Abstract

The mid-infrared spectral range extending from 2 to 6 μm is significant for scientific and technological applications. A promising nonlinear oxide crystal La3Ga5.5Nb0.5O14 (LGN) is proposed and fully characterized for the first time to our knowledge. The transparency range extends between 0.28 and 7.4 μm. The two principal refractive indices were measured and we found that the nonlinear coefficient d11 = 3.0 ± 0.1 pm/V at 0.532 μm. The simultaneous fit of data allowed us to refine the Sellmeier equations of LGN and to calculate the tuning curves for optical parametric generation (OPG) pumped at 1.064 μm. Calculations are consistent with recorded data and also show the generation of a supercontinuum between 1.5 and 3.5 μm when pumped at 0.98 μm by a Ti:Sapphire laser.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase-matching properties and refined Sellmeier equations of La3Ga5.5Nb0.5O14

Feng Guo, Dazhi Lu, Patricia Segonds, Jerôme Debray, Haohai Yu, Huaijin Zhang, Jiyang Wang, and Benoît Boulanger
Opt. Mater. Express 8(4) 858-864 (2018)

Theoretical investigations of broadband mid-infrared optical parametric amplification based on a La3Ga5.5Nb0.5O14 crystal

Jingui Ma, Jing Wang, Dongxia Hu, Peng Yuan, Guoqiang Xie, Heyuan Zhu, Haohai Yu, Huaijin Zhang, Jiyang Wang, and Liejia Qian
Opt. Express 24(21) 23957-23968 (2016)

Phase-matching directions, refined Sellmeier equations, and second-order nonlinear coefficient of the infrared Langatate crystal La3Ga5.5Ta0.5O14

Elodie Boursier, Patricia Segonds, Benoit Boulanger, Corinne Félix, Jérôme Debray, David Jegouso, Bertrand Ménaert, Dmitry Roshchupkin, and Ichiro Shoji
Opt. Lett. 39(13) 4033-4036 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
    [Crossref]
  2. H. A. Gebbie, W. R. Harding, C. Hilsum, A. W. Pryce, and V. Roberts, “Atmospheric Transmission in the 1 to 14 μm Region,” P. Roy. Soc. A: Math. Phy. 206(1084), 87–107 (1951).
    [Crossref]
  3. A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  4. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  5. S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70(1), 247–252 (2000).
    [Crossref]
  6. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
    [Crossref]
  7. J. P. Fève, B. Boulanger, B. Ménaert, and O. Pacaud, “Continuous tuning of a microlaser-pumped optical parametric generator by use of a cylindrical periodically poled lithium niobate crystal,” Opt. Lett. 28(12), 1028–1030 (2003).
    [Crossref] [PubMed]
  8. S. C. Kumar, M. Jelínek, M. Baudisch, K. T. Zawilski, P. G. Schunemann, V. Kubeček, J. Biegert, and M. Ebrahim-Zadeh, “Tunable, high-energy, mid-infrared, picosecond optical parametric generator based on CdSiP2.,” Opt. Express 20(14), 15703–15709 (2012).
    [Crossref] [PubMed]
  9. S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photonics Rev. 7(6), 1–8 (2013).
  10. E. Boursier, P. Segonds, B. Boulanger, C. Félix, J. Debray, D. Jegouso, B. Ménaert, D. Roshchupkin, and I. Shoji, “Phase-matching directions, refined Sellmeier equations, and second-order nonlinear coefficient of the infrared Langatate crystal La3Ga5.5Ta0.5O14,” Opt. Lett. 39(13), 4033–4036 (2014).
    [Crossref] [PubMed]
  11. H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, “Growth and characterization of La3Ga5.5Ta0.5O14 crystal,” Cryst. Res. Technol. 39(8), 686–691 (2004).
    [Crossref]
  12. J. Stade, L. Bohatý, M. Hengst, and R. B. Heimann, “Electro‐optic, Piezoelectric and Dielectric Properties of Langasite (La3Ga5SiO14), Langanite (La3Ga5.5Nb0.5O14) and Langataite (La3Ga5.5Ta0. 5O14),” Cryst. Res. Technol. 37(10), 1113–1120 (2002).
    [Crossref]
  13. B. Boulanger and J. Zyss, International Tables for Crystallography (Academic Publisher, 2006).
  14. J. Jerphagnon and S. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41(4), 1667–1681 (1970).
    [Crossref]
  15. X. Zhang, X. Wang, G. Wang, Y. Wu, Y. Zhu, and C. Chen, “Determination of the nonlinear optical coefficients of the LixCs(1− x)B3O5 crystals,” J. Opt. Soc. Am. B 24(11), 2877–2882 (2007).
    [Crossref]
  16. “Lasers and laser-related equipment-determination of laser-induced damage threshold of optical surface-part 1: 1-on-1 test” ISO Report No. 11254–1-2000.
  17. A. Pavlovska, S. Werner, B. Maximov, and B. Mill, “Pressure-induced phase transitions of piezoelectric single crystals from the langasite family: La3Nb0.5Ga5.5O14 and La3Ta0.5Ga5.5O14.,” Acta Crystallogr. B 58(Pt 6), 939–947 (2002).
    [Crossref] [PubMed]
  18. R. H. French, J. W. Ling, F. S. Ohuchi, and C. T. Chen, “Electronic structure of β -BaB2O4 and LiB3O5 nonlinear optical crystals,” Phys. Rev. B Condens. Matter 44(16), 8496–8502 (1991).
    [Crossref] [PubMed]
  19. T. Veremeichik, “Optical Activity and Crystalline Structure of Crystals of the Langasite Family,” Crystallogr. Rep. 56(6), 1129–1134 (2011).
    [Crossref]
  20. G. Kuz’micheva, E. Tyunina, E. Domoroshchina, V. Rybakov, and A. Dubovskii, “X-ray Diffraction Study of La3Ga5.5Ta0.5O14 and La3Ga5.5Nb0.5O14 Langasite-Type Single Crystals,” Inorg. Mater. 41(4), 485–492 (2005).
  21. C. Chen, Y. Wu, and R. Li, “The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series,” Int. Rev. Phys. Chem. 8(1), 65–91 (1989).
    [Crossref]
  22. C. Chen, A. Jiang, B. Wu, G. You, R. Li, and S. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B 6(4), 616–621 (1989).
    [Crossref]
  23. D. N. Nikogosyan, “Beta barium borate (BBO),” Appl. Phys., A Mater. Sci. Process. 52(6), 359–368 (1991).
    [Crossref]
  24. H. Ishizuki and T. Taira, “Mg-doped congruent LiTaO3 crystal for large-aperture quasi-phase matching device,” Opt. Express 16(21), 16963–16970 (2008).
    [Crossref] [PubMed]
  25. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 2013).
  26. M. Kitaura, K. Mochizuki, Y. Inabe, M. Itoh, H. Nakagawa, and S. Oishi, “Fundamental optical properties and electronic structure of langasite La3Ga5SiO14 crystals,” Phys. Rev. B 69(11), 115120 (2004).
    [Crossref]
  27. J. E. Jaffe and A. Zunger, “Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors,” Phys. Rev. B 29(4), 1882–1906 (1984).
    [Crossref]
  28. J. Yao, D. Mei, L. Bai, Z. Lin, W. Yin, P. Fu, and Y. Wu, “BaGa4Se7: a new congruent-melting IR nonlinear optical material,” Inorg. Chem. 49(20), 9212–9216 (2010).
    [Crossref] [PubMed]
  29. G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18(7), 301–304 (1971).
    [Crossref]
  30. J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
    [Crossref]
  31. H. Kong, J. Wang, H. Zhang, and X. Yin, “Growth and characterization of La3Ga5.5Nb0.5O14 crystal,” J. Cryst. Growth 292(2), 408–411 (2006).
    [Crossref]
  32. D. Eimerl, “Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72(1), 95–139 (1987).
    [Crossref]
  33. B. Boulanger and G. Marnier, “Field factor calculation for the study of the relationships between all the three-wave nonlinear optical interactions in uniaxial and biaxial crystals,” J. Phys. Condens. Matter 3(43), 8327–8350 (1991).
    [Crossref]
  34. J. Wang, H. Yu, Y. Cheng, and R. Boughton, “Recent Developments in Functional Crystals in China,” Engineering 1(2), 192–210 (2015).
    [Crossref]
  35. W. F. Hagen and P. C. Magnante, “Efficient Second Harmonic Generation with Diffraction Limited and High Spectral Radiance Nd Glass Lasers,” J. Appl. Phys. 40(1), 219–224 (1969).
    [Crossref]
  36. W. Q. Zhang, “Optical parametric generation for biaxial crystal,” Opt. Commun. 105(3), 226–232 (1994).
    [Crossref]
  37. J. Q. Yao and T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55(1), 65–68 (1984).
    [Crossref]
  38. L. K. Cheng and J. D. Bierlein, “KTP and isomorphs-recent progress in device and material development,” Ferroelectrics 142(1), 209–228 (1993).
    [Crossref]
  39. J. D. Bierlein, H. Vanherzeele, and A. A. Ballman, “Linear and nonlinear optical properties of flux-grown KTiOAsO4,” Appl. Phys. Lett. 54(9), 783–785 (1989).
    [Crossref]
  40. J. T. Murray, N. Peyghambarian, and R. C. Powell, “Near infrared optical parametric oscillators,” Opt. Mater. 4(1), 55–60 (1994).
    [Crossref]
  41. H. Zhu, G. Zhang, C. Huang, H. Wang, Y. Wei, Y. Lin, L. Huang, G. Qiu, and Y. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun. 282(4), 601–604 (2009).
    [Crossref]
  42. W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65(22), 2765–2767 (1994).
    [Crossref]
  43. H. Sato, M. Abe, I. Shoji, J. Suda, and T. Kondo, “Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide,” J. Opt. Soc. Am. B 26(10), 1892–1896 (2009).
    [Crossref]

