Abstract

An electrically controllable plasmonic enhanced coherent random lasing from the dye-doped nematic liquid crystal containing Au nanoparticles is demonstrated. To achieve the optimal control of the RL properties, the polarization of the pump light should be parallel to the rubbing direction of the cells. The lasing output intensity is direction-dependent and the substantial output distributes in an angle range of 0°~30° deviating from the direction of the pump stripe. The coherent feedback associated with the coherent random lasing mainly originates from the cooperative effect of the enhanced localized electric field in the vicinity of Au nanoparticles and the multiple scattering caused by the fluctuations of the liquid crystal director and local dielectric tensor.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Random lasing assisted by CuSO4 and Au nanoparticles in random gain systems

Zhenzhen Shang, Zhi Tao, and Luogen Deng
Opt. Mater. Express 7(6) 1848-1857 (2017)

Polarization and polarization control of random lasers from dye-doped nematic liquid crystals

Fengfeng Yao, Wenlong Zhou, Huanting Bian, Yu Zhang, Yanbo Pei, Xiudong Sun, and Zhiwei Lv
Opt. Lett. 38(9) 1557-1559 (2013)

All-optical guided-wave random laser in nematic liquid crystals

Sreekanth Perumbilavil, Armando Piccardi, Oleksandr Buchnev, Martti Kauranen, Giuseppe Strangi, and Gaetano Assanto
Opt. Express 25(5) 4672-4679 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
    [Crossref]
  2. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
    [Crossref]
  3. L. W. Li, L. Wang, and L. G. Deng, “Low threshold random lasing in DDPDLCs, DDPDLC@ZnO nanoparticles and dye solution@ZnO nanoparticle capillaries,” Laser Phys. Lett. 11(2), 025201 (2014).
    [Crossref]
  4. T. M. Sun, C. S. Wang, C. S. Liao, S. Y. Lin, P. Perumal, C. W. Chiang, and Y. F. Chen, “Stretchable Random Lasers with Tunable Coherent Loops,” ACS Nano 9(12), 12436–12441 (2015).
    [Crossref] [PubMed]
  5. T. Nakamura, B. P. Tiwari, and S. Adachi, “Control of random lasing in ZnO/Al2O3 nanopowders,” Appl. Phys. Lett. 99(23), 231105 (2011).
    [Crossref]
  6. X. G. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
    [Crossref]
  7. A. Consoli, D. Mariano da Silva, N. U. Wetter, and C. López, “Large area resonant feedback random lasers based on dye-doped biopolymer films,” Opt. Express 23(23), 29954–29963 (2015).
    [Crossref] [PubMed]
  8. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
    [Crossref]
  9. G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14(17), 7737–7744 (2006).
    [Crossref] [PubMed]
  10. C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express 20(21), 23978–23984 (2012).
    [Crossref] [PubMed]
  11. J.-L. Zhu, W.-H. Li, Y. Sun, J.-G. Lu, X.-L. Song, C.-Y. Chen, Z. Zhang, and Y. Su, “Random laser emission in a sphere-phase liquid crystal,” Appl. Phys. Lett. 106(19), 191903 (2015).
    [Crossref]
  12. D. S. Wiersma and S. Cavalieri, “Temperature-controlled random laser action in liquid crystal infiltrated systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 056612 (2002).
    [Crossref] [PubMed]
  13. L. Wang, M. Wang, M. C. Yang, L. J. Shi, H. Yang, and L. G. Deng, “Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization,” Chin. Phys. B (to be published).
  14. R. N. Wu, J. Wu, X. J. Wu, and Q. Dai, “Temperature-tunable lasing in negative dielectric chiral nematic liquid crystal,” Chin. Phys. B 24(5), 054211 (2015).
    [Crossref]
  15. D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
    [Crossref] [PubMed]
  16. S. Ferjani, V. Barna, A. De Luca, C. Versace, and G. Strangi, “Random lasing in freely suspended dye-doped nematic liquid crystals,” Opt. Lett. 33(6), 557–559 (2008).
    [Crossref] [PubMed]
  17. S. Ferjani, L. Sorriso-Valvo, A. De Luca, V. Barna, R. De Marco, and G. Strangi, “Statistical analysis of random lasing emission properties in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 011707 (2008).
    [Crossref] [PubMed]
  18. S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17(3), 2042–2047 (2009).
    [Crossref] [PubMed]
  19. C. R. Lee, J. D. Lin, B. Y. Huang, T. S. Mo, and S. Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18(25), 25896–25905 (2010).
    [Crossref] [PubMed]
  20. C. R. Lee, J. D. Lin, B. Y. Huang, S. H. Lin, T. S. Mo, S. Y. Huang, C. T. Kuo, and H. C. Yeh, “Electrically controllable liquid crystal random lasers below the Fréedericksz transition threshold,” Opt. Express 19(3), 2391–2400 (2011).
    [Crossref] [PubMed]
  21. C. R. Lee, S. H. Lin, J. W. Guo, J. D. Lin, H. L. Lin, Y. C. Zheng, C. L. Ma, C. T. Horng, H. Y. Sun, and S. Y. Huang, “Electrically and thermally controllable nanoparticle random laser in a well-aligned dye-doped liquid crystal cell,” Opt. Mater. Express 5(6), 1469–1481 (2015).
    [Crossref]
  22. J. Ziegler, M. Djiango, C. Vidal, C. Hrelescu, and T. A. Klar, “Gold nanostars for random lasing enhancement,” Opt. Express 23(12), 15152–15159 (2015).
    [Crossref] [PubMed]
  23. S. Ning, Z. Wu, H. Dong, L. Ma, B. Jiao, L. Ding, L. Ding, and F. Zhang, “The enhanced random lasing from dye-doped polymer films with different-sized silver nanoparticles,” Org. Electron. 30, 165–170 (2016).
    [Crossref]
  24. G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
    [Crossref]
  25. X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
    [Crossref] [PubMed]
  26. L. W. Li and L. G. Deng, “Random lasers in dye-doped polymer-dispersed liquid crystals containing silver nanoparticles,” Physica B 407(24), 4826–4830 (2012).
    [Crossref]
  27. C. Wang and L. G. Deng, “Electrically controlled plasmonic lasing resonances with silver nanoparticles embedded in amplifying nematic liquid crystals,” Laser Phys. Lett. 11(11), 115814 (2014).
    [Crossref]
  28. Z. Hu, Y. Liang, P. Gao, H. Jiang, J. Chen, S. Jiang, and K. Xie, “Random lasing from dye doped polymer optical fiber containing gold nanoparticles,” J. Opt. 17(12), 125403 (2015).
    [Crossref]
  29. T. Zhai, Z. Xu, X. Wu, Y. Wang, F. Liu, and X. Zhang, “Ultra-thin plasmonic random lasers,” Opt. Express 24(1), 437–442 (2016).
    [Crossref] [PubMed]
  30. W. Z. W. Ismail, T. P. Vo, E. M. Goldys, and J. M. Dawes, “Plasmonic enhancement of Rhodamine dye random lasers,” Laser Phys. 25(8), 085001 (2015).
    [Crossref]
  31. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333(2), 848–872 (1988).
    [Crossref]
  32. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
    [Crossref]
  33. B. T. Draine and P. J. Flatau, “User Guide for the Discrete Dipole Approximation Code DDSCAT 7.3,” (2013).
  34. I.-C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (John Wiley & Sons, Inc., 1995).

