, C. Liu, and G. K. Chang, “Heterodyne optical carrier suppression for millimeter-wave-over-fiber systems,” J. Lightwave Technol. 31(19), 1957–1967 (2013).
[Crossref]

Llorente, R.

Love, D. J.

D. J. Love and R. W. Heath., “OFDM power loading using limited feedback,” IEEE Trans. Vehicular Technol. 54(5), 1773–1780 (2005).
[Crossref]

Lozano, A.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

Lu, H.-H.

Lu, P.

G. Hua, C. Yang, P. Lu, H. X. Zhou, and W. Hong, “Microstrip folded dipole antenna for 35 GHz MMW communication,” Int. J. Antennas Propag. 2013, 603654 (2013).
[Crossref]

Lyandres, V.

L. Goldfeld, V. Lyandres, and D. Wulich, “Minimum BER power loading for OFDM in fading channel,” IEEE Trans. Commun. 50(11), 1729–1733 (2002).
[Crossref]

Ma, Y.

Y. Ma, N. Yi, and R. Tafazolli, “Bit and power loading for OFDM-based three-node relaying communications,” IEEE Trans. Signal Process. 56(7), 3236–3247 (2008).
[Crossref]

MacCartney, G. R.

G. R. MacCartney, J. Zhang, S. Nie, and T. S. Rappaport, “Path loss models for 5G millimeter wave propagation channels in urban microcells,” in Proceedings of IEEE Global Communications Conference (IEEE, 2013), pp. 3948–3953.
[Crossref]

Mayzus,

T. Rappaport, R. Shu Sun, Mayzus, Y. Hang Zhao, K. Azar, G. N. Wang, J. K. Wong, M. Schulz, Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

Modi, H.

A. Gohil, H. Modi, and S. K. Patel, “5G technology of mobile communication: a survey,” in Proceedings of IEEE International Conference on Intelligent Systems and Signal Processing (IEEE, 2013), pp. 288–292.
[Crossref]

Mohapatra, S. K.

S. K. Mohapatra, B. R. Swain, N. Pati, and A. Pradhan, “Road towards millimeter wave communication for 5G network: a technological overview,” Trans. Mach. Learning Artif. Intell. 2(3), 48–60 (2014).
[Crossref]

Monroy, I. T.

Mousa, A. M.

A. M. Mousa, “Prospective of fifth generation mobile communications,” Int. J. Next-Generation Netw. 4(3), 11–30 (2012).
[Crossref]

Mukai, T.

T. Mukai and T. Saitoh, “Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-μm traveling-wave semiconductor laser amplifier,” IEEE J. Quantum Electron. 26(5), 865–875 (1990).
[Crossref]

Mumtaz, S.

S. Mumtaz, K. M. Saidul Huq, and J. Rodriguez, “Direct mobile-to-mobile communication: paradigm for 5G,” IEEE Wirel. Commun. 21(5), 14–23 (2014).
[Crossref]

Murch, R. D.

C. Wong, R. S. Cheng, K. B. Lataief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Sel. Areas Comm. 17(10), 1747–1758 (1999).
[Crossref]

Nakajima, H.

H. Nakajima and R. Frey, “Collinear nearly degenerate four-wave mixing in intracavity amplifying media,” IEEE J. Quantum Electron. 22(8), 1349–1354 (1986).
[Crossref]

Nie, S.

G. R. MacCartney, J. Zhang, S. Nie, and T. S. Rappaport, “Path loss models for 5G millimeter wave propagation channels in urban microcells,” in Proceedings of IEEE Global Communications Conference (IEEE, 2013), pp. 3948–3953.
[Crossref]

Niu, Y.

Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave (mm wave) communications for 5G: opportunities and challenges,” Wirel. Netw. 21(8), 2657–2676 (2015).
[Crossref]

Novak, D.

G. H. Smith and D. Novak, “Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photonics Technol. Lett. 10(1), 141–143 (1998).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

Pang, X.

Park, C.

C. Park and T. S. Rappaport, “Short-range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave WPAN, and ZigBee,” IEEE Wirel. Commun. 14(4), 70–78 (2007).
[Crossref]

Patel, S. K.

A. Gohil, H. Modi, and S. K. Patel, “5G technology of mobile communication: a survey,” in Proceedings of IEEE International Conference on Intelligent Systems and Signal Processing (IEEE, 2013), pp. 288–292.
[Crossref]

Pati, N.

