Abstract

High-power giant pulses can be used applied in various applications with Q-switched micro-lasers. This method can shorten the pulse duration; however, active control is currently impossible in micro-lasers. To achieve precise pulse control while maintaining compactness and simplicity, we exploit the magneto-optical effect in magnetic garnet films with micromagnetic domains that can be actively controlled by a pulsed magnetic field. Our Q-switching technique enhances the output power by a factor of 4 × 103. Moreover, the device itself is smaller than other Q-switching devices. This novel type of active Q-switch can be combined with a micro-laser to obtain megawatt-order pulses.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact, magneto-optic Q-switched, neodymium-doped bismuth germinate crystal (Nd:BGO) laser pumped by a laser diode

F. Z. Zhou, W. T. Hu, Y. M. Chen, Z. S. Li, L. Q. Shen, X. Q. Fen, G. Q. Hu, and Z. W. Yin
Appl. Opt. 34(21) 4266-4268 (1995)

Pulse compression in an electro-optic Q-switched diode-pumped YVO4/Nd:YVO4 laser with a Cr4+:YAG saturable absorber

Tao Li, Shengzhi Zhao, Zhuang Zhuo, Kejian Yang, Guiqiu Li, and Dechun Li
Appl. Opt. 48(12) 2243-2248 (2009)

All-optical, actively Q-switched fiber laser

Robert J. Williams, Nemanja Jovanovic, Graham D. Marshall, and Michael J. Withford
Opt. Express 18(8) 7714-7723 (2010)

References

  • View by:
  • |
  • |
  • |

  1. K. Shimoda, T. Yajima, Y. Ueda, T. Shimizu, and T. Kasuya, Quantum Electronics (Shokabo, Tokyo, 1972).
  2. F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33(3), 828–829 (1962).
    [Crossref]
  3. R. L. Byer, “Diode laser--pumped solid-state lasers,” Science 239(4841), 742–747 (1988).
    [Crossref] [PubMed]
  4. T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
    [Crossref]
  5. R. J. Keyes and T. M. Quist, “Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers,” Appl. Phys. Lett. 4(3), 50–52 (1964).
    [Crossref]
  6. T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
    [Crossref]
  7. G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4 laser using a quadrupole electro-optic deflector,” Appl. Phys. B 67(2), 267–270 (1998).
    [Crossref]
  8. R. Bhandari, N. Tsuji, T. Suzuki, M. Nishifuji, and T. Taira, “Efficient second to ninth harmonic generation using megawatt peak power microchip laser,” Opt. Express 21(23), 28849–28855 (2013).
    [Crossref] [PubMed]
  9. T. Ito, T. Taira, and T. Kobayashi, “Q-switching and mode selection of coupled-cavity Er,Yb:glass lasers,” Jpn. J. Appl. Phys. 36(2), L206–L208 (1997).
    [Crossref]
  10. A. Ray, S. K. Das, S. Mukhopadhyay, and P. K. Datta, “Acousto-optic-modulator-stabilized low-threshold mode-locked Nd:YVO4 laser,” Appl. Phys. Lett. 89(22), 221119 (2006).
    [Crossref]
  11. C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  12. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, “Supercontinuum self-Q-switched ytterbium fiber laser,” Opt. Lett. 22(5), 298–300 (1997).
    [Crossref] [PubMed]
  13. K. Yuko, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron. 36(5), 607–614 (2000).
    [Crossref]
  14. T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30(3), 800–804 (1994).
    [Crossref]
  15. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO(4) microchip lasers,” Opt. Lett. 16(24), 1955–1957 (1991).
    [Crossref] [PubMed]
  16. J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14(1), 24–26 (1989).
    [Crossref] [PubMed]
  17. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [Crossref] [PubMed]
  18. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [Crossref]
  19. S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
    [Crossref] [PubMed]
  20. D. A. Gonzales and R. P. Baker, “Micropropulsion using a Nd:YAG microchip laser,” Proc. SPIE 4760, 752–765 (2002).
    [Crossref]
  21. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
    [Crossref]
  22. B. Yao, Y. Tian, G. Li, and Y. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched dual-wavelength Tm:YAP lasers,” Opt. Express 18(13), 13574–13579 (2010).
    [Crossref] [PubMed]
  23. S. P. Velsko, C. A. Ebbers, B. Comaskey, G. F. Albrecht, and S. C. Mitchell, “100 W average power at 0.53 μm by external frequency conversion of an electro‐optically Q-switched diode-pumped power oscillator,” Appl. Phys. Lett. 64(23), 3086–3088 (1994).
    [Crossref]
  24. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
    [Crossref] [PubMed]
  25. M. Inoue, M. Levy, and A. V. Baryshev, Magnetophotonics from Theory to Applications (Springer Berlin Heidelberg, New York, 2014).
  26. K. Nakamura, H. Takagi, T. Goto, P. B. Lim, H. Horimai, H. Yoshikawa, V. M. Bove, and M. Inoue, “Improvement of diffraction efficiency of three-dimensional magneto-optic spatial light modulator with magnetophotonic crystal,” Appl. Phys. Lett. 108(2), 022404 (2016).
    [Crossref]
  27. R. Isogai, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Thermomagnetic writing into magnetophotonic microcavities controlling thermal diffusion for volumetric magnetic holography,” Opt. Express 24(1), 522–527 (2016).
    [Crossref] [PubMed]
  28. H. Takagi, A. Tsuzuki, K. Iwasaki, Y. Suzuki, T. Imura, H. Umezawa, H. Uchida, K. H. Shin, and M. Inoue, “Multiferroic magneto optic spatial light modulator with sputtered PZT film,” J. Magn. Soc. Jpn. 30(6-2), 581–583 (2006).
    [Crossref]
  29. F. Z. Zhou, W. T. Hu, Y. M. Chen, Z. S. Li, L. Q. Shen, X. Q. Fen, G. Q. Hu, and Z. W. Yin, “Compact, magneto-optic Q-switched, neodymium-doped bismuth germinate crystal (Nd:BGO) laser pumped by a laser diode,” Appl. Opt. 34(21), 4266–4268 (1995).
    [Crossref] [PubMed]
  30. C. Li, J. Song, D. Shen, N. S. Kim, J. Lu, and K. Ueda, “Diode-pumped passively Q-switched Nd:GdVO4 lasers operating at 1.06 μm wavelength,” Appl. Phys. B 70(4), 471–474 (2000).
    [Crossref]
  31. J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “Diode-laser-array end-pumped 14.3-W CW Nd:GdVO4 solid-state laser at 1.06 μm,” Appl. Phys. B 69(3), 241–243 (1999).
    [Crossref]
  32. V. Lupei, N. Pavel, and T. Taira, “1064 nm laser emission of highly doped Nd: yttrium aluminum garnet under 885 nm diode laser pumping,” Appl. Phys. Lett. 80(23), 4309–4311 (2002).
    [Crossref]
  33. S. Wittekoek and T. J. A. Popma, “Magneto-optic Kerr rotation of bismuth-substituted iron garnets in the 2-5.2-eV spectral range,” J. Appl. Phys. 44(12), 5560–5566 (1973).
    [Crossref]
  34. Y. Honda, T. Ishikawa, and T. Hibiya, “Temperature dependence of Faraday rotation for Bi-substituted terbium iron garnet films,” J. Magn. Soc. Jpn. 11(2), 157–160 (1987).
    [Crossref]
  35. S. Nishida, T. Okukda, H. Ohsato, Y. Kato, and T. Suzuki, “Synthesis of Al- or Ga-substituted Bi3Fe5O12 garnet films,” J. Magn. Soc. Jpn. 18(2), 157–160 (1994).
    [Crossref]
  36. K. Sato, Hikari-to-jiki (Asakura-shoten, 2007).
  37. J. W. Pritchard, M. Mina, and R. J. Weber, “Magnetic field generator design for magneto-optic switching applications,” IEEE Trans. Magn. 49(7), 4242–4244 (2013).
    [Crossref]
  38. J. W. Pritchard, M. Mina, and R. J. Weber, “Improved switching for magneto-optic fiber-based technologies,” IEEE Trans. Magn. 48(11), 3772–3775 (2012).
    [Crossref]
  39. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  40. A. E. Siegman, Lasers (University Science Books, 1986).
  41. X. Yu, C. Wang, F. Chen, R. P. Yan, Y. F. Ma, X. D. Li, and J. B. Peng, “Comparison of electro-optical and acousto-optical Q-switched, high repetition rate Nd:GdVO4 laser,” Laser Phys. 21(3), 442–445 (2011).
    [Crossref]
  42. W. Koechner, Solid-State Laser Engineering (Springer, 2006).
  43. B. Hillebrands and A. Thiaville, Spin Dynamics in Confined Magnetic Structures III (Springer-Verlag Berlin Heidelberg, 2006).
  44. A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
    [Crossref] [PubMed]