2016 (2)

S. Ning, Z. Wu, H. Dong, L. Ma, B. Jiao, L. Ding, L. Ding, and F. Zhang, “The enhanced random lasing from dye-doped polymer films with different-sized silver nanoparticles,” Org. Electron. 30, 165–170 (2016).
[Crossref]

T. Zhai, Z. Xu, X. Wu, Y. Wang, F. Liu, and X. Zhang, “Ultra-thin plasmonic random lasers,” Opt. Express 24(1), 437–442 (2016).
[Crossref] [PubMed]

2015 (8)

W. Z. W. Ismail, T. P. Vo, E. M. Goldys, and J. M. Dawes, “Plasmonic enhancement of Rhodamine dye random lasers,” Laser Phys. 25(8), 085001 (2015).
[Crossref]

Z. Hu, Y. Liang, P. Gao, H. Jiang, J. Chen, S. Jiang, and K. Xie, “Random lasing from dye doped polymer optical fiber containing gold nanoparticles,” J. Opt. 17(12), 125403 (2015).
[Crossref]

C. R. Lee, S. H. Lin, J. W. Guo, J. D. Lin, H. L. Lin, Y. C. Zheng, C. L. Ma, C. T. Horng, H. Y. Sun, and S. Y. Huang, “Electrically and thermally controllable nanoparticle random laser in a well-aligned dye-doped liquid crystal cell,” Opt. Mater. Express 5(6), 1469–1481 (2015).
[Crossref]