S. K. Mohapatra, B. R. Swain, N. Pati, and A. Pradhan, “Road towards millimeter wave communication for 5G network: a technological overview,” Trans. Mach. Learning Artif. Intell. 2(3), 48–60 (2014).
[Crossref]

Pellicer, E.

Peng, P.-C.

Pleros, N.

Pradhan, A.

S. K. Mohapatra, B. R. Swain, N. Pati, and A. Pradhan, “Road towards millimeter wave communication for 5G network: a technological overview,” Trans. Mach. Learning Artif. Intell. 2(3), 48–60 (2014).
[Crossref]

Psaltis, D.

Rappaport, T.

T. Rappaport, R. Shu Sun, Mayzus, Y. Hang Zhao, K. Azar, G. N. Wang, J. K. Wong, M. Schulz, Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

Rappaport, T. S.

C. Park and T. S. Rappaport, “Short-range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave WPAN, and ZigBee,” IEEE Wirel. Commun. 14(4), 70–78 (2007).
[Crossref]

G. R. MacCartney, J. Zhang, S. Nie, and T. S. Rappaport, “Path loss models for 5G millimeter wave propagation channels in urban microcells,” in Proceedings of IEEE Global Communications Conference (IEEE, 2013), pp. 3948–3953.
[Crossref]

Rodriguez, J.

S. Mumtaz, K. M. Saidul Huq, and J. Rodriguez, “Direct mobile-to-mobile communication: paradigm for 5G,” IEEE Wirel. Commun. 21(5), 14–23 (2014).
[Crossref]

Saidul Huq, K. M.

S. Mumtaz, K. M. Saidul Huq, and J. Rodriguez, “Direct mobile-to-mobile communication: paradigm for 5G,” IEEE Wirel. Commun. 21(5), 14–23 (2014).
[Crossref]

Saitoh, T.

T. Mukai and T. Saitoh, “Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-μm traveling-wave semiconductor laser amplifier,” IEEE J. Quantum Electron. 26(5), 865–875 (1990).
[Crossref]

Samimi,

T. Rappaport, R. Shu Sun, Mayzus, Y. Hang Zhao, K. Azar, G. N. Wang, J. K. Wong, M. Schulz, Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

Sánchez, J.

Schulz, M.

T. Rappaport, R. Shu Sun, Mayzus, Y. Hang Zhao, K. Azar, G. N. Wang, J. K. Wong, M. Schulz, Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

Shih, F. Y.

Y. F. Wu, C. H. Yeh, C. W. Chow, F. Y. Shih, and S. Chi, “Employing external injection-locked fabry–perot laser scheme for mm-wave generation,” Laser Phys. 21(4), 718–721 (2011).
[Crossref]

Shu Sun, R.

T. Rappaport, R. Shu Sun, Mayzus, Y. Hang Zhao, K. Azar, G. N. Wang, J. K. Wong, M. Schulz, Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

Smith, G. H.

G. H. Smith and D. Novak, “Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photonics Technol. Lett. 10(1), 141–143 (1998).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

Soong, A. C. K.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

Su, L.

Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave (mm wave) communications for 5G: opportunities and challenges,” Wirel. Netw. 21(8), 2657–2676 (2015).
[Crossref]

Su, Y. C.

Sun, W. H.

Sun, X.

Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photonics Technol. Lett. 24(14), 1173–1175 (2012).
[Crossref]

Swain, B. R.

S. K. Mohapatra, B. R. Swain, N. Pati, and A. Pradhan, “Road towards millimeter wave communication for 5G network: a technological overview,” Trans. Mach. Learning Artif. Intell. 2(3), 48–60 (2014).
[Crossref]

Tafazolli, R.

Y. Ma, N. Yi, and R. Tafazolli, “Bit and power loading for OFDM-based three-node relaying communications,” IEEE Trans. Signal Process. 56(7), 3236–3247 (2008).
[Crossref]

Tsagkaris, K.

Tsai, C. T.

H. Y. Chen, Y. C. Chi, C. T. Tsai, and G.-R. Lin, “Four-wave-mixing suppression of master-to-slave injection-locked two-wavelength FPLD pair for MMW-PON,” J. Lightwave Technol. 34(19), 2549061 (2016).

C. T. Tsai, M. C. Cheng, Y. C. Chi, and G.-R. Lin, “A novel colorless FPLD packaged with TO-can for 30-Gbit/s preamplified 64-QAM-OFDM transmission,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1500313 (2015).