2015 (1)

J. Wang, H. Yu, Y. Cheng, and R. Boughton, “Recent Developments in Functional Crystals in China,” Engineering 1(2), 192–210 (2015).
[Crossref]

2014 (1)

2013 (1)

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photonics Rev. 7(6), 1–8 (2013).

2012 (2)

2011 (1)

T. Veremeichik, “Optical Activity and Crystalline Structure of Crystals of the Langasite Family,” Crystallogr. Rep. 56(6), 1129–1134 (2011).
[Crossref]

2010 (2)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

J. Yao, D. Mei, L. Bai, Z. Lin, W. Yin, P. Fu, and Y. Wu, “BaGa4Se7: a new congruent-melting IR nonlinear optical material,” Inorg. Chem. 49(20), 9212–9216 (2010).
[Crossref] [PubMed]

2009 (2)

H. Zhu, G. Zhang, C. Huang, H. Wang, Y. Wei, Y. Lin, L. Huang, G. Qiu, and Y. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun. 282(4), 601–604 (2009).
[Crossref]

H. Sato, M. Abe, I. Shoji, J. Suda, and T. Kondo, “Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide,” J. Opt. Soc. Am. B 26(10), 1892–1896 (2009).
[Crossref]

2008 (1)

2007 (2)

2006 (1)

H. Kong, J. Wang, H. Zhang, and X. Yin, “Growth and characterization of La3Ga5.5Nb0.5O14 crystal,” J. Cryst. Growth 292(2), 408–411 (2006).
[Crossref]

2005 (1)

G. Kuz’micheva, E. Tyunina, E. Domoroshchina, V. Rybakov, and A. Dubovskii, “X-ray Diffraction Study of La3Ga5.5Ta0.5O14 and La3Ga5.5Nb0.5O14 Langasite-Type Single Crystals,” Inorg. Mater. 41(4), 485–492 (2005).

2004 (2)

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, “Growth and characterization of La3Ga5.5Ta0.5O14 crystal,” Cryst. Res. Technol. 39(8), 686–691 (2004).
[Crossref]

M. Kitaura, K. Mochizuki, Y. Inabe, M. Itoh, H. Nakagawa, and S. Oishi, “Fundamental optical properties and electronic structure of langasite La3Ga5SiO14 crystals,” Phys. Rev. B 69(11), 115120 (2004).
[Crossref]

2003 (1)

2002 (2)

J. Stade, L. Bohatý, M. Hengst, and R. B. Heimann, “Electro‐optic, Piezoelectric and Dielectric Properties of Langasite (La3Ga5SiO14), Langanite (La3Ga5.5Nb0.5O14) and Langataite (La3Ga5.5Ta0. 5O14),” Cryst. Res. Technol. 37(10), 1113–1120 (2002).
[Crossref]

A. Pavlovska, S. Werner, B. Maximov, and B. Mill, “Pressure-induced phase transitions of piezoelectric single crystals from the langasite family: La3Nb0.5Ga5.5O14 and La3Ta0.5Ga5.5O14.,” Acta Crystallogr. B 58(Pt 6), 939–947 (2002).
[Crossref] [PubMed]

2000 (1)

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70(1), 247–252 (2000).
[Crossref]

1999 (1)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

1994 (3)