J. Ziegler, M. Djiango, C. Vidal, C. Hrelescu, and T. A. Klar, “Gold nanostars for random lasing enhancement,” Opt. Express 23(12), 15152–15159 (2015).
[Crossref] [PubMed]

T. M. Sun, C. S. Wang, C. S. Liao, S. Y. Lin, P. Perumal, C. W. Chiang, and Y. F. Chen, “Stretchable Random Lasers with Tunable Coherent Loops,” ACS Nano 9(12), 12436–12441 (2015).
[Crossref] [PubMed]

A. Consoli, D. Mariano da Silva, N. U. Wetter, and C. López, “Large area resonant feedback random lasers based on dye-doped biopolymer films,” Opt. Express 23(23), 29954–29963 (2015).
[Crossref] [PubMed]

J.-L. Zhu, W.-H. Li, Y. Sun, J.-G. Lu, X.-L. Song, C.-Y. Chen, Z. Zhang, and Y. Su, “Random laser emission in a sphere-phase liquid crystal,” Appl. Phys. Lett. 106(19), 191903 (2015).
[Crossref]

R. N. Wu, J. Wu, X. J. Wu, and Q. Dai, “Temperature-tunable lasing in negative dielectric chiral nematic liquid crystal,” Chin. Phys. B 24(5), 054211 (2015).
[Crossref]

2014 (2)

L. W. Li, L. Wang, and L. G. Deng, “Low threshold random lasing in DDPDLCs, DDPDLC@ZnO nanoparticles and dye solution@ZnO nanoparticle capillaries,” Laser Phys. Lett. 11(2), 025201 (2014).
[Crossref]

C. Wang and L. G. Deng, “Electrically controlled plasmonic lasing resonances with silver nanoparticles embedded in amplifying nematic liquid crystals,” Laser Phys. Lett. 11(11), 115814 (2014).
[Crossref]

2012 (2)

L. W. Li and L. G. Deng, “Random lasers in dye-doped polymer-dispersed liquid crystals containing silver nanoparticles,” Physica B 407(24), 4826–4830 (2012).
[Crossref]

C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express 20(21), 23978–23984 (2012).
[Crossref] [PubMed]

2011 (3)

T. Nakamura, B. P. Tiwari, and S. Adachi, “Control of random lasing in ZnO/Al2O3 nanopowders,” Appl. Phys. Lett. 99(23), 231105 (2011).
[Crossref]

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

C. R. Lee, J. D. Lin, B. Y. Huang, S. H. Lin, T. S. Mo, S. Y. Huang, C. T. Kuo, and H. C. Yeh, “Electrically controllable liquid crystal random lasers below the Fréedericksz transition threshold,” Opt. Express 19(3), 2391–2400 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

X. G. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[Crossref]

S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17(3), 2042–2047 (2009).
[Crossref] [PubMed]

2008 (3)

S. Ferjani, V. Barna, A. De Luca, C. Versace, and G. Strangi, “Random lasing in freely suspended dye-doped nematic liquid crystals,” Opt. Lett. 33(6), 557–559 (2008).
[Crossref] [PubMed]

S. Ferjani, L. Sorriso-Valvo, A. De Luca, V. Barna, R. De Marco, and G. Strangi, “Statistical analysis of random lasing emission properties in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 011707 (2008).
[Crossref] [PubMed]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

2006 (1)

2005 (1)

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

2004 (1)

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

2002 (1)

D. S. Wiersma and S. Cavalieri, “Temperature-controlled random laser action in liquid crystal infiltrated systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 056612 (2002).
[Crossref] [PubMed]

2001 (1)

D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

1999 (1)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

1994 (1)

1988 (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333(2), 848–872 (1988).
[Crossref]

Adachi, S.

T. Nakamura, B. P. Tiwari, and S. Adachi, “Control of random lasing in ZnO/Al2O3 nanopowders,” Appl. Phys. Lett. 99(23), 231105 (2011).
[Crossref]

Barna, V.

Bartolino, R.

Cao, H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Cavalieri, S.

D. S. Wiersma and S. Cavalieri, “Temperature-controlled random laser action in liquid crystal infiltrated systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 056612 (2002).
[Crossref] [PubMed]

D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

Chang, R. P. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Chen, C. W.