2016 (2)

K. Nakamura, H. Takagi, T. Goto, P. B. Lim, H. Horimai, H. Yoshikawa, V. M. Bove, and M. Inoue, “Improvement of diffraction efficiency of three-dimensional magneto-optic spatial light modulator with magnetophotonic crystal,” Appl. Phys. Lett. 108(2), 022404 (2016).
[Crossref]

R. Isogai, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Thermomagnetic writing into magnetophotonic microcavities controlling thermal diffusion for volumetric magnetic holography,” Opt. Express 24(1), 522–527 (2016).
[Crossref] [PubMed]

2014 (1)

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref] [PubMed]

2013 (3)

J. W. Pritchard, M. Mina, and R. J. Weber, “Magnetic field generator design for magneto-optic switching applications,” IEEE Trans. Magn. 49(7), 4242–4244 (2013).
[Crossref]

R. Bhandari, N. Tsuji, T. Suzuki, M. Nishifuji, and T. Taira, “Efficient second to ninth harmonic generation using megawatt peak power microchip laser,” Opt. Express 21(23), 28849–28855 (2013).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

2012 (1)

J. W. Pritchard, M. Mina, and R. J. Weber, “Improved switching for magneto-optic fiber-based technologies,” IEEE Trans. Magn. 48(11), 3772–3775 (2012).
[Crossref]

2011 (2)

X. Yu, C. Wang, F. Chen, R. P. Yan, Y. F. Ma, X. D. Li, and J. B. Peng, “Comparison of electro-optical and acousto-optical Q-switched, high repetition rate Nd:GdVO4 laser,” Laser Phys. 21(3), 442–445 (2011).
[Crossref]

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

2010 (2)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

B. Yao, Y. Tian, G. Li, and Y. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched dual-wavelength Tm:YAP lasers,” Opt. Express 18(13), 13574–13579 (2010).
[Crossref] [PubMed]

2008 (1)

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

2007 (1)

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

2006 (2)

A. Ray, S. K. Das, S. Mukhopadhyay, and P. K. Datta, “Acousto-optic-modulator-stabilized low-threshold mode-locked Nd:YVO4 laser,” Appl. Phys. Lett. 89(22), 221119 (2006).
[Crossref]

H. Takagi, A. Tsuzuki, K. Iwasaki, Y. Suzuki, T. Imura, H. Umezawa, H. Uchida, K. H. Shin, and M. Inoue, “Multiferroic magneto optic spatial light modulator with sputtered PZT film,” J. Magn. Soc. Jpn. 30(6-2), 581–583 (2006).
[Crossref]

2005 (1)

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[Crossref] [PubMed]

2002 (2)

V. Lupei, N. Pavel, and T. Taira, “1064 nm laser emission of highly doped Nd: yttrium aluminum garnet under 885 nm diode laser pumping,” Appl. Phys. Lett. 80(23), 4309–4311 (2002).
[Crossref]

D. A. Gonzales and R. P. Baker, “Micropropulsion using a Nd:YAG microchip laser,” Proc. SPIE 4760, 752–765 (2002).
[Crossref]

2001 (1)

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

2000 (2)

C. Li, J. Song, D. Shen, N. S. Kim, J. Lu, and K. Ueda, “Diode-pumped passively Q-switched Nd:GdVO4 lasers operating at 1.06 μm wavelength,” Appl. Phys. B 70(4), 471–474 (2000).
[Crossref]