Tsai, C.-T.

C.-Y. Lin, Y.-C. Chi, C.-T. Tsai, H.-Y. Wang, and G.-R. Lin, “39-GHz millimeter-wave carrier generation in dual-wavelength colorless laser diode for OFDM-MMWoF transmission,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1801810 (2015).

C.-T. Tsai, Y. C. Chi, and G.-R. Lin, “Power fading mitigation of 40-Gbit/s 256-QAM OFDM carried by colorless laser diode under injection-locking,” Opt. Express 23(22), 29065–29078 (2015).
[Crossref] [PubMed]

Tsang, M.

Tselikas, N. D.

Vasilakos, A. V.

Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave (mm wave) communications for 5G: opportunities and challenges,” Wirel. Netw. 21(8), 2657–2676 (2015).
[Crossref]

Vegas Olmos, J. J.

Vyrsokinos, K.

Wang, G. N.

T. Rappaport, R. Shu Sun, Mayzus, Y. Hang Zhao, K. Azar, G. N. Wang, J. K. Wong, M. Schulz, Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

Wang, H. L.

Wang, H.-L.

Wang, H.-Y.

C.-Y. Lin, Y.-C. Chi, C.-T. Tsai, H.-Y. Wang, and G.-R. Lin, “39-GHz millimeter-wave carrier generation in dual-wavelength colorless laser diode for OFDM-MMWoF transmission,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1801810 (2015).

Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20(18), 20071–20077 (2012).
[Crossref] [PubMed]

Wang, T.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Wang, W. T.

Wong, C.

C. Wong, R. S. Cheng, K. B. Lataief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Sel. Areas Comm. 17(10), 1747–1758 (1999).
[Crossref]

Wong, J. K.

T. Rappaport, R. Shu Sun, Mayzus, Y. Hang Zhao, K. Azar, G. N. Wang, J. K. Wong, M. Schulz, Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

Wu, Y. F.

Y. F. Wu, C. H. Yeh, C. W. Chow, F. Y. Shih, and S. Chi, “Employing external injection-locked fabry–perot laser scheme for mm-wave generation,” Laser Phys. 21(4), 718–721 (2011).
[Crossref]

Wulich, D.

L. Goldfeld, V. Lyandres, and D. Wulich, “Minimum BER power loading for OFDM in fading channel,” IEEE Trans. Commun. 50(11), 1729–1733 (2002).
[Crossref]

Xu, A.

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
[Crossref]

Xu, K.

Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photonics Technol. Lett. 24(14), 1173–1175 (2012).
[Crossref]

Xu, L.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Xue, X.

X. Xue, W. Ji, Z. Kang, K. Huang, and X. Li, “High-efficiency optical coupling single-sideband modulation for OFDM–RoF–PON systems,” Opt. Commun. 356, 500–509 (2015).
[Crossref]

Yang, C.

G. Hua, C. Yang, P. Lu, H. X. Zhou, and W. Hong, “Microstrip folded dipole antenna for 35 GHz MMW communication,” Int. J. Antennas Propag. 2013, 603654 (2013).
[Crossref]

Yao, J.

Yeh, C. H.

Y. F. Wu, C. H. Yeh, C. W. Chow, F. Y. Shih, and S. Chi, “Employing external injection-locked fabry–perot laser scheme for mm-wave generation,” Laser Phys. 21(4), 718–721 (2011).
[Crossref]

Yi, N.

Y. Ma, N. Yi, and R. Tafazolli, “Bit and power loading for OFDM-based three-node relaying communications,” IEEE Trans. Signal Process. 56(7), 3236–3247 (2008).
[Crossref]

Yiannopoulos, K.

D. K. Borah, A. C. Boucouvalas, C. C. Davis, S. Hranilovic, and K. Yiannopoulos, “A review of communication-oriented optical wireless systems,” EURASIP J. Wirel. Commun. Netw. 2012(1), 1–28 (2012).
[Crossref]

Yu, J.

J. Zhang, J. Yu, N. Chi, F. Li, and X. Li, “Experimental demonstration of 24-Gb/s CAP-64QAM radio-over-fiber system over 40-GHz mm-wave fiber-wireless transmission,” Opt. Express 21(22), 26888–26895 (2013).
[Crossref] [PubMed]

Y. T. Hsueh, Z. Jia, H. C. Chien, A. Chowdhury, J. Yu, and G. K. Chang, “Multiband 60-GHz wireless over fiber access system with high dispersion tolerance using frequency tripling technique,” J. Lightwave Technol. 29(8), 1105–1111 (2011).
[Crossref]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Zhang, C.