W. Q. Zhang, “Optical parametric generation for biaxial crystal,” Opt. Commun. 105(3), 226–232 (1994).
[Crossref]

W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65(22), 2765–2767 (1994).
[Crossref]

J. T. Murray, N. Peyghambarian, and R. C. Powell, “Near infrared optical parametric oscillators,” Opt. Mater. 4(1), 55–60 (1994).
[Crossref]

1993 (1)

L. K. Cheng and J. D. Bierlein, “KTP and isomorphs-recent progress in device and material development,” Ferroelectrics 142(1), 209–228 (1993).
[Crossref]

1991 (3)

R. H. French, J. W. Ling, F. S. Ohuchi, and C. T. Chen, “Electronic structure of β -BaB2O4 and LiB3O5 nonlinear optical crystals,” Phys. Rev. B Condens. Matter 44(16), 8496–8502 (1991).
[Crossref] [PubMed]

D. N. Nikogosyan, “Beta barium borate (BBO),” Appl. Phys., A Mater. Sci. Process. 52(6), 359–368 (1991).
[Crossref]

B. Boulanger and G. Marnier, “Field factor calculation for the study of the relationships between all the three-wave nonlinear optical interactions in uniaxial and biaxial crystals,” J. Phys. Condens. Matter 3(43), 8327–8350 (1991).
[Crossref]

1989 (3)

J. D. Bierlein, H. Vanherzeele, and A. A. Ballman, “Linear and nonlinear optical properties of flux-grown KTiOAsO4,” Appl. Phys. Lett. 54(9), 783–785 (1989).
[Crossref]

C. Chen, Y. Wu, and R. Li, “The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series,” Int. Rev. Phys. Chem. 8(1), 65–91 (1989).
[Crossref]

C. Chen, A. Jiang, B. Wu, G. You, R. Li, and S. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B 6(4), 616–621 (1989).
[Crossref]

1987 (1)

D. Eimerl, “Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72(1), 95–139 (1987).
[Crossref]

1984 (2)

J. Q. Yao and T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55(1), 65–68 (1984).
[Crossref]

J. E. Jaffe and A. Zunger, “Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors,” Phys. Rev. B 29(4), 1882–1906 (1984).
[Crossref]

1971 (1)

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18(7), 301–304 (1971).
[Crossref]

1970 (1)

J. Jerphagnon and S. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41(4), 1667–1681 (1970).
[Crossref]

1969 (1)

W. F. Hagen and P. C. Magnante, “Efficient Second Harmonic Generation with Diffraction Limited and High Spectral Radiance Nd Glass Lasers,” J. Appl. Phys. 40(1), 219–224 (1969).
[Crossref]

1966 (1)

J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
[Crossref]

1951 (1)

H. A. Gebbie, W. R. Harding, C. Hilsum, A. W. Pryce, and V. Roberts, “Atmospheric Transmission in the 1 to 14 μm Region,” P. Roy. Soc. A: Math. Phy. 206(1084), 87–107 (1951).
[Crossref]

Abe, M.

Arie, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Bai, L.

J. Yao, D. Mei, L. Bai, Z. Lin, W. Yin, P. Fu, and Y. Wu, “BaGa4Se7: a new congruent-melting IR nonlinear optical material,” Inorg. Chem. 49(20), 9212–9216 (2010).
[Crossref] [PubMed]

Ballman, A. A.

J. D. Bierlein, H. Vanherzeele, and A. A. Ballman, “Linear and nonlinear optical properties of flux-grown KTiOAsO4,” Appl. Phys. Lett. 54(9), 783–785 (1989).
[Crossref]

Baudisch, M.

Biegert, J.

Bierlein, J. D.

W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65(22), 2765–2767 (1994).
[Crossref]

L. K. Cheng and J. D. Bierlein, “KTP and isomorphs-recent progress in device and material development,” Ferroelectrics 142(1), 209–228 (1993).
[Crossref]

J. D. Bierlein, H. Vanherzeele, and A. A. Ballman, “Linear and nonlinear optical properties of flux-grown KTiOAsO4,” Appl. Phys. Lett. 54(9), 783–785 (1989).
[Crossref]

Bohatý, L.

J. Stade, L. Bohatý, M. Hengst, and R. B. Heimann, “Electro‐optic, Piezoelectric and Dielectric Properties of Langasite (La3Ga5SiO14), Langanite (La3Ga5.5Nb0.5O14) and Langataite (La3Ga5.5Ta0. 5O14),” Cryst. Res. Technol. 37(10), 1113–1120 (2002).
[Crossref]

Bosenberg, W. R.

W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65(22), 2765–2767 (1994).
[Crossref]

Boughton, R.

J. Wang, H. Yu, Y. Cheng, and R. Boughton, “Recent Developments in Functional Crystals in China,” Engineering 1(2), 192–210 (2015).
[Crossref]

Boulanger, B.

Boursier, E.

Boyd, G. D.

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18(7), 301–304 (1971).
[Crossref]

Buehler, E.

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18(7), 301–304 (1971).
[Crossref]

Chen, C.

Chen, C. T.

R. H. French, J. W. Ling, F. S. Ohuchi, and C. T. Chen, “Electronic structure of β -BaB2O4 and LiB3O5 nonlinear optical crystals,” Phys. Rev. B Condens. Matter 44(16), 8496–8502 (1991).
[Crossref] [PubMed]

Chen, X.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photonics Rev. 7(6), 1–8 (2013).

Cheng, L. K.

W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65(22), 2765–2767 (1994).
[Crossref]

L. K. Cheng and J. D. Bierlein, “KTP and isomorphs-recent progress in device and material development,” Ferroelectrics 142(1), 209–228 (1993).
[Crossref]

Cheng, X.

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, “Growth and characterization of La3Ga5.5Ta0.5O14 crystal,” Cryst. Res. Technol. 39(8), 686–691 (2004).
[Crossref]

Cheng, Y.

J. Wang, H. Yu, Y. Cheng, and R. Boughton, “Recent Developments in Functional Crystals in China,” Engineering 1(2), 192–210 (2015).
[Crossref]

Cussat-Blanc, S.

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70(1), 247–252 (2000).
[Crossref]

Debray, J.

Domoroshchina, E.

G. Kuz’micheva, E. Tyunina, E. Domoroshchina, V. Rybakov, and A. Dubovskii, “X-ray Diffraction Study of La3Ga5.5Ta0.5O14 and La3Ga5.5Nb0.5O14 Langasite-Type Single Crystals,” Inorg. Mater. 41(4), 485–492 (2005).

Dubovskii, A.

G. Kuz’micheva, E. Tyunina, E. Domoroshchina, V. Rybakov, and A. Dubovskii, “X-ray Diffraction Study of La3Ga5.5Ta0.5O14 and La3Ga5.5Nb0.5O14 Langasite-Type Single Crystals,” Inorg. Mater. 41(4), 485–492 (2005).