K. Yuko, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron. 36(5), 607–614 (2000).
[Crossref]

1999 (1)

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “Diode-laser-array end-pumped 14.3-W CW Nd:GdVO4 solid-state laser at 1.06 μm,” Appl. Phys. B 69(3), 241–243 (1999).
[Crossref]

1998 (1)

G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4 laser using a quadrupole electro-optic deflector,” Appl. Phys. B 67(2), 267–270 (1998).
[Crossref]

1997 (2)

T. Ito, T. Taira, and T. Kobayashi, “Q-switching and mode selection of coupled-cavity Er,Yb:glass lasers,” Jpn. J. Appl. Phys. 36(2), L206–L208 (1997).
[Crossref]

S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, “Supercontinuum self-Q-switched ytterbium fiber laser,” Opt. Lett. 22(5), 298–300 (1997).
[Crossref] [PubMed]

1995 (1)

1994 (3)

S. P. Velsko, C. A. Ebbers, B. Comaskey, G. F. Albrecht, and S. C. Mitchell, “100 W average power at 0.53 μm by external frequency conversion of an electro‐optically Q-switched diode-pumped power oscillator,” Appl. Phys. Lett. 64(23), 3086–3088 (1994).
[Crossref]

T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30(3), 800–804 (1994).
[Crossref]

S. Nishida, T. Okukda, H. Ohsato, Y. Kato, and T. Suzuki, “Synthesis of Al- or Ga-substituted Bi3Fe5O12 garnet films,” J. Magn. Soc. Jpn. 18(2), 157–160 (1994).
[Crossref]

1991 (1)

1989 (1)

1988 (2)

R. L. Byer, “Diode laser--pumped solid-state lasers,” Science 239(4841), 742–747 (1988).
[Crossref] [PubMed]

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[Crossref]

1987 (1)

Y. Honda, T. Ishikawa, and T. Hibiya, “Temperature dependence of Faraday rotation for Bi-substituted terbium iron garnet films,” J. Magn. Soc. Jpn. 11(2), 157–160 (1987).
[Crossref]

1973 (1)

S. Wittekoek and T. J. A. Popma, “Magneto-optic Kerr rotation of bismuth-substituted iron garnets in the 2-5.2-eV spectral range,” J. Appl. Phys. 44(12), 5560–5566 (1973).
[Crossref]

1964 (1)

R. J. Keyes and T. M. Quist, “Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers,” Appl. Phys. Lett. 4(3), 50–52 (1964).
[Crossref]

1962 (1)

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33(3), 828–829 (1962).
[Crossref]

Albrecht, G. F.

S. P. Velsko, C. A. Ebbers, B. Comaskey, G. F. Albrecht, and S. C. Mitchell, “100 W average power at 0.53 μm by external frequency conversion of an electro‐optically Q-switched diode-pumped power oscillator,” Appl. Phys. Lett. 64(23), 3086–3088 (1994).
[Crossref]

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Baker, R. P.

D. A. Gonzales and R. P. Baker, “Micropropulsion using a Nd:YAG microchip laser,” Proc. SPIE 4760, 752–765 (2002).
[Crossref]

Balbashov, A. M.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[Crossref] [PubMed]

Baryshev, A. V.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Bhandari, R.

Bove, V. M.

K. Nakamura, H. Takagi, T. Goto, P. B. Lim, H. Horimai, H. Yoshikawa, V. M. Bove, and M. Inoue, “Improvement of diffraction efficiency of three-dimensional magneto-optic spatial light modulator with magnetophotonic crystal,” Appl. Phys. Lett. 108(2), 022404 (2016).
[Crossref]

Byer, R. L.

R. L. Byer, “Diode laser--pumped solid-state lasers,” Science 239(4841), 742–747 (1988).
[Crossref] [PubMed]

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[Crossref]

Chen, F.

X. Yu, C. Wang, F. Chen, R. P. Yan, Y. F. Ma, X. D. Li, and J. B. Peng, “Comparison of electro-optical and acousto-optical Q-switched, high repetition rate Nd:GdVO4 laser,” Laser Phys. 21(3), 442–445 (2011).
[Crossref]

Chen, Y. M.

Chernikov, S. V.

Comaskey, B.

S. P. Velsko, C. A. Ebbers, B. Comaskey, G. F. Albrecht, and S. C. Mitchell, “100 W average power at 0.53 μm by external frequency conversion of an electro‐optically Q-switched diode-pumped power oscillator,” Appl. Phys. Lett. 64(23), 3086–3088 (1994).
[Crossref]

Conroy, R. S.

G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4 laser using a quadrupole electro-optic deflector,” Appl. Phys. B 67(2), 267–270 (1998).
[Crossref]

Das, S. K.

A. Ray, S. K. Das, S. Mukhopadhyay, and P. K. Datta, “Acousto-optic-modulator-stabilized low-threshold mode-locked Nd:YVO4 laser,” Appl. Phys. Lett. 89(22), 221119 (2006).
[Crossref]

Datta, P. K.

A. Ray, S. K. Das, S. Mukhopadhyay, and P. K. Datta, “Acousto-optic-modulator-stabilized low-threshold mode-locked Nd:YVO4 laser,” Appl. Phys. Lett. 89(22), 221119 (2006).
[Crossref]

Dorofeenko, A. V.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Ebbers, C. A.

S. P. Velsko, C. A. Ebbers, B. Comaskey, G. F. Albrecht, and S. C. Mitchell, “100 W average power at 0.53 μm by external frequency conversion of an electro‐optically Q-switched diode-pumped power oscillator,” Appl. Phys. Lett. 64(23), 3086–3088 (1994).
[Crossref]

Fan, T. Y.

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[Crossref]

Fen, X. Q.

Friel, G. J.

G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4 laser using a quadrupole electro-optic deflector,” Appl. Phys. B 67(2), 267–270 (1998).
[Crossref]

Gapontsev, V. P.

Gonzales, D. A.

D. A. Gonzales and R. P. Baker, “Micropropulsion using a Nd:YAG microchip laser,” Proc. SPIE 4760, 752–765 (2002).
[Crossref]

Goto, T.