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
[Crossref]

Zhang, J.

J. Zhang, J. Yu, N. Chi, F. Li, and X. Li, “Experimental demonstration of 24-Gb/s CAP-64QAM radio-over-fiber system over 40-GHz mm-wave fiber-wireless transmission,” Opt. Express 21(22), 26888–26895 (2013).
[Crossref] [PubMed]

G. R. MacCartney, J. Zhang, S. Nie, and T. S. Rappaport, “Path loss models for 5G millimeter wave propagation channels in urban microcells,” in Proceedings of IEEE Global Communications Conference (IEEE, 2013), pp. 3948–3953.
[Crossref]

Zhang, J. C.

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

Zhou, H. X.

G. Hua, C. Yang, P. Lu, H. X. Zhou, and W. Hong, “Microstrip folded dipole antenna for 35 GHz MMW communication,” Int. J. Antennas Propag. 2013, 603654 (2013).
[Crossref]

Zhu, L.

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
[Crossref]

Zhu, N. H.

American J. Eng. Res. (1)

S. Hossain, “5G wireless communication systems,” American J. Eng. Res. 2(10), 344–353 (2013).

EURASIP J. Wirel. Commun. Netw. (1)

D. K. Borah, A. C. Boucouvalas, C. C. Davis, S. Hranilovic, and K. Yiannopoulos, “A review of communication-oriented optical wireless systems,” EURASIP J. Wirel. Commun. Netw. 2012(1), 1–28 (2012).
[Crossref]

IEEE Access (1)

T. Rappaport, R. Shu Sun, Mayzus, Y. Hang Zhao, K. Azar, G. N. Wang, J. K. Wong, M. Schulz, Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

IEEE J. Quantum Electron. (2)

H. Nakajima and R. Frey, “Collinear nearly degenerate four-wave mixing in intracavity amplifying media,” IEEE J. Quantum Electron. 22(8), 1349–1354 (1986).
[Crossref]

T. Mukai and T. Saitoh, “Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-μm traveling-wave semiconductor laser amplifier,” IEEE J. Quantum Electron. 26(5), 865–875 (1990).
[Crossref]

IEEE J. Sel. Areas Comm. (2)

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

C. Wong, R. S. Cheng, K. B. Lataief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Sel. Areas Comm. 17(10), 1747–1758 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C.-Y. Lin, Y.-C. Chi, C.-T. Tsai, H.-Y. Wang, and G.-R. Lin, “39-GHz millimeter-wave carrier generation in dual-wavelength colorless laser diode for OFDM-MMWoF transmission,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1801810 (2015).

C. T. Tsai, M. C. Cheng, Y. C. Chi, and G.-R. Lin, “A novel colorless FPLD packaged with TO-can for 30-Gbit/s preamplified 64-QAM-OFDM transmission,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1500313 (2015).

IEEE Photonics Technol. Lett. (5)

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single-sideband modulation based on an injection-locked DFB laser in radio-over-fiber systems,” IEEE Photonics Technol. Lett. 22(7), 462–464 (2010).
[Crossref]

G. H. Smith and D. Novak, “Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photonics Technol. Lett. 10(1), 141–143 (1998).
[Crossref]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photonics Technol. Lett. 24(14), 1173–1175 (2012).
[Crossref]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photonics Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

IEEE Trans. Commun. (1)

L. Goldfeld, V. Lyandres, and D. Wulich, “Minimum BER power loading for OFDM in fading channel,” IEEE Trans. Commun. 50(11), 1729–1733 (2002).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

IEEE Trans. Signal Process. (1)

Y. Ma, N. Yi, and R. Tafazolli, “Bit and power loading for OFDM-based three-node relaying communications,” IEEE Trans. Signal Process. 56(7), 3236–3247 (2008).
[Crossref]

IEEE Trans. Vehicular Technol. (1)

D. J. Love and R. W. Heath., “OFDM power loading using limited feedback,” IEEE Trans. Vehicular Technol. 54(5), 1773–1780 (2005).
[Crossref]

IEEE Wirel. Commun. (2)

C. Park and T. S. Rappaport, “Short-range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave WPAN, and ZigBee,” IEEE Wirel. Commun. 14(4), 70–78 (2007).
[Crossref]