Ebrahim-Zadeh, M.

Eimerl, D.

D. Eimerl, “Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72(1), 95–139 (1987).
[Crossref]

Fahlen, T. S.

J. Q. Yao and T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55(1), 65–68 (1984).
[Crossref]

Félix, C.

Fève, J. P.

Fradkin, K.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

French, R. H.

R. H. French, J. W. Ling, F. S. Ohuchi, and C. T. Chen, “Electronic structure of β -BaB2O4 and LiB3O5 nonlinear optical crystals,” Phys. Rev. B Condens. Matter 44(16), 8496–8502 (1991).
[Crossref] [PubMed]

Freysz, E.

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70(1), 247–252 (2000).
[Crossref]

Fu, P.

J. Yao, D. Mei, L. Bai, Z. Lin, W. Yin, P. Fu, and Y. Wu, “BaGa4Se7: a new congruent-melting IR nonlinear optical material,” Inorg. Chem. 49(20), 9212–9216 (2010).
[Crossref] [PubMed]

Gebbie, H. A.

H. A. Gebbie, W. R. Harding, C. Hilsum, A. W. Pryce, and V. Roberts, “Atmospheric Transmission in the 1 to 14 μm Region,” P. Roy. Soc. A: Math. Phy. 206(1084), 87–107 (1951).
[Crossref]

Godard, A.

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Grigorovici, R.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
[Crossref]

Hagen, W. F.

W. F. Hagen and P. C. Magnante, “Efficient Second Harmonic Generation with Diffraction Limited and High Spectral Radiance Nd Glass Lasers,” J. Appl. Phys. 40(1), 219–224 (1969).
[Crossref]

Hansch, T. W.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Harding, W. R.

H. A. Gebbie, W. R. Harding, C. Hilsum, A. W. Pryce, and V. Roberts, “Atmospheric Transmission in the 1 to 14 μm Region,” P. Roy. Soc. A: Math. Phy. 206(1084), 87–107 (1951).
[Crossref]

Heimann, R. B.

J. Stade, L. Bohatý, M. Hengst, and R. B. Heimann, “Electro‐optic, Piezoelectric and Dielectric Properties of Langasite (La3Ga5SiO14), Langanite (La3Ga5.5Nb0.5O14) and Langataite (La3Ga5.5Ta0. 5O14),” Cryst. Res. Technol. 37(10), 1113–1120 (2002).
[Crossref]

Hengst, M.

J. Stade, L. Bohatý, M. Hengst, and R. B. Heimann, “Electro‐optic, Piezoelectric and Dielectric Properties of Langasite (La3Ga5SiO14), Langanite (La3Ga5.5Nb0.5O14) and Langataite (La3Ga5.5Ta0. 5O14),” Cryst. Res. Technol. 37(10), 1113–1120 (2002).
[Crossref]

Hilsum, C.

H. A. Gebbie, W. R. Harding, C. Hilsum, A. W. Pryce, and V. Roberts, “Atmospheric Transmission in the 1 to 14 μm Region,” P. Roy. Soc. A: Math. Phy. 206(1084), 87–107 (1951).
[Crossref]

Hu, X.

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, “Growth and characterization of La3Ga5.5Ta0.5O14 crystal,” Cryst. Res. Technol. 39(8), 686–691 (2004).
[Crossref]

Huang, C.

H. Zhu, G. Zhang, C. Huang, H. Wang, Y. Wei, Y. Lin, L. Huang, G. Qiu, and Y. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun. 282(4), 601–604 (2009).
[Crossref]

Huang, L.

H. Zhu, G. Zhang, C. Huang, H. Wang, Y. Wei, Y. Lin, L. Huang, G. Qiu, and Y. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun. 282(4), 601–604 (2009).
[Crossref]

Huang, Y.

H. Zhu, G. Zhang, C. Huang, H. Wang, Y. Wei, Y. Lin, L. Huang, G. Qiu, and Y. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun. 282(4), 601–604 (2009).
[Crossref]

Inabe, Y.

M. Kitaura, K. Mochizuki, Y. Inabe, M. Itoh, H. Nakagawa, and S. Oishi, “Fundamental optical properties and electronic structure of langasite La3Ga5SiO14 crystals,” Phys. Rev. B 69(11), 115120 (2004).
[Crossref]

Ishizuki, H.

Itoh, M.

M. Kitaura, K. Mochizuki, Y. Inabe, M. Itoh, H. Nakagawa, and S. Oishi, “Fundamental optical properties and electronic structure of langasite La3Ga5SiO14 crystals,” Phys. Rev. B 69(11), 115120 (2004).
[Crossref]

Ivanov, A.

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70(1), 247–252 (2000).
[Crossref]

Jaffe, J. E.

J. E. Jaffe and A. Zunger, “Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors,” Phys. Rev. B 29(4), 1882–1906 (1984).
[Crossref]

Jegouso, D.

Jelínek, M.

Jerphagnon, J.

J. Jerphagnon and S. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41(4), 1667–1681 (1970).
[Crossref]

Jiang, A.

Jiang, M.

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, “Growth and characterization of La3Ga5.5Ta0.5O14 crystal,” Cryst. Res. Technol. 39(8), 686–691 (2004).
[Crossref]

Kitaura, M.

M. Kitaura, K. Mochizuki, Y. Inabe, M. Itoh, H. Nakagawa, and S. Oishi, “Fundamental optical properties and electronic structure of langasite La3Ga5SiO14 crystals,” Phys. Rev. B 69(11), 115120 (2004).
[Crossref]

Kondo, T.

Kong, H.

H. Kong, J. Wang, H. Zhang, and X. Yin, “Growth and characterization of La3Ga5.5Nb0.5O14 crystal,” J. Cryst. Growth 292(2), 408–411 (2006).
[Crossref]

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, “Growth and characterization of La3Ga5.5Ta0.5O14 crystal,” Cryst. Res. Technol. 39(8), 686–691 (2004).
[Crossref]

Kubecek, V.

Kumar, S. C.

Kurtz, S.

J. Jerphagnon and S. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41(4), 1667–1681 (1970).
[Crossref]

Kuz’micheva, G.

G. Kuz’micheva, E. Tyunina, E. Domoroshchina, V. Rybakov, and A. Dubovskii, “X-ray Diffraction Study of La3Ga5.5Ta0.5O14 and La3Ga5.5Nb0.5O14 Langasite-Type Single Crystals,” Inorg. Mater. 41(4), 485–492 (2005).

Li, R.