K. Nakamura, H. Takagi, T. Goto, P. B. Lim, H. Horimai, H. Yoshikawa, V. M. Bove, and M. Inoue, “Improvement of diffraction efficiency of three-dimensional magneto-optic spatial light modulator with magnetophotonic crystal,” Appl. Phys. Lett. 108(2), 022404 (2016).
[Crossref]

R. Isogai, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Thermomagnetic writing into magnetophotonic microcavities controlling thermal diffusion for volumetric magnetic holography,” Opt. Express 24(1), 522–527 (2016).
[Crossref] [PubMed]

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Granovsky, A. B.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Hayashi, S.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref] [PubMed]

Hellwarth, R. W.

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33(3), 828–829 (1962).
[Crossref]

Hibiya, T.

Y. Honda, T. Ishikawa, and T. Hibiya, “Temperature dependence of Faraday rotation for Bi-substituted terbium iron garnet films,” J. Magn. Soc. Jpn. 11(2), 157–160 (1987).
[Crossref]

Honda, Y.

Y. Honda, T. Ishikawa, and T. Hibiya, “Temperature dependence of Faraday rotation for Bi-substituted terbium iron garnet films,” J. Magn. Soc. Jpn. 11(2), 157–160 (1987).
[Crossref]

Horimai, H.

K. Nakamura, H. Takagi, T. Goto, P. B. Lim, H. Horimai, H. Yoshikawa, V. M. Bove, and M. Inoue, “Improvement of diffraction efficiency of three-dimensional magneto-optic spatial light modulator with magnetophotonic crystal,” Appl. Phys. Lett. 108(2), 022404 (2016).
[Crossref]

Hu, G. Q.

Hu, W. T.

Imura, T.

H. Takagi, A. Tsuzuki, K. Iwasaki, Y. Suzuki, T. Imura, H. Umezawa, H. Uchida, K. H. Shin, and M. Inoue, “Multiferroic magneto optic spatial light modulator with sputtered PZT film,” J. Magn. Soc. Jpn. 30(6-2), 581–583 (2006).
[Crossref]

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Inoue, M.

K. Nakamura, H. Takagi, T. Goto, P. B. Lim, H. Horimai, H. Yoshikawa, V. M. Bove, and M. Inoue, “Improvement of diffraction efficiency of three-dimensional magneto-optic spatial light modulator with magnetophotonic crystal,” Appl. Phys. Lett. 108(2), 022404 (2016).
[Crossref]

R. Isogai, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Thermomagnetic writing into magnetophotonic microcavities controlling thermal diffusion for volumetric magnetic holography,” Opt. Express 24(1), 522–527 (2016).
[Crossref] [PubMed]

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

H. Takagi, A. Tsuzuki, K. Iwasaki, Y. Suzuki, T. Imura, H. Umezawa, H. Uchida, K. H. Shin, and M. Inoue, “Multiferroic magneto optic spatial light modulator with sputtered PZT film,” J. Magn. Soc. Jpn. 30(6-2), 581–583 (2006).
[Crossref]

Ishikawa, T.

Y. Honda, T. Ishikawa, and T. Hibiya, “Temperature dependence of Faraday rotation for Bi-substituted terbium iron garnet films,” J. Magn. Soc. Jpn. 11(2), 157–160 (1987).
[Crossref]

Isogai, R.

Ito, T.

T. Ito, T. Taira, and T. Kobayashi, “Q-switching and mode selection of coupled-cavity Er,Yb:glass lasers,” Jpn. J. Appl. Phys. 36(2), L206–L208 (1997).
[Crossref]

Iwasaki, K.

H. Takagi, A. Tsuzuki, K. Iwasaki, Y. Suzuki, T. Imura, H. Umezawa, H. Uchida, K. H. Shin, and M. Inoue, “Multiferroic magneto optic spatial light modulator with sputtered PZT film,” J. Magn. Soc. Jpn. 30(6-2), 581–583 (2006).
[Crossref]

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Jiang, M.

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “Diode-laser-array end-pumped 14.3-W CW Nd:GdVO4 solid-state laser at 1.06 μm,” Appl. Phys. B 69(3), 241–243 (1999).
[Crossref]

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kannari, F.

K. Yuko, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron. 36(5), 607–614 (2000).
[Crossref]

Kato, Y.

S. Nishida, T. Okukda, H. Ohsato, Y. Kato, and T. Suzuki, “Synthesis of Al- or Ga-substituted Bi3Fe5O12 garnet films,” J. Magn. Soc. Jpn. 18(2), 157–160 (1994).
[Crossref]

Kawase, K.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref] [PubMed]

Kemp, A. J.

G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4 laser using a quadrupole electro-optic deflector,” Appl. Phys. B 67(2), 267–270 (1998).
[Crossref]

Keyes, R. J.

R. J. Keyes and T. M. Quist, “Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers,” Appl. Phys. Lett. 4(3), 50–52 (1964).
[Crossref]

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kim, N. S.

C. Li, J. Song, D. Shen, N. S. Kim, J. Lu, and K. Ueda, “Diode-pumped passively Q-switched Nd:GdVO4 lasers operating at 1.06 μm wavelength,” Appl. Phys. B 70(4), 471–474 (2000).
[Crossref]

Kimel, A. V.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[Crossref] [PubMed]

Kirilyuk, A.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[Crossref] [PubMed]

Kobayashi, T.

T. Ito, T. Taira, and T. Kobayashi, “Q-switching and mode selection of coupled-cavity Er,Yb:glass lasers,” Jpn. J. Appl. Phys. 36(2), L206–L208 (1997).
[Crossref]

T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30(3), 800–804 (1994).
[Crossref]

T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO(4) microchip lasers,” Opt. Lett. 16(24), 1955–1957 (1991).
[Crossref] [PubMed]

Kurimura, S.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

Ley, J. M.

G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4 laser using a quadrupole electro-optic deflector,” Appl. Phys. B 67(2), 267–270 (1998).
[Crossref]

Li, C.

C. Li, J. Song, D. Shen, N. S. Kim, J. Lu, and K. Ueda, “Diode-pumped passively Q-switched Nd:GdVO4 lasers operating at 1.06 μm wavelength,” Appl. Phys. B 70(4), 471–474 (2000).
[Crossref]

Li, G.

Li, X. D.