Chen, C.-Y.

J.-L. Zhu, W.-H. Li, Y. Sun, J.-G. Lu, X.-L. Song, C.-Y. Chen, Z. Zhang, and Y. Su, “Random laser emission in a sphere-phase liquid crystal,” Appl. Phys. Lett. 106(19), 191903 (2015).
[Crossref]

Chen, J.

Z. Hu, Y. Liang, P. Gao, H. Jiang, J. Chen, S. Jiang, and K. Xie, “Random lasing from dye doped polymer optical fiber containing gold nanoparticles,” J. Opt. 17(12), 125403 (2015).
[Crossref]

Chen, Y. F.

T. M. Sun, C. S. Wang, C. S. Liao, S. Y. Lin, P. Perumal, C. W. Chiang, and Y. F. Chen, “Stretchable Random Lasers with Tunable Coherent Loops,” ACS Nano 9(12), 12436–12441 (2015).
[Crossref] [PubMed]

Chiang, C. W.

T. M. Sun, C. S. Wang, C. S. Liao, S. Y. Lin, P. Perumal, C. W. Chiang, and Y. F. Chen, “Stretchable Random Lasers with Tunable Coherent Loops,” ACS Nano 9(12), 12436–12441 (2015).
[Crossref] [PubMed]

Consoli, A.

Dai, Q.

R. N. Wu, J. Wu, X. J. Wu, and Q. Dai, “Temperature-tunable lasing in negative dielectric chiral nematic liquid crystal,” Chin. Phys. B 24(5), 054211 (2015).
[Crossref]

Dawes, J. M.

W. Z. W. Ismail, T. P. Vo, E. M. Goldys, and J. M. Dawes, “Plasmonic enhancement of Rhodamine dye random lasers,” Laser Phys. 25(8), 085001 (2015).
[Crossref]

De Luca, A.

De Marco, R.

S. Ferjani, L. Sorriso-Valvo, A. De Luca, V. Barna, R. De Marco, and G. Strangi, “Statistical analysis of random lasing emission properties in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 011707 (2008).
[Crossref] [PubMed]

Deng, L. G.

C. Wang and L. G. Deng, “Electrically controlled plasmonic lasing resonances with silver nanoparticles embedded in amplifying nematic liquid crystals,” Laser Phys. Lett. 11(11), 115814 (2014).
[Crossref]

L. W. Li, L. Wang, and L. G. Deng, “Low threshold random lasing in DDPDLCs, DDPDLC@ZnO nanoparticles and dye solution@ZnO nanoparticle capillaries,” Laser Phys. Lett. 11(2), 025201 (2014).
[Crossref]

L. W. Li and L. G. Deng, “Random lasers in dye-doped polymer-dispersed liquid crystals containing silver nanoparticles,” Physica B 407(24), 4826–4830 (2012).
[Crossref]

L. Wang, M. Wang, M. C. Yang, L. J. Shi, H. Yang, and L. G. Deng, “Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization,” Chin. Phys. B (to be published).

Dice, G. D.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Ding, L.

S. Ning, Z. Wu, H. Dong, L. Ma, B. Jiao, L. Ding, L. Ding, and F. Zhang, “The enhanced random lasing from dye-doped polymer films with different-sized silver nanoparticles,” Org. Electron. 30, 165–170 (2016).
[Crossref]

S. Ning, Z. Wu, H. Dong, L. Ma, B. Jiao, L. Ding, L. Ding, and F. Zhang, “The enhanced random lasing from dye-doped polymer films with different-sized silver nanoparticles,” Org. Electron. 30, 165–170 (2016).
[Crossref]

Djiango, M.

Dong, H.

S. Ning, Z. Wu, H. Dong, L. Ma, B. Jiao, L. Ding, L. Ding, and F. Zhang, “The enhanced random lasing from dye-doped polymer films with different-sized silver nanoparticles,” Org. Electron. 30, 165–170 (2016).
[Crossref]

Draine, B. T.

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
[Crossref]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333(2), 848–872 (1988).
[Crossref]

B. T. Draine and P. J. Flatau, “User Guide for the Discrete Dipole Approximation Code DDSCAT 7.3,” (2013).

Elezzabi, A. Y.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Ferjani, S.

Flatau, P. J.