C. Chen, Y. Wu, and R. Li, “The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series,” Int. Rev. Phys. Chem. 8(1), 65–91 (1989).
[Crossref]

C. Chen, A. Jiang, B. Wu, G. You, R. Li, and S. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B 6(4), 616–621 (1989).
[Crossref]

Lin, S.

Lin, Y.

H. Zhu, G. Zhang, C. Huang, H. Wang, Y. Wei, Y. Lin, L. Huang, G. Qiu, and Y. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun. 282(4), 601–604 (2009).
[Crossref]

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, “Growth and characterization of La3Ga5.5Ta0.5O14 crystal,” Cryst. Res. Technol. 39(8), 686–691 (2004).
[Crossref]

Lin, Z.

J. Yao, D. Mei, L. Bai, Z. Lin, W. Yin, P. Fu, and Y. Wu, “BaGa4Se7: a new congruent-melting IR nonlinear optical material,” Inorg. Chem. 49(20), 9212–9216 (2010).
[Crossref] [PubMed]

Ling, J. W.

R. H. French, J. W. Ling, F. S. Ohuchi, and C. T. Chen, “Electronic structure of β -BaB2O4 and LiB3O5 nonlinear optical crystals,” Phys. Rev. B Condens. Matter 44(16), 8496–8502 (1991).
[Crossref] [PubMed]

Liu, C.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photonics Rev. 7(6), 1–8 (2013).

Liu, Y.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photonics Rev. 7(6), 1–8 (2013).

Lupinski, D.

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70(1), 247–252 (2000).
[Crossref]

Magnante, P. C.

W. F. Hagen and P. C. Magnante, “Efficient Second Harmonic Generation with Diffraction Limited and High Spectral Radiance Nd Glass Lasers,” J. Appl. Phys. 40(1), 219–224 (1969).
[Crossref]

Marnier, G.

B. Boulanger and G. Marnier, “Field factor calculation for the study of the relationships between all the three-wave nonlinear optical interactions in uniaxial and biaxial crystals,” J. Phys. Condens. Matter 3(43), 8327–8350 (1991).
[Crossref]

Maximov, B.

A. Pavlovska, S. Werner, B. Maximov, and B. Mill, “Pressure-induced phase transitions of piezoelectric single crystals from the langasite family: La3Nb0.5Ga5.5O14 and La3Ta0.5Ga5.5O14.,” Acta Crystallogr. B 58(Pt 6), 939–947 (2002).
[Crossref] [PubMed]

Mei, D.

J. Yao, D. Mei, L. Bai, Z. Lin, W. Yin, P. Fu, and Y. Wu, “BaGa4Se7: a new congruent-melting IR nonlinear optical material,” Inorg. Chem. 49(20), 9212–9216 (2010).
[Crossref] [PubMed]

Ménaert, B.

Mill, B.

A. Pavlovska, S. Werner, B. Maximov, and B. Mill, “Pressure-induced phase transitions of piezoelectric single crystals from the langasite family: La3Nb0.5Ga5.5O14 and La3Ta0.5Ga5.5O14.,” Acta Crystallogr. B 58(Pt 6), 939–947 (2002).
[Crossref] [PubMed]

Mochizuki, K.

M. Kitaura, K. Mochizuki, Y. Inabe, M. Itoh, H. Nakagawa, and S. Oishi, “Fundamental optical properties and electronic structure of langasite La3Ga5SiO14 crystals,” Phys. Rev. B 69(11), 115120 (2004).
[Crossref]

Murray, J. T.

J. T. Murray, N. Peyghambarian, and R. C. Powell, “Near infrared optical parametric oscillators,” Opt. Mater. 4(1), 55–60 (1994).
[Crossref]

Nakagawa, H.

M. Kitaura, K. Mochizuki, Y. Inabe, M. Itoh, H. Nakagawa, and S. Oishi, “Fundamental optical properties and electronic structure of langasite La3Ga5SiO14 crystals,” Phys. Rev. B 69(11), 115120 (2004).
[Crossref]

Nikogosyan, D. N.

D. N. Nikogosyan, “Beta barium borate (BBO),” Appl. Phys., A Mater. Sci. Process. 52(6), 359–368 (1991).
[Crossref]

Ohuchi, F. S.

R. H. French, J. W. Ling, F. S. Ohuchi, and C. T. Chen, “Electronic structure of β -BaB2O4 and LiB3O5 nonlinear optical crystals,” Phys. Rev. B Condens. Matter 44(16), 8496–8502 (1991).
[Crossref] [PubMed]

Oishi, S.

M. Kitaura, K. Mochizuki, Y. Inabe, M. Itoh, H. Nakagawa, and S. Oishi, “Fundamental optical properties and electronic structure of langasite La3Ga5SiO14 crystals,” Phys. Rev. B 69(11), 115120 (2004).
[Crossref]

Pacaud, O.

Pavlovska, A.

A. Pavlovska, S. Werner, B. Maximov, and B. Mill, “Pressure-induced phase transitions of piezoelectric single crystals from the langasite family: La3Nb0.5Ga5.5O14 and La3Ta0.5Ga5.5O14.,” Acta Crystallogr. B 58(Pt 6), 939–947 (2002).
[Crossref] [PubMed]

Peyghambarian, N.

J. T. Murray, N. Peyghambarian, and R. C. Powell, “Near infrared optical parametric oscillators,” Opt. Mater. 4(1), 55–60 (1994).
[Crossref]

Picque, N.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Powell, R. C.

J. T. Murray, N. Peyghambarian, and R. C. Powell, “Near infrared optical parametric oscillators,” Opt. Mater. 4(1), 55–60 (1994).
[Crossref]

Pryce, A. W.

H. A. Gebbie, W. R. Harding, C. Hilsum, A. W. Pryce, and V. Roberts, “Atmospheric Transmission in the 1 to 14 μm Region,” P. Roy. Soc. A: Math. Phy. 206(1084), 87–107 (1951).
[Crossref]

Qiu, G.

H. Zhu, G. Zhang, C. Huang, H. Wang, Y. Wei, Y. Lin, L. Huang, G. Qiu, and Y. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun. 282(4), 601–604 (2009).
[Crossref]

Roberts, V.

H. A. Gebbie, W. R. Harding, C. Hilsum, A. W. Pryce, and V. Roberts, “Atmospheric Transmission in the 1 to 14 μm Region,” P. Roy. Soc. A: Math. Phy. 206(1084), 87–107 (1951).
[Crossref]

Rosenman, G.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Roshchupkin, D.

Rybakov, V.