S. Mumtaz, K. M. Saidul Huq, and J. Rodriguez, “Direct mobile-to-mobile communication: paradigm for 5G,” IEEE Wirel. Commun. 21(5), 14–23 (2014).
[Crossref]

Int. J. Antennas Propag. (1)

G. Hua, C. Yang, P. Lu, H. X. Zhou, and W. Hong, “Microstrip folded dipole antenna for 35 GHz MMW communication,” Int. J. Antennas Propag. 2013, 603654 (2013).
[Crossref]

Int. J. Next-Generation Netw. (1)

A. M. Mousa, “Prospective of fifth generation mobile communications,” Int. J. Next-Generation Netw. 4(3), 11–30 (2012).
[Crossref]

J. Acad. Contemporary Res. (1)

M. Farooq, M. I. Ahmed, and U. M. Al, “Future generations of mobile communication networks,” J. Acad. Contemporary Res. 2(1), 15–21 (2013).

J. Lightwave Technol. (9)

N. Pleros, K. Vyrsokinos, K. Tsagkaris, and N. D. Tselikas, “A 60 GHz radio-over-fiber network architecture for seamless communication with high mobility,” J. Lightwave Technol. 27(12), 1957–1967 (2009).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(13), 314–335 (2009).
[Crossref]

G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Cheng, “Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Technol. 27(14), 2779–2785 (2009).
[Crossref]

S. H. Fan, C. Liu, and G. K. Chang, “Heterodyne optical carrier suppression for millimeter-wave-over-fiber systems,” J. Lightwave Technol. 31(19), 1957–1967 (2013).
[Crossref]

H. Chi and J. Yao, “Frequency quadrupling and upconversion in a radio over fiber link,” J. Lightwave Technol. 26(15), 2706–2711 (2008).
[Crossref]

G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON application,” J. Lightwave Technol. 28(20), 2925–2932 (2010).
[Crossref]

G.-R. Lin, T.-K. Cheng, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “A weak-resonant-cavity Fabry–Perot laser diode with injection-locking mode number-dependent transmission and noise performances,” J. Lightwave Technol. 28(9), 1349–1355 (2010).
[Crossref]

Y. T. Hsueh, Z. Jia, H. C. Chien, A. Chowdhury, J. Yu, and G. K. Chang, “Multiband 60-GHz wireless over fiber access system with high dispersion tolerance using frequency tripling technique,” J. Lightwave Technol. 29(8), 1105–1111 (2011).
[Crossref]

H. Y. Chen, Y. C. Chi, C. T. Tsai, and G.-R. Lin, “Four-wave-mixing suppression of master-to-slave injection-locked two-wavelength FPLD pair for MMW-PON,” J. Lightwave Technol. 34(19), 2549061 (2016).

J. Opt. Commun. Netw. (1)

Laser Phys. (1)

Y. F. Wu, C. H. Yeh, C. W. Chow, F. Y. Shih, and S. Chi, “Employing external injection-locked fabry–perot laser scheme for mm-wave generation,” Laser Phys. 21(4), 718–721 (2011).
[Crossref]

Opt. Commun. (1)

X. Xue, W. Ji, Z. Kang, K. Huang, and X. Li, “High-efficiency optical coupling single-sideband modulation for OFDM–RoF–PON systems,” Opt. Commun. 356, 500–509 (2015).
[Crossref]

Opt. Express (7)

G.-R. Lin, T.-K. Cheng, Y.-C. Chi, G.-C. Lin, H.-L. Wang, and Y.-H. Lin, “200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE,” Opt. Express 17(20), 17739–17746 (2009).
[Crossref] [PubMed]

H. Y. Chen, Y. C. Chi, and G.-R. Lin, “Remote heterodyne millimeter-wave over fiber based OFDM-PON with master-to-slave injected dual-mode colorless FPLD pair,” Opt. Express 23(17), 22691–22705 (2015).
[Crossref] [PubMed]

Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20(18), 20071–20077 (2012).
[Crossref] [PubMed]

S. Y. Lin, Y. C. Su, Y. C. Li, H. L. Wang, G. C. Lin, S. M. Chen, and G.-R. Lin, “10-Gbit/s direct modulation of a TO-56-can packed 600-μm long laser diode with 2% front-facet reflectance,” Opt. Express 21(21), 25197–25209 (2013).
[Crossref] [PubMed]

M. Tsang and D. Psaltis, “Spectral phase conjugation with cross-phase modulation compensation,” Opt. Express 12(10), 2207–2219 (2004).
[Crossref] [PubMed]