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
[Crossref]

B. T. Draine and P. J. Flatau, “User Guide for the Discrete Dipole Approximation Code DDSCAT 7.3,” (2013).

Fujita, K.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. G. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[Crossref]

Gao, P.

Z. Hu, Y. Liang, P. Gao, H. Jiang, J. Chen, S. Jiang, and K. Xie, “Random lasing from dye doped polymer optical fiber containing gold nanoparticles,” J. Opt. 17(12), 125403 (2015).
[Crossref]

Goldys, E. M.

W. Z. W. Ismail, T. P. Vo, E. M. Goldys, and J. M. Dawes, “Plasmonic enhancement of Rhodamine dye random lasers,” Laser Phys. 25(8), 085001 (2015).
[Crossref]

Guo, J. W.

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Horng, C. T.

Hrelescu, C.

Hu, Z.

Z. Hu, Y. Liang, P. Gao, H. Jiang, J. Chen, S. Jiang, and K. Xie, “Random lasing from dye doped polymer optical fiber containing gold nanoparticles,” J. Opt. 17(12), 125403 (2015).
[Crossref]

Huang, B. Y.

Huang, S. Y.

Ismail, W. Z. W.

W. Z. W. Ismail, T. P. Vo, E. M. Goldys, and J. M. Dawes, “Plasmonic enhancement of Rhodamine dye random lasers,” Laser Phys. 25(8), 085001 (2015).
[Crossref]

Jau, H. C.

Jiang, H.

Z. Hu, Y. Liang, P. Gao, H. Jiang, J. Chen, S. Jiang, and K. Xie, “Random lasing from dye doped polymer optical fiber containing gold nanoparticles,” J. Opt. 17(12), 125403 (2015).
[Crossref]

Jiang, S.

Z. Hu, Y. Liang, P. Gao, H. Jiang, J. Chen, S. Jiang, and K. Xie, “Random lasing from dye doped polymer optical fiber containing gold nanoparticles,” J. Opt. 17(12), 125403 (2015).
[Crossref]

Jiao, B.

S. Ning, Z. Wu, H. Dong, L. Ma, B. Jiao, L. Ding, L. Ding, and F. Zhang, “The enhanced random lasing from dye-doped polymer films with different-sized silver nanoparticles,” Org. Electron. 30, 165–170 (2016).
[Crossref]

Khoo, I. C.

Klar, T. A.

Kuo, C. T.

Lee, C. H.

Lee, C. R.

Li, L. W.

L. W. Li, L. Wang, and L. G. Deng, “Low threshold random lasing in DDPDLCs, DDPDLC@ZnO nanoparticles and dye solution@ZnO nanoparticle capillaries,” Laser Phys. Lett. 11(2), 025201 (2014).
[Crossref]

L. W. Li and L. G. Deng, “Random lasers in dye-doped polymer-dispersed liquid crystals containing silver nanoparticles,” Physica B 407(24), 4826–4830 (2012).
[Crossref]

Li, W.-H.

J.-L. Zhu, W.-H. Li, Y. Sun, J.-G. Lu, X.-L. Song, C.-Y. Chen, Z. Zhang, and Y. Su, “Random laser emission in a sphere-phase liquid crystal,” Appl. Phys. Lett. 106(19), 191903 (2015).
[Crossref]

Liang, Y.

Z. Hu, Y. Liang, P. Gao, H. Jiang, J. Chen, S. Jiang, and K. Xie, “Random lasing from dye doped polymer optical fiber containing gold nanoparticles,” J. Opt. 17(12), 125403 (2015).
[Crossref]

Liao, C. S.

T. M. Sun, C. S. Wang, C. S. Liao, S. Y. Lin, P. Perumal, C. W. Chiang, and Y. F. Chen, “Stretchable Random Lasers with Tunable Coherent Loops,” ACS Nano 9(12), 12436–12441 (2015).
[Crossref] [PubMed]

Lin, H. L.

Lin, J. D.

Lin, S. H.

Lin, S. Y.

T. M. Sun, C. S. Wang, C. S. Liao, S. Y. Lin, P. Perumal, C. W. Chiang, and Y. F. Chen, “Stretchable Random Lasers with Tunable Coherent Loops,” ACS Nano 9(12), 12436–12441 (2015).
[Crossref] [PubMed]

Lin, T. H.

Liu, F.

López, C.

Lu, J.-G.