G. Kuz’micheva, E. Tyunina, E. Domoroshchina, V. Rybakov, and A. Dubovskii, “X-ray Diffraction Study of La3Ga5.5Ta0.5O14 and La3Ga5.5Nb0.5O14 Langasite-Type Single Crystals,” Inorg. Mater. 41(4), 485–492 (2005).

Sato, H.

Schliesser, A.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schunemann, P. G.

Segonds, P.

Shoji, I.

Skliar, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Stade, J.

J. Stade, L. Bohatý, M. Hengst, and R. B. Heimann, “Electro‐optic, Piezoelectric and Dielectric Properties of Langasite (La3Ga5SiO14), Langanite (La3Ga5.5Nb0.5O14) and Langataite (La3Ga5.5Ta0. 5O14),” Cryst. Res. Technol. 37(10), 1113–1120 (2002).
[Crossref]

Storz, F. G.

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18(7), 301–304 (1971).
[Crossref]

Suda, J.

Taira, T.

Tauc, J.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
[Crossref]

Tyunina, E.

G. Kuz’micheva, E. Tyunina, E. Domoroshchina, V. Rybakov, and A. Dubovskii, “X-ray Diffraction Study of La3Ga5.5Ta0.5O14 and La3Ga5.5Nb0.5O14 Langasite-Type Single Crystals,” Inorg. Mater. 41(4), 485–492 (2005).

Vancu, A.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
[Crossref]

Vanherzeele, H.

J. D. Bierlein, H. Vanherzeele, and A. A. Ballman, “Linear and nonlinear optical properties of flux-grown KTiOAsO4,” Appl. Phys. Lett. 54(9), 783–785 (1989).
[Crossref]

Veremeichik, T.

T. Veremeichik, “Optical Activity and Crystalline Structure of Crystals of the Langasite Family,” Crystallogr. Rep. 56(6), 1129–1134 (2011).
[Crossref]

Wang, G.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photonics Rev. 7(6), 1–8 (2013).

X. Zhang, X. Wang, G. Wang, Y. Wu, Y. Zhu, and C. Chen, “Determination of the nonlinear optical coefficients of the LixCs(1− x)B3O5 crystals,” J. Opt. Soc. Am. B 24(11), 2877–2882 (2007).
[Crossref]

Wang, H.

H. Zhu, G. Zhang, C. Huang, H. Wang, Y. Wei, Y. Lin, L. Huang, G. Qiu, and Y. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun. 282(4), 601–604 (2009).
[Crossref]

Wang, J.

J. Wang, H. Yu, Y. Cheng, and R. Boughton, “Recent Developments in Functional Crystals in China,” Engineering 1(2), 192–210 (2015).
[Crossref]

H. Kong, J. Wang, H. Zhang, and X. Yin, “Growth and characterization of La3Ga5.5Nb0.5O14 crystal,” J. Cryst. Growth 292(2), 408–411 (2006).
[Crossref]

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, “Growth and characterization of La3Ga5.5Ta0.5O14 crystal,” Cryst. Res. Technol. 39(8), 686–691 (2004).
[Crossref]

Wang, S.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photonics Rev. 7(6), 1–8 (2013).

Wang, X.

Wei, Y.

H. Zhu, G. Zhang, C. Huang, H. Wang, Y. Wei, Y. Lin, L. Huang, G. Qiu, and Y. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun. 282(4), 601–604 (2009).
[Crossref]

Wei, Z.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photonics Rev. 7(6), 1–8 (2013).

Werner, S.

A. Pavlovska, S. Werner, B. Maximov, and B. Mill, “Pressure-induced phase transitions of piezoelectric single crystals from the langasite family: La3Nb0.5Ga5.5O14 and La3Ta0.5Ga5.5O14.,” Acta Crystallogr. B 58(Pt 6), 939–947 (2002).
[Crossref] [PubMed]

Wu, B.

Wu, Y.

J. Yao, D. Mei, L. Bai, Z. Lin, W. Yin, P. Fu, and Y. Wu, “BaGa4Se7: a new congruent-melting IR nonlinear optical material,” Inorg. Chem. 49(20), 9212–9216 (2010).
[Crossref] [PubMed]

X. Zhang, X. Wang, G. Wang, Y. Wu, Y. Zhu, and C. Chen, “Determination of the nonlinear optical coefficients of the LixCs(1− x)B3O5 crystals,” J. Opt. Soc. Am. B 24(11), 2877–2882 (2007).
[Crossref]

C. Chen, Y. Wu, and R. Li, “The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series,” Int. Rev. Phys. Chem. 8(1), 65–91 (1989).
[Crossref]

Xu, C.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photonics Rev. 7(6), 1–8 (2013).

Xu, X.

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, “Growth and characterization of La3Ga5.5Ta0.5O14 crystal,” Cryst. Res. Technol. 39(8), 686–691 (2004).
[Crossref]

Xuan, H.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photonics Rev. 7(6), 1–8 (2013).

Yao, J.

J. Yao, D. Mei, L. Bai, Z. Lin, W. Yin, P. Fu, and Y. Wu, “BaGa4Se7: a new congruent-melting IR nonlinear optical material,” Inorg. Chem. 49(20), 9212–9216 (2010).
[Crossref] [PubMed]

Yao, J. Q.

J. Q. Yao and T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55(1), 65–68 (1984).
[Crossref]

Yin, W.

J. Yao, D. Mei, L. Bai, Z. Lin, W. Yin, P. Fu, and Y. Wu, “BaGa4Se7: a new congruent-melting IR nonlinear optical material,” Inorg. Chem. 49(20), 9212–9216 (2010).
[Crossref] [PubMed]

Yin, X.

H. Kong, J. Wang, H. Zhang, and X. Yin, “Growth and characterization of La3Ga5.5Nb0.5O14 crystal,” J. Cryst. Growth 292(2), 408–411 (2006).
[Crossref]

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, “Growth and characterization of La3Ga5.5Ta0.5O14 crystal,” Cryst. Res. Technol. 39(8), 686–691 (2004).
[Crossref]

You, G.

Yu, H.

J. Wang, H. Yu, Y. Cheng, and R. Boughton, “Recent Developments in Functional Crystals in China,” Engineering 1(2), 192–210 (2015).
[Crossref]

Zawilski, K. T.

Zhan, M.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photonics Rev. 7(6), 1–8 (2013).

Zhang, G.

H. Zhu, G. Zhang, C. Huang, H. Wang, Y. Wei, Y. Lin, L. Huang, G. Qiu, and Y. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun. 282(4), 601–604 (2009).
[Crossref]

Zhang, H.