C.-T. Tsai, Y. C. Chi, and G.-R. Lin, “Power fading mitigation of 40-Gbit/s 256-QAM OFDM carried by colorless laser diode under injection-locking,” Opt. Express 23(22), 29065–29078 (2015).
[Crossref] [PubMed]

J. Zhang, J. Yu, N. Chi, F. Li, and X. Li, “Experimental demonstration of 24-Gb/s CAP-64QAM radio-over-fiber system over 40-GHz mm-wave fiber-wireless transmission,” Opt. Express 21(22), 26888–26895 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Trans. Mach. Learning Artif. Intell. (1)

S. K. Mohapatra, B. R. Swain, N. Pati, and A. Pradhan, “Road towards millimeter wave communication for 5G network: a technological overview,” Trans. Mach. Learning Artif. Intell. 2(3), 48–60 (2014).
[Crossref]

Wirel. Netw. (1)

Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave (mm wave) communications for 5G: opportunities and challenges,” Wirel. Netw. 21(8), 2657–2676 (2015).
[Crossref]

Other (2)

G. R. MacCartney, J. Zhang, S. Nie, and T. S. Rappaport, “Path loss models for 5G millimeter wave propagation channels in urban microcells,” in Proceedings of IEEE Global Communications Conference (IEEE, 2013), pp. 3948–3953.
[Crossref]

A. Gohil, H. Modi, and S. K. Patel, “5G technology of mobile communication: a survey,” in Proceedings of IEEE International Conference on Intelligent Systems and Signal Processing (IEEE, 2013), pp. 288–292.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of the next-generation converged network for fusing 5G with the current optical access network architectures.
Fig. 2
Fig. 2 Schematic diagram of parallel polarized dual-wavelength CS-DSB carrier injection-locked colorless LD for both wireline and wireless transmissions.
Fig. 3
Fig. 3 Schematic architecture of an orthogonally polarized dual-wavelength CS-DSB carrier injection-locked colorless LD for both wireline and wireless transmissions.
Fig. 4
Fig. 4 Polarization diagram for a colorless LD injection-locked by an orthogonally polarized dual-wavelength master. (a) CS-DSB master. (b) Orthogonally polarized dual-wavelength master. (c) Injection-locked slave colorless LD. (d) Combining master and slave.
Fig. 5
Fig. 5 (a) Power of the resonant FWM modes in the injection-locked colorless LD versus master wavelength spacings. (b) Spectra of the slave colorless LD without injection (black) and those with deviated (red) and matched (blue) injections. (c) BtB transmitted BER of carried 24-Gbit/s 64-QAM OFDM data and the peak power of the remotely beat MMW carrier.
Fig. 6
Fig. 6 (a) Schematic of the polarization evolutions before and after combining the injected slave and reference master. (b) RIN spectra of the relative polarization orientation between λ1 components.
Fig. 7
Fig. 7 (a) Transmission performance of the 24-Gbit/s 64-QAM OFDM data modulated on the orthogonally polarized dual-wavelength optical carrier with different relative polarizations between the injected slave and reference master. (b) Noise spectrum produced by the self-beating effect.
Fig. 8
Fig. 8 Slave optical spectra in (a) parallel and (b) orthogonal CS-DSB master injections.
Fig. 9
Fig. 9 (a) The SNR spectra and (b) the constellation plots with the EVM and BER of 24-Gbit/s 64-QAM OFDM data after BtB and passing 25-km SMF transmission. (c) Trend of the BER with different receiving powers at BtB and 25-km SMF transmissions.
Fig. 10
Fig. 10 (a) The MMW carrier and (b) down-converted 16-QAM-OFDM data from the different transmission systems including the parallel CS-DSB and orthogonal CS-DSBs.
Fig. 11
Fig. 11 (a) The BER of the passband 4-Gbit/s 16-QAM OFDM down-converted from the 35-GHz MMW carrier by a balanced mixer at the different wireless distances. (b) SNR spectra and constellation plots with the EVM and BER for 4-Gbit/s 16-QAM OFDM data modulation after 25-km SMF and 1.6-m free-space transmissions at 35 GHz.

Tables (2)

Tables Icon

Table 1 Parametric comparison on the wireline and wireless transmission performances from different SSB modulation methods.

Tables Icon

Table 2 The wireless transmission performance comparison between our previous published and current works after 25-km SMF transmission.

Metrics