J.-L. Zhu, W.-H. Li, Y. Sun, J.-G. Lu, X.-L. Song, C.-Y. Chen, Z. Zhang, and Y. Su, “Random laser emission in a sphere-phase liquid crystal,” Appl. Phys. Lett. 106(19), 191903 (2015).
[Crossref]

Ma, C. L.

Ma, L.

S. Ning, Z. Wu, H. Dong, L. Ma, B. Jiao, L. Ding, L. Ding, and F. Zhang, “The enhanced random lasing from dye-doped polymer films with different-sized silver nanoparticles,” Org. Electron. 30, 165–170 (2016).
[Crossref]

Mariano da Silva, D.

Matoba, T.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

Meng, X.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

Meng, X. G.

X. G. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[Crossref]

Mo, T. S.

Mujumdar, S.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Murai, S.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. G. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[Crossref]

Nakamura, T.

T. Nakamura, B. P. Tiwari, and S. Adachi, “Control of random lasing in ZnO/Al2O3 nanopowders,” Appl. Phys. Lett. 99(23), 231105 (2011).
[Crossref]

Ning, S.

S. Ning, Z. Wu, H. Dong, L. Ma, B. Jiao, L. Ding, L. Ding, and F. Zhang, “The enhanced random lasing from dye-doped polymer films with different-sized silver nanoparticles,” Org. Electron. 30, 165–170 (2016).
[Crossref]

Perumal, P.

T. M. Sun, C. S. Wang, C. S. Liao, S. Y. Lin, P. Perumal, C. W. Chiang, and Y. F. Chen, “Stretchable Random Lasers with Tunable Coherent Loops,” ACS Nano 9(12), 12436–12441 (2015).
[Crossref] [PubMed]

Polson, R. C.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

Scaramuzza, N.

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Shi, L. J.

L. Wang, M. Wang, M. C. Yang, L. J. Shi, H. Yang, and L. G. Deng, “Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization,” Chin. Phys. B (to be published).

Song, X.-L.

J.-L. Zhu, W.-H. Li, Y. Sun, J.-G. Lu, X.-L. Song, C.-Y. Chen, Z. Zhang, and Y. Su, “Random laser emission in a sphere-phase liquid crystal,” Appl. Phys. Lett. 106(19), 191903 (2015).
[Crossref]

Sorriso-Valvo, L.

S. Ferjani, L. Sorriso-Valvo, A. De Luca, V. Barna, R. De Marco, and G. Strangi, “Statistical analysis of random lasing emission properties in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 011707 (2008).
[Crossref] [PubMed]

Strangi, G.

Su, Y.

J.-L. Zhu, W.-H. Li, Y. Sun, J.-G. Lu, X.-L. Song, C.-Y. Chen, Z. Zhang, and Y. Su, “Random laser emission in a sphere-phase liquid crystal,” Appl. Phys. Lett. 106(19), 191903 (2015).
[Crossref]

Sun, H. Y.

Sun, T. M.

T. M. Sun, C. S. Wang, C. S. Liao, S. Y. Lin, P. Perumal, C. W. Chiang, and Y. F. Chen, “Stretchable Random Lasers with Tunable Coherent Loops,” ACS Nano 9(12), 12436–12441 (2015).
[Crossref] [PubMed]

Sun, Y.

J.-L. Zhu, W.-H. Li, Y. Sun, J.-G. Lu, X.-L. Song, C.-Y. Chen, Z. Zhang, and Y. Su, “Random laser emission in a sphere-phase liquid crystal,” Appl. Phys. Lett. 106(19), 191903 (2015).
[Crossref]

Tanaka, K.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. G. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[Crossref]

Tiwari, B. P.

T. Nakamura, B. P. Tiwari, and S. Adachi, “Control of random lasing in ZnO/Al2O3 nanopowders,” Appl. Phys. Lett. 99(23), 231105 (2011).
[Crossref]

Vardeny, Z. V.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

Versace, C.

Vidal, C.

Vo, T. P.

W. Z. W. Ismail, T. P. Vo, E. M. Goldys, and J. M. Dawes, “Plasmonic enhancement of Rhodamine dye random lasers,” Laser Phys. 25(8), 085001 (2015).
[Crossref]

Wang, C.

C. Wang and L. G. Deng, “Electrically controlled plasmonic lasing resonances with silver nanoparticles embedded in amplifying nematic liquid crystals,” Laser Phys. Lett. 11(11), 115814 (2014).
[Crossref]

Wang, C. S.