H. Kong, J. Wang, H. Zhang, and X. Yin, “Growth and characterization of La3Ga5.5Nb0.5O14 crystal,” J. Cryst. Growth 292(2), 408–411 (2006).
[Crossref]

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, “Growth and characterization of La3Ga5.5Ta0.5O14 crystal,” Cryst. Res. Technol. 39(8), 686–691 (2004).
[Crossref]

Zhang, W.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photonics Rev. 7(6), 1–8 (2013).

Zhang, W. Q.

W. Q. Zhang, “Optical parametric generation for biaxial crystal,” Opt. Commun. 105(3), 226–232 (1994).
[Crossref]

Zhang, X.

Zhu, H.

H. Zhu, G. Zhang, C. Huang, H. Wang, Y. Wei, Y. Lin, L. Huang, G. Qiu, and Y. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun. 282(4), 601–604 (2009).
[Crossref]

Zhu, Y.

Zunger, A.

J. E. Jaffe and A. Zunger, “Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors,” Phys. Rev. B 29(4), 1882–1906 (1984).
[Crossref]

Acta Crystallogr. B (1)

A. Pavlovska, S. Werner, B. Maximov, and B. Mill, “Pressure-induced phase transitions of piezoelectric single crystals from the langasite family: La3Nb0.5Ga5.5O14 and La3Ta0.5Ga5.5O14.,” Acta Crystallogr. B 58(Pt 6), 939–947 (2002).
[Crossref] [PubMed]

Appl. Phys. B (1)

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70(1), 247–252 (2000).
[Crossref]

Appl. Phys. Lett. (4)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[Crossref]

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18(7), 301–304 (1971).
[Crossref]

J. D. Bierlein, H. Vanherzeele, and A. A. Ballman, “Linear and nonlinear optical properties of flux-grown KTiOAsO4,” Appl. Phys. Lett. 54(9), 783–785 (1989).
[Crossref]

W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65(22), 2765–2767 (1994).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

D. N. Nikogosyan, “Beta barium borate (BBO),” Appl. Phys., A Mater. Sci. Process. 52(6), 359–368 (1991).
[Crossref]

C. R. Phys. (1)

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Cryst. Res. Technol. (2)

H. Kong, J. Wang, H. Zhang, X. Yin, X. Cheng, Y. Lin, X. Hu, X. Xu, and M. Jiang, “Growth and characterization of La3Ga5.5Ta0.5O14 crystal,” Cryst. Res. Technol. 39(8), 686–691 (2004).
[Crossref]

J. Stade, L. Bohatý, M. Hengst, and R. B. Heimann, “Electro‐optic, Piezoelectric and Dielectric Properties of Langasite (La3Ga5SiO14), Langanite (La3Ga5.5Nb0.5O14) and Langataite (La3Ga5.5Ta0. 5O14),” Cryst. Res. Technol. 37(10), 1113–1120 (2002).
[Crossref]

Crystallogr. Rep. (1)

T. Veremeichik, “Optical Activity and Crystalline Structure of Crystals of the Langasite Family,” Crystallogr. Rep. 56(6), 1129–1134 (2011).
[Crossref]

Engineering (1)

J. Wang, H. Yu, Y. Cheng, and R. Boughton, “Recent Developments in Functional Crystals in China,” Engineering 1(2), 192–210 (2015).
[Crossref]

Ferroelectrics (2)

D. Eimerl, “Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72(1), 95–139 (1987).
[Crossref]

L. K. Cheng and J. D. Bierlein, “KTP and isomorphs-recent progress in device and material development,” Ferroelectrics 142(1), 209–228 (1993).
[Crossref]

Inorg. Chem. (1)

J. Yao, D. Mei, L. Bai, Z. Lin, W. Yin, P. Fu, and Y. Wu, “BaGa4Se7: a new congruent-melting IR nonlinear optical material,” Inorg. Chem. 49(20), 9212–9216 (2010).
[Crossref] [PubMed]

Inorg. Mater. (1)

G. Kuz’micheva, E. Tyunina, E. Domoroshchina, V. Rybakov, and A. Dubovskii, “X-ray Diffraction Study of La3Ga5.5Ta0.5O14 and La3Ga5.5Nb0.5O14 Langasite-Type Single Crystals,” Inorg. Mater. 41(4), 485–492 (2005).

Int. Rev. Phys. Chem. (1)

C. Chen, Y. Wu, and R. Li, “The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series,” Int. Rev. Phys. Chem. 8(1), 65–91 (1989).
[Crossref]

J. Appl. Phys. (3)

J. Jerphagnon and S. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41(4), 1667–1681 (1970).
[Crossref]

W. F. Hagen and P. C. Magnante, “Efficient Second Harmonic Generation with Diffraction Limited and High Spectral Radiance Nd Glass Lasers,” J. Appl. Phys. 40(1), 219–224 (1969).
[Crossref]

J. Q. Yao and T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55(1), 65–68 (1984).
[Crossref]

J. Cryst. Growth (1)

H. Kong, J. Wang, H. Zhang, and X. Yin, “Growth and characterization of La3Ga5.5Nb0.5O14 crystal,” J. Cryst. Growth 292(2), 408–411 (2006).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. Condens. Matter (1)

B. Boulanger and G. Marnier, “Field factor calculation for the study of the relationships between all the three-wave nonlinear optical interactions in uniaxial and biaxial crystals,” J. Phys. Condens. Matter 3(43), 8327–8350 (1991).
[Crossref]

Laser Photonics Rev. (1)

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photonics Rev. 7(6), 1–8 (2013).

Nat. Photonics (2)

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Opt. Commun. (2)

W. Q. Zhang, “Optical parametric generation for biaxial crystal,” Opt. Commun. 105(3), 226–232 (1994).
[Crossref]

H. Zhu, G. Zhang, C. Huang, H. Wang, Y. Wei, Y. Lin, L. Huang, G. Qiu, and Y. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun. 282(4), 601–604 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (1)

J. T. Murray, N. Peyghambarian, and R. C. Powell, “Near infrared optical parametric oscillators,” Opt. Mater. 4(1), 55–60 (1994).
[Crossref]

P. Roy. Soc. A: Math. Phy. (1)

H. A. Gebbie, W. R. Harding, C. Hilsum, A. W. Pryce, and V. Roberts, “Atmospheric Transmission in the 1 to 14 μm Region,” P. Roy. Soc. A: Math. Phy. 206(1084), 87–107 (1951).
[Crossref]

Phys. Rev. B (2)

M. Kitaura, K. Mochizuki, Y. Inabe, M. Itoh, H. Nakagawa, and S. Oishi, “Fundamental optical properties and electronic structure of langasite La3Ga5SiO14 crystals,” Phys. Rev. B 69(11), 115120 (2004).
[Crossref]

J. E. Jaffe and A. Zunger, “Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors,” Phys. Rev. B 29(4), 1882–1906 (1984).
[Crossref]

Phys. Rev. B Condens. Matter (1)

R. H. French, J. W. Ling, F. S. Ohuchi, and C. T. Chen, “Electronic structure of β -BaB2O4 and LiB3O5 nonlinear optical crystals,” Phys. Rev. B Condens. Matter 44(16), 8496–8502 (1991).
[Crossref] [PubMed]

Phys. Status Solidi (1)

J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Status Solidi 15(2), 627–637 (1966).
[Crossref]

Other (3)

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 2013).