X. Yu, C. Wang, F. Chen, R. P. Yan, Y. F. Ma, X. D. Li, and J. B. Peng, “Comparison of electro-optical and acousto-optical Q-switched, high repetition rate Nd:GdVO4 laser,” Laser Phys. 21(3), 442–445 (2011).
[Crossref]

Li, Z. S.

Lim, P. B.

K. Nakamura, H. Takagi, T. Goto, P. B. Lim, H. Horimai, H. Yoshikawa, V. M. Bove, and M. Inoue, “Improvement of diffraction efficiency of three-dimensional magneto-optic spatial light modulator with magnetophotonic crystal,” Appl. Phys. Lett. 108(2), 022404 (2016).
[Crossref]

R. Isogai, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Thermomagnetic writing into magnetophotonic microcavities controlling thermal diffusion for volumetric magnetic holography,” Opt. Express 24(1), 522–527 (2016).
[Crossref] [PubMed]

Limpert, J.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Lisyansky, A. A.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Liu, J.

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “Diode-laser-array end-pumped 14.3-W CW Nd:GdVO4 solid-state laser at 1.06 μm,” Appl. Phys. B 69(3), 241–243 (1999).
[Crossref]

Lu, J.

C. Li, J. Song, D. Shen, N. S. Kim, J. Lu, and K. Ueda, “Diode-pumped passively Q-switched Nd:GdVO4 lasers operating at 1.06 μm wavelength,” Appl. Phys. B 70(4), 471–474 (2000).
[Crossref]

Lupei, V.

V. Lupei, N. Pavel, and T. Taira, “1064 nm laser emission of highly doped Nd: yttrium aluminum garnet under 885 nm diode laser pumping,” Appl. Phys. Lett. 80(23), 4309–4311 (2002).
[Crossref]

Ma, Y. F.

X. Yu, C. Wang, F. Chen, R. P. Yan, Y. F. Ma, X. D. Li, and J. B. Peng, “Comparison of electro-optical and acousto-optical Q-switched, high repetition rate Nd:GdVO4 laser,” Laser Phys. 21(3), 442–445 (2011).
[Crossref]

McClung, F. J.

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33(3), 828–829 (1962).
[Crossref]

Meng, X.

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “Diode-laser-array end-pumped 14.3-W CW Nd:GdVO4 solid-state laser at 1.06 μm,” Appl. Phys. B 69(3), 241–243 (1999).
[Crossref]

Merzlikin, A. M.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Mina, M.

J. W. Pritchard, M. Mina, and R. J. Weber, “Magnetic field generator design for magneto-optic switching applications,” IEEE Trans. Magn. 49(7), 4242–4244 (2013).
[Crossref]

J. W. Pritchard, M. Mina, and R. J. Weber, “Improved switching for magneto-optic fiber-based technologies,” IEEE Trans. Magn. 48(11), 3772–3775 (2012).
[Crossref]

Minamide, H.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref] [PubMed]

Mitchell, S. C.

S. P. Velsko, C. A. Ebbers, B. Comaskey, G. F. Albrecht, and S. C. Mitchell, “100 W average power at 0.53 μm by external frequency conversion of an electro‐optically Q-switched diode-pumped power oscillator,” Appl. Phys. Lett. 64(23), 3086–3088 (1994).
[Crossref]

Mooradian, A.

Mukai, A.

Mukhopadhyay, S.

A. Ray, S. K. Das, S. Mukhopadhyay, and P. K. Datta, “Acousto-optic-modulator-stabilized low-threshold mode-locked Nd:YVO4 laser,” Appl. Phys. Lett. 89(22), 221119 (2006).
[Crossref]

Nakamura, K.

K. Nakamura, H. Takagi, T. Goto, P. B. Lim, H. Horimai, H. Yoshikawa, V. M. Bove, and M. Inoue, “Improvement of diffraction efficiency of three-dimensional magneto-optic spatial light modulator with magnetophotonic crystal,” Appl. Phys. Lett. 108(2), 022404 (2016).
[Crossref]

Nakamura, Y.

Nawata, K.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref] [PubMed]

Nishida, S.

S. Nishida, T. Okukda, H. Ohsato, Y. Kato, and T. Suzuki, “Synthesis of Al- or Ga-substituted Bi3Fe5O12 garnet films,” J. Magn. Soc. Jpn. 18(2), 157–160 (1994).
[Crossref]

Nishifuji, M.

Nozawa, Y.

Ohsato, H.

S. Nishida, T. Okukda, H. Ohsato, Y. Kato, and T. Suzuki, “Synthesis of Al- or Ga-substituted Bi3Fe5O12 garnet films,” J. Magn. Soc. Jpn. 18(2), 157–160 (1994).
[Crossref]

Okukda, T.

S. Nishida, T. Okukda, H. Ohsato, Y. Kato, and T. Suzuki, “Synthesis of Al- or Ga-substituted Bi3Fe5O12 garnet films,” J. Magn. Soc. Jpn. 18(2), 157–160 (1994).
[Crossref]

Pavel, N.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

V. Lupei, N. Pavel, and T. Taira, “1064 nm laser emission of highly doped Nd: yttrium aluminum garnet under 885 nm diode laser pumping,” Appl. Phys. Lett. 80(23), 4309–4311 (2002).
[Crossref]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

Peng, J. B.

X. Yu, C. Wang, F. Chen, R. P. Yan, Y. F. Ma, X. D. Li, and J. B. Peng, “Comparison of electro-optical and acousto-optical Q-switched, high repetition rate Nd:GdVO4 laser,” Laser Phys. 21(3), 442–445 (2011).
[Crossref]

Pisarev, R. V.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[Crossref] [PubMed]

Popma, T. J. A.

S. Wittekoek and T. J. A. Popma, “Magneto-optic Kerr rotation of bismuth-substituted iron garnets in the 2-5.2-eV spectral range,” J. Appl. Phys. 44(12), 5560–5566 (1973).
[Crossref]

Pritchard, J. W.