T. M. Sun, C. S. Wang, C. S. Liao, S. Y. Lin, P. Perumal, C. W. Chiang, and Y. F. Chen, “Stretchable Random Lasers with Tunable Coherent Loops,” ACS Nano 9(12), 12436–12441 (2015).
[Crossref] [PubMed]

Wang, C. T.

Wang, L.

L. W. Li, L. Wang, and L. G. Deng, “Low threshold random lasing in DDPDLCs, DDPDLC@ZnO nanoparticles and dye solution@ZnO nanoparticle capillaries,” Laser Phys. Lett. 11(2), 025201 (2014).
[Crossref]

L. Wang, M. Wang, M. C. Yang, L. J. Shi, H. Yang, and L. G. Deng, “Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization,” Chin. Phys. B (to be published).

Wang, M.

L. Wang, M. Wang, M. C. Yang, L. J. Shi, H. Yang, and L. G. Deng, “Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization,” Chin. Phys. B (to be published).

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Wang, Y.

Wetter, N. U.

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

D. S. Wiersma and S. Cavalieri, “Temperature-controlled random laser action in liquid crystal infiltrated systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 056612 (2002).
[Crossref] [PubMed]

D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

Wu, J.

R. N. Wu, J. Wu, X. J. Wu, and Q. Dai, “Temperature-tunable lasing in negative dielectric chiral nematic liquid crystal,” Chin. Phys. B 24(5), 054211 (2015).
[Crossref]

Wu, R. N.

R. N. Wu, J. Wu, X. J. Wu, and Q. Dai, “Temperature-tunable lasing in negative dielectric chiral nematic liquid crystal,” Chin. Phys. B 24(5), 054211 (2015).
[Crossref]

Wu, X.

Wu, X. J.

R. N. Wu, J. Wu, X. J. Wu, and Q. Dai, “Temperature-tunable lasing in negative dielectric chiral nematic liquid crystal,” Chin. Phys. B 24(5), 054211 (2015).
[Crossref]

Wu, Z.

S. Ning, Z. Wu, H. Dong, L. Ma, B. Jiao, L. Ding, L. Ding, and F. Zhang, “The enhanced random lasing from dye-doped polymer films with different-sized silver nanoparticles,” Org. Electron. 30, 165–170 (2016).
[Crossref]

Xie, K.

Z. Hu, Y. Liang, P. Gao, H. Jiang, J. Chen, S. Jiang, and K. Xie, “Random lasing from dye doped polymer optical fiber containing gold nanoparticles,” J. Opt. 17(12), 125403 (2015).
[Crossref]

Xu, Z.

Yang, H.

L. Wang, M. Wang, M. C. Yang, L. J. Shi, H. Yang, and L. G. Deng, “Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization,” Chin. Phys. B (to be published).

Yang, M. C.

L. Wang, M. Wang, M. C. Yang, L. J. Shi, H. Yang, and L. G. Deng, “Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization,” Chin. Phys. B (to be published).

Yeh, H. C.

Zhai, T.

Zhang, F.

S. Ning, Z. Wu, H. Dong, L. Ma, B. Jiao, L. Ding, L. Ding, and F. Zhang, “The enhanced random lasing from dye-doped polymer films with different-sized silver nanoparticles,” Org. Electron. 30, 165–170 (2016).
[Crossref]

Zhang, X.

Zhang, Z.

J.-L. Zhu, W.-H. Li, Y. Sun, J.-G. Lu, X.-L. Song, C.-Y. Chen, Z. Zhang, and Y. Su, “Random laser emission in a sphere-phase liquid crystal,” Appl. Phys. Lett. 106(19), 191903 (2015).
[Crossref]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Zheng, Y. C.

Zhu, J.-L.

J.-L. Zhu, W.-H. Li, Y. Sun, J.-G. Lu, X.-L. Song, C.-Y. Chen, Z. Zhang, and Y. Su, “Random laser emission in a sphere-phase liquid crystal,” Appl. Phys. Lett. 106(19), 191903 (2015).
[Crossref]

Ziegler, J.