“Lasers and laser-related equipment-determination of laser-induced damage threshold of optical surface-part 1: 1-on-1 test” ISO Report No. 11254–1-2000.

B. Boulanger and J. Zyss, International Tables for Crystallography (Academic Publisher, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) An as-grown LGN crystal using the Czochralski method; (b) Orientation between the crystallographic (red) and the dielectric (blue) frames.
Fig. 2
Fig. 2 (a) The fragment of the structure of LGN crystal; (b) polyhedrons of (LaO8), (GaO4) and (NbO6).
Fig. 3
Fig. 3 LGN polarized (a) and unpolarized (b) transmission spectra as a function of wavelength through a 2-mm-thick and x-cut slab. The inset of (a) corresponds to a zoom of the ultraviolet edge and the insets of (b) are the (αhv)2 versus hv curves for determining the ultraviolet (above) and infrared (below) cut-offs.
Fig. 4
Fig. 4 Measured principal refractive indices no and ne plotted as a function of wavelength (dots), and fit of these experimental data (continuous lines). The picture shows the oriented centimeter-size LGN prism that was used.
Fig. 5
Fig. 5 Orientation and polarization schemes of LGN (a) and KDP (b) slabs.
Fig. 6
Fig. 6 Recorded (black points), fit of experimental data (red line) and of the envelope (blue line) of the Maker Fringes pattern involving d11 coefficient of LGN.
Fig. 7
Fig. 7 Calculated type I SHG tuning curve as a function of the phase-matching angle θPM in the (y,z) plane of LGN.
Fig. 8
Fig. 8 Calculated tuning curves of (a) type I SFG and (b) type III SFG, with λ2 = 1.5 μm as a function of the phase-matching angle θPM in the (y,z) and (x,z) planes of LGN, respectively.
Fig. 9
Fig. 9 (a) Calculated tuning curves of (a) type II DFG and (b) type I DFG, with λ2 = 1.064 μm as a function of the phase-matching angle θPM in the (y,z) and (x,z) planes of LGN, respectively.
Fig. 10
Fig. 10 (a) Second-order effective coefficents d e f f y z ( λ 1 , θ P M ) (blue continuous line) and d e f f x z ( λ 1 , θ P M ) (blue dashed line), and walk-off angle (black continuous line for (y,z) plane and black dashed line for (x,z) plane) as a function of the generated phase-matching wavelength λ1. (b) Angular and spectral acceptances (continuous line for (y,z) plane and dashed line for (x,z) plane) as a function of λ3 in LGN. They are associated to type II- and type I- DFG tuning curves of Fig. 9 in LGN, respectively.
Fig. 11
Fig. 11 Calculated type II-OPG tuning curves in the (y, z) plane of LGN with a pump wavelength of (a) 1.064 μm, (b) 0.98 μm, 0.88 μm, and 0.78 μm. λi and λs are the idler and signal wavelengths, respectively.
Fig. 12
Fig. 12 Recorded spectra (black lines for the OSA205, Thorlabs Inc. and the inset for YOKOGAWA AQ 6315A spectrum analyzer) at the output of a LGN-OPG pumped by a Nd:YAG laser at 1.064 μm. Arrows mark calculations using our Sellmeier equations (blue) and the dispersion equations of [12] (red).

Tables (2)

Tables Icon

Table 1 Ordinary (no) and extraordinary (ne) principal refractive indices, and corresponding maximal value of birefringenceΔn = (neno) as a function of wavelength in LGN.

Tables Icon

Table 2 Comparison of some parameters of LGN with other nonlinear crystals that can be used in OPG for an emission between 2 µm and 6 µm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

n e 2 ( λ ) = 3.79511 + 0.0500 λ 2 0.03405 0.00964 λ 2
n o 2 ( λ ) = 3.68270 + 0.0464 λ 2 0.02980 0.00870 λ 2
P ( λ 2 ω , α ) = β f ( α ) d i j 2 P 2 ( λ ω ) L 2 w 2 sin c 2 [ ψ ( α ) ]
f ( α ) = cos ( α ) 2366 λ ω 2 T ( λ 2 ω , α ) T 2 ( λ ω , α ) A ( λ 2 ω , α ) A 2 ( λ ω , α )
ψ ( α ) = 2 π L λ ω [ n 2 ( λ 2 ω , α ) sin 2 ( α ) n 2 ( λ ω , α ) sin 2 ( α ) ]
d 11 2 ( λ 2 ω ) d 36 2 ( λ 2 ω ) = P L G N ( λ 2 ω , 0 ) P K D P ( λ 2 ω , 0 ) L K D P 2 L L G N 2 f K D P ( 0 ) f L G N ( 0 ) sin c 2 [ ψ K D P ( 0 ) ] sin c 2 [ ψ L G N ( 0 ) ]
ψ L G N ( 0 ) = 2 π L L G N λ ω [ n o ( λ 2 ω ) n e ( λ ω ) ]
ψ K D P ( 0 ) = 2 π L K D P λ ω [ n e ( λ 2 ω ) n o ( λ ω ) ]
( Δ θ L ) y z = λ 1 λ 2 { sin 2 θ [ λ 1 ( n o ( λ 2 ) 2 n e ( λ 2 ) 2 ) n e 3 ( λ 2 , θ ) + λ 2 ( n o ( λ 1 ) 2 n e ( λ 1 ) 2 ) n e 3 ( λ 1 , θ ) ] } - 1
( Δ θ L ) x z = λ 1 [ sin 2 θ ( n o ( λ 1 ) 2 n e ( λ 1 ) 2 ) n e 3 ( λ 1 , θ ) ] - 1
Δ λ L = 0.5 { n e ( λ 1 ) ( λ 1 0.9398 λ 1 λ 3 ) 2 [ 0.00964 + 0.05 ( λ 1 2 0.03405 ) 2 ] n e ( λ 1 ) 1 ( 1 0.9398 λ 3 ) 2 [ 0.0087 + 0.0464 ( λ 3 2 0.0298 ) 2 ] n o ( λ 3 ) n o ( λ 3 ) λ 3 2 } 1

Metrics