J. W. Pritchard, M. Mina, and R. J. Weber, “Magnetic field generator design for magneto-optic switching applications,” IEEE Trans. Magn. 49(7), 4242–4244 (2013).
[Crossref]

J. W. Pritchard, M. Mina, and R. J. Weber, “Improved switching for magneto-optic fiber-based technologies,” IEEE Trans. Magn. 48(11), 3772–3775 (2012).
[Crossref]

Quist, T. M.

R. J. Keyes and T. M. Quist, “Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers,” Appl. Phys. Lett. 4(3), 50–52 (1964).
[Crossref]

Rasing, T.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[Crossref] [PubMed]

Ray, A.

A. Ray, S. K. Das, S. Mukhopadhyay, and P. K. Datta, “Acousto-optic-modulator-stabilized low-threshold mode-locked Nd:YVO4 laser,” Appl. Phys. Lett. 89(22), 221119 (2006).
[Crossref]

Saikawa, J.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

Shao, Z.

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “Diode-laser-array end-pumped 14.3-W CW Nd:GdVO4 solid-state laser at 1.06 μm,” Appl. Phys. B 69(3), 241–243 (1999).
[Crossref]

Shen, D.

C. Li, J. Song, D. Shen, N. S. Kim, J. Lu, and K. Ueda, “Diode-pumped passively Q-switched Nd:GdVO4 lasers operating at 1.06 μm wavelength,” Appl. Phys. B 70(4), 471–474 (2000).
[Crossref]

Shen, L. Q.

Shikata, J.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref] [PubMed]

Shin, K. H.

H. Takagi, A. Tsuzuki, K. Iwasaki, Y. Suzuki, T. Imura, H. Umezawa, H. Uchida, K. H. Shin, and M. Inoue, “Multiferroic magneto optic spatial light modulator with sputtered PZT film,” J. Magn. Soc. Jpn. 30(6-2), 581–583 (2006).
[Crossref]

Sinclair, B. D.

G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4 laser using a quadrupole electro-optic deflector,” Appl. Phys. B 67(2), 267–270 (1998).
[Crossref]

Song, J.

C. Li, J. Song, D. Shen, N. S. Kim, J. Lu, and K. Ueda, “Diode-pumped passively Q-switched Nd:GdVO4 lasers operating at 1.06 μm wavelength,” Appl. Phys. B 70(4), 471–474 (2000).
[Crossref]

Suzuki, T.

R. Bhandari, N. Tsuji, T. Suzuki, M. Nishifuji, and T. Taira, “Efficient second to ninth harmonic generation using megawatt peak power microchip laser,” Opt. Express 21(23), 28849–28855 (2013).
[Crossref] [PubMed]

S. Nishida, T. Okukda, H. Ohsato, Y. Kato, and T. Suzuki, “Synthesis of Al- or Ga-substituted Bi3Fe5O12 garnet films,” J. Magn. Soc. Jpn. 18(2), 157–160 (1994).
[Crossref]

Suzuki, Y.

H. Takagi, A. Tsuzuki, K. Iwasaki, Y. Suzuki, T. Imura, H. Umezawa, H. Uchida, K. H. Shin, and M. Inoue, “Multiferroic magneto optic spatial light modulator with sputtered PZT film,” J. Magn. Soc. Jpn. 30(6-2), 581–583 (2006).
[Crossref]

Taira, T.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref] [PubMed]

R. Bhandari, N. Tsuji, T. Suzuki, M. Nishifuji, and T. Taira, “Efficient second to ninth harmonic generation using megawatt peak power microchip laser,” Opt. Express 21(23), 28849–28855 (2013).
[Crossref] [PubMed]

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

V. Lupei, N. Pavel, and T. Taira, “1064 nm laser emission of highly doped Nd: yttrium aluminum garnet under 885 nm diode laser pumping,” Appl. Phys. Lett. 80(23), 4309–4311 (2002).
[Crossref]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

T. Ito, T. Taira, and T. Kobayashi, “Q-switching and mode selection of coupled-cavity Er,Yb:glass lasers,” Jpn. J. Appl. Phys. 36(2), L206–L208 (1997).
[Crossref]

T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30(3), 800–804 (1994).
[Crossref]

T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO(4) microchip lasers,” Opt. Lett. 16(24), 1955–1957 (1991).
[Crossref] [PubMed]

Takagi, H.

K. Nakamura, H. Takagi, T. Goto, P. B. Lim, H. Horimai, H. Yoshikawa, V. M. Bove, and M. Inoue, “Improvement of diffraction efficiency of three-dimensional magneto-optic spatial light modulator with magnetophotonic crystal,” Appl. Phys. Lett. 108(2), 022404 (2016).
[Crossref]

R. Isogai, Y. Nakamura, H. Takagi, T. Goto, P. B. Lim, and M. Inoue, “Thermomagnetic writing into magnetophotonic microcavities controlling thermal diffusion for volumetric magnetic holography,” Opt. Express 24(1), 522–527 (2016).
[Crossref] [PubMed]

H. Takagi, A. Tsuzuki, K. Iwasaki, Y. Suzuki, T. Imura, H. Umezawa, H. Uchida, K. H. Shin, and M. Inoue, “Multiferroic magneto optic spatial light modulator with sputtered PZT film,” J. Magn. Soc. Jpn. 30(6-2), 581–583 (2006).
[Crossref]

Takeoka, M.

K. Yuko, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron. 36(5), 607–614 (2000).
[Crossref]

Taylor, J. R.

Tian, Y.

Tsuji, N.

Tsunekane, M.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Tsuzuki, A.

H. Takagi, A. Tsuzuki, K. Iwasaki, Y. Suzuki, T. Imura, H. Umezawa, H. Uchida, K. H. Shin, and M. Inoue, “Multiferroic magneto optic spatial light modulator with sputtered PZT film,” J. Magn. Soc. Jpn. 30(6-2), 581–583 (2006).
[Crossref]

Tunnermann, A.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Uchida, A.

K. Yuko, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron. 36(5), 607–614 (2000).
[Crossref]

Uchida, H.

H. Takagi, A. Tsuzuki, K. Iwasaki, Y. Suzuki, T. Imura, H. Umezawa, H. Uchida, K. H. Shin, and M. Inoue, “Multiferroic magneto optic spatial light modulator with sputtered PZT film,” J. Magn. Soc. Jpn. 30(6-2), 581–583 (2006).
[Crossref]

Ueda, K.

C. Li, J. Song, D. Shen, N. S. Kim, J. Lu, and K. Ueda, “Diode-pumped passively Q-switched Nd:GdVO4 lasers operating at 1.06 μm wavelength,” Appl. Phys. B 70(4), 471–474 (2000).
[Crossref]

Umezawa, H.

H. Takagi, A. Tsuzuki, K. Iwasaki, Y. Suzuki, T. Imura, H. Umezawa, H. Uchida, K. H. Shin, and M. Inoue, “Multiferroic magneto optic spatial light modulator with sputtered PZT film,” J. Magn. Soc. Jpn. 30(6-2), 581–583 (2006).
[Crossref]

Usachev, P. A.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[Crossref] [PubMed]

Uto, K.

K. Yuko, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron. 36(5), 607–614 (2000).
[Crossref]

Velsko, S. P.

S. P. Velsko, C. A. Ebbers, B. Comaskey, G. F. Albrecht, and S. C. Mitchell, “100 W average power at 0.53 μm by external frequency conversion of an electro‐optically Q-switched diode-pumped power oscillator,” Appl. Phys. Lett. 64(23), 3086–3088 (1994).
[Crossref]

Vinogradov, A. P.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Wang, C.

X. Yu, C. Wang, F. Chen, R. P. Yan, Y. F. Ma, X. D. Li, and J. B. Peng, “Comparison of electro-optical and acousto-optical Q-switched, high repetition rate Nd:GdVO4 laser,” Laser Phys. 21(3), 442–445 (2011).
[Crossref]

Wang, Y.

Weber, R. J.

J. W. Pritchard, M. Mina, and R. J. Weber, “Magnetic field generator design for magneto-optic switching applications,” IEEE Trans. Magn. 49(7), 4242–4244 (2013).
[Crossref]

J. W. Pritchard, M. Mina, and R. J. Weber, “Improved switching for magneto-optic fiber-based technologies,” IEEE Trans. Magn. 48(11), 3772–3775 (2012).
[Crossref]

Wittekoek, S.

S. Wittekoek and T. J. A. Popma, “Magneto-optic Kerr rotation of bismuth-substituted iron garnets in the 2-5.2-eV spectral range,” J. Appl. Phys. 44(12), 5560–5566 (1973).
[Crossref]

Yan, R. P.

X. Yu, C. Wang, F. Chen, R. P. Yan, Y. F. Ma, X. D. Li, and J. B. Peng, “Comparison of electro-optical and acousto-optical Q-switched, high repetition rate Nd:GdVO4 laser,” Laser Phys. 21(3), 442–445 (2011).
[Crossref]

Yao, B.

Yin, Z. W.

Yoshikawa, H.

K. Nakamura, H. Takagi, T. Goto, P. B. Lim, H. Horimai, H. Yoshikawa, V. M. Bove, and M. Inoue, “Improvement of diffraction efficiency of three-dimensional magneto-optic spatial light modulator with magnetophotonic crystal,” Appl. Phys. Lett. 108(2), 022404 (2016).
[Crossref]

Yu, X.

X. Yu, C. Wang, F. Chen, R. P. Yan, Y. F. Ma, X. D. Li, and J. B. Peng, “Comparison of electro-optical and acousto-optical Q-switched, high repetition rate Nd:GdVO4 laser,” Laser Phys. 21(3), 442–445 (2011).
[Crossref]

Yuko, K.

K. Yuko, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron. 36(5), 607–614 (2000).
[Crossref]

Zayhowski, J. J.

Zhang, H.

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “Diode-laser-array end-pumped 14.3-W CW Nd:GdVO4 solid-state laser at 1.06 μm,” Appl. Phys. B 69(3), 241–243 (1999).
[Crossref]

Zhou, F. Z.

Zhu, L.

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “Diode-laser-array end-pumped 14.3-W CW Nd:GdVO4 solid-state laser at 1.06 μm,” Appl. Phys. B 69(3), 241–243 (1999).
[Crossref]

Zhu, Y.

Appl. Opt. (1)

Appl. Phys. B (3)

C. Li, J. Song, D. Shen, N. S. Kim, J. Lu, and K. Ueda, “Diode-pumped passively Q-switched Nd:GdVO4 lasers operating at 1.06 μm wavelength,” Appl. Phys. B 70(4), 471–474 (2000).
[Crossref]

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “Diode-laser-array end-pumped 14.3-W CW Nd:GdVO4 solid-state laser at 1.06 μm,” Appl. Phys. B 69(3), 241–243 (1999).
[Crossref]

G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4 laser using a quadrupole electro-optic deflector,” Appl. Phys. B 67(2), 267–270 (1998).
[Crossref]

Appl. Phys. Lett. (5)

R. J. Keyes and T. M. Quist, “Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers,” Appl. Phys. Lett. 4(3), 50–52 (1964).
[Crossref]

A. Ray, S. K. Das, S. Mukhopadhyay, and P. K. Datta, “Acousto-optic-modulator-stabilized low-threshold mode-locked Nd:YVO4 laser,” Appl. Phys. Lett. 89(22), 221119 (2006).
[Crossref]

V. Lupei, N. Pavel, and T. Taira, “1064 nm laser emission of highly doped Nd: yttrium aluminum garnet under 885 nm diode laser pumping,” Appl. Phys. Lett. 80(23), 4309–4311 (2002).
[Crossref]

S. P. Velsko, C. A. Ebbers, B. Comaskey, G. F. Albrecht, and S. C. Mitchell, “100 W average power at 0.53 μm by external frequency conversion of an electro‐optically Q-switched diode-pumped power oscillator,” Appl. Phys. Lett. 64(23), 3086–3088 (1994).
[Crossref]

K. Nakamura, H. Takagi, T. Goto, P. B. Lim, H. Horimai, H. Yoshikawa, V. M. Bove, and M. Inoue, “Improvement of diffraction efficiency of three-dimensional magneto-optic spatial light modulator with magnetophotonic crystal,” Appl. Phys. Lett. 108(2), 022404 (2016).
[Crossref]

IEEE J. Quantum Electron. (4)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

K. Yuko, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron. 36(5), 607–614 (2000).
[Crossref]

T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30(3), 800–804 (1994).
[Crossref]

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

IEEE Trans. Magn. (2)

J. W. Pritchard, M. Mina, and R. J. Weber, “Magnetic field generator design for magneto-optic switching applications,” IEEE Trans. Magn. 49(7), 4242–4244 (2013).
[Crossref]

J. W. Pritchard, M. Mina, and R. J. Weber, “Improved switching for magneto-optic fiber-based technologies,” IEEE Trans. Magn. 48(11), 3772–3775 (2012).
[Crossref]

J. Appl. Phys. (2)

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33(3), 828–829 (1962).
[Crossref]

S. Wittekoek and T. J. A. Popma, “Magneto-optic Kerr rotation of bismuth-substituted iron garnets in the 2-5.2-eV spectral range,” J. Appl. Phys. 44(12), 5560–5566 (1973).
[Crossref]

J. Magn. Soc. Jpn. (3)

Y. Honda, T. Ishikawa, and T. Hibiya, “Temperature dependence of Faraday rotation for Bi-substituted terbium iron garnet films,” J. Magn. Soc. Jpn. 11(2), 157–160 (1987).
[Crossref]

S. Nishida, T. Okukda, H. Ohsato, Y. Kato, and T. Suzuki, “Synthesis of Al- or Ga-substituted Bi3Fe5O12 garnet films,” J. Magn. Soc. Jpn. 18(2), 157–160 (1994).
[Crossref]

H. Takagi, A. Tsuzuki, K. Iwasaki, Y. Suzuki, T. Imura, H. Umezawa, H. Uchida, K. H. Shin, and M. Inoue, “Multiferroic magneto optic spatial light modulator with sputtered PZT film,” J. Magn. Soc. Jpn. 30(6-2), 581–583 (2006).
[Crossref]

Jpn. J. Appl. Phys. (2)

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

T. Ito, T. Taira, and T. Kobayashi, “Q-switching and mode selection of coupled-cavity Er,Yb:glass lasers,” Jpn. J. Appl. Phys. 36(2), L206–L208 (1997).
[Crossref]

Laser Phys. (1)

X. Yu, C. Wang, F. Chen, R. P. Yan, Y. F. Ma, X. D. Li, and J. B. Peng, “Comparison of electro-optical and acousto-optical Q-switched, high repetition rate Nd:GdVO4 laser,” Laser Phys. 21(3), 442–445 (2011).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Nature (1)

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101(11), 113902 (2008).
[Crossref] [PubMed]

Proc. SPIE (1)

D. A. Gonzales and R. P. Baker, “Micropropulsion using a Nd:YAG microchip laser,” Proc. SPIE 4760, 752–765 (2002).
[Crossref]

Sci. Rep. (1)

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref] [PubMed]

Science (1)

R. L. Byer, “Diode laser--pumped solid-state lasers,” Science 239(4841), 742–747 (1988).
[Crossref] [PubMed]

Other (7)

K. Shimoda, T. Yajima, Y. Ueda, T. Shimizu, and T. Kasuya, Quantum Electronics (Shokabo, Tokyo, 1972).

M. Inoue, M. Levy, and A. V. Baryshev, Magnetophotonics from Theory to Applications (Springer Berlin Heidelberg, New York, 2014).

K. Sato, Hikari-to-jiki (Asakura-shoten, 2007).

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

B. Hillebrands and A. Thiaville, Spin Dynamics in Confined Magnetic Structures III (Springer-Verlag Berlin Heidelberg, 2006).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

MO Q-switching laser pumped by a laser diode. (a) Sketch of the MO Q-switch used in the laser cavity without polarizers in the resonant path. The cavity length was 130 mm and the MO film’s thickness was 190 μm. The MO film’s MMD state was changed from a maze-like state to a uniform state by the pulsed magnetic field, which was controlled with a hand-made pulse current generator. (b) CW output power as a function of pump power with various reflectance of the output couplers R. (c) Wavelength spectrum of the generated laser using the R of 95%.

Fig. 2
Fig. 2

Laser cavity’s output shift using MO effects. (a) Faraday rotation angle loop of the MO garnet film used. Insets show the polarized-light microscope images upon applying a DC magnetic field HDC of 0, 50, 100, 150, and 200 Oe perpendicularly to the film surface. (b) Output power as a function of the applied HDC. The HDC was controlled by the distance between the MO film and the ring-shaped SmCo magnet.

Fig. 3
Fig. 3

Pulse magnetic field generator. (a) Simulated three-turn coil set at a current of 56 A. Green lines show a sketch of magnetic fluxes in the certain plane. (b) Calculated distribution of z direction magnetic field Hz as a function of the x coordinate at the center of the two coils (z = 0) and y was zero, where the x = y = 0 was the center of coils. The inset zooms in on the spot radius (~0.23 mm) at the center of the MO film. (c) Electronic circuit for pulse generation. SG is the signal generator. D is the diode. R1, R2, R3, and R4 are resistors with values of 140 mΩ, 7 Ω, 50 mΩ, and 50 Ω, respectively. L is the 135 nH inductor. C1 and C2 are capacitors with values of 100 nF and 300 μF, respectively. VDC is the bias voltage.

Fig. 4
Fig. 4

MO Q-switching. (a) Output power and input current versus time. The magnetic field erased the MMDs) and generated the Q-switching effect. (b) Output power versus pump power. (c) The bias technique decreased the required input current by a factor of more than 7 for the same optical pulse. (d) Polarized state of output light with various settings. The ideal linearly polarized state is shown as the bold grey line. The output from the pure cavity laser shows linearly polarized light (stars). The MO film consisting of MMDs showed a randomly polarized state (triangles), whereas the MO film consisting of uniform magnetic domain with applying the DC magnetic field HDC ( = 200 Oe) showed a rotated and ellipsoidal polarization (squares). The pulsed output (circles) obtained with the MO film with applying the pulsed magnetic field HPulse ( = 200 Oe) was circularly polarized.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L=0.716×( 2 μ 0 πr N 2 ),
τ p rη( r ) r1lnr τ c = rη( r ) r1lnr ( 2L cδ ) ,

Metrics