ACS Nano (1)

T. M. Sun, C. S. Wang, C. S. Liao, S. Y. Lin, P. Perumal, C. W. Chiang, and Y. F. Chen, “Stretchable Random Lasers with Tunable Coherent Loops,” ACS Nano 9(12), 12436–12441 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

T. Nakamura, B. P. Tiwari, and S. Adachi, “Control of random lasing in ZnO/Al2O3 nanopowders,” Appl. Phys. Lett. 99(23), 231105 (2011).
[Crossref]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

J.-L. Zhu, W.-H. Li, Y. Sun, J.-G. Lu, X.-L. Song, C.-Y. Chen, Z. Zhang, and Y. Su, “Random laser emission in a sphere-phase liquid crystal,” Appl. Phys. Lett. 106(19), 191903 (2015).
[Crossref]

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Astrophys. J. (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333(2), 848–872 (1988).
[Crossref]

Chin. Phys. B (1)

R. N. Wu, J. Wu, X. J. Wu, and Q. Dai, “Temperature-tunable lasing in negative dielectric chiral nematic liquid crystal,” Chin. Phys. B 24(5), 054211 (2015).
[Crossref]

J. Opt. (1)

Z. Hu, Y. Liang, P. Gao, H. Jiang, J. Chen, S. Jiang, and K. Xie, “Random lasing from dye doped polymer optical fiber containing gold nanoparticles,” J. Opt. 17(12), 125403 (2015).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Phys. (1)

W. Z. W. Ismail, T. P. Vo, E. M. Goldys, and J. M. Dawes, “Plasmonic enhancement of Rhodamine dye random lasers,” Laser Phys. 25(8), 085001 (2015).
[Crossref]

Laser Phys. Lett. (2)

C. Wang and L. G. Deng, “Electrically controlled plasmonic lasing resonances with silver nanoparticles embedded in amplifying nematic liquid crystals,” Laser Phys. Lett. 11(11), 115814 (2014).
[Crossref]

L. W. Li, L. Wang, and L. G. Deng, “Low threshold random lasing in DDPDLCs, DDPDLC@ZnO nanoparticles and dye solution@ZnO nanoparticle capillaries,” Laser Phys. Lett. 11(2), 025201 (2014).
[Crossref]

Nano Lett. (1)

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

Nat. Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

Nature (1)

D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

Opt. Express (8)

S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17(3), 2042–2047 (2009).
[Crossref] [PubMed]

C. R. Lee, J. D. Lin, B. Y. Huang, T. S. Mo, and S. Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18(25), 25896–25905 (2010).
[Crossref] [PubMed]

C. R. Lee, J. D. Lin, B. Y. Huang, S. H. Lin, T. S. Mo, S. Y. Huang, C. T. Kuo, and H. C. Yeh, “Electrically controllable liquid crystal random lasers below the Fréedericksz transition threshold,” Opt. Express 19(3), 2391–2400 (2011).
[Crossref] [PubMed]

A. Consoli, D. Mariano da Silva, N. U. Wetter, and C. López, “Large area resonant feedback random lasers based on dye-doped biopolymer films,” Opt. Express 23(23), 29954–29963 (2015).
[Crossref] [PubMed]

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14(17), 7737–7744 (2006).
[Crossref] [PubMed]

C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express 20(21), 23978–23984 (2012).
[Crossref] [PubMed]

T. Zhai, Z. Xu, X. Wu, Y. Wang, F. Liu, and X. Zhang, “Ultra-thin plasmonic random lasers,” Opt. Express 24(1), 437–442 (2016).
[Crossref] [PubMed]

J. Ziegler, M. Djiango, C. Vidal, C. Hrelescu, and T. A. Klar, “Gold nanostars for random lasing enhancement,” Opt. Express 23(12), 15152–15159 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Org. Electron. (1)

S. Ning, Z. Wu, H. Dong, L. Ma, B. Jiao, L. Ding, L. Ding, and F. Zhang, “The enhanced random lasing from dye-doped polymer films with different-sized silver nanoparticles,” Org. Electron. 30, 165–170 (2016).
[Crossref]

Phys. Rev. A (1)

X. G. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

S. Ferjani, L. Sorriso-Valvo, A. De Luca, V. Barna, R. De Marco, and G. Strangi, “Statistical analysis of random lasing emission properties in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 011707 (2008).
[Crossref] [PubMed]

D. S. Wiersma and S. Cavalieri, “Temperature-controlled random laser action in liquid crystal infiltrated systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 056612 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Physica B (1)

L. W. Li and L. G. Deng, “Random lasers in dye-doped polymer-dispersed liquid crystals containing silver nanoparticles,” Physica B 407(24), 4826–4830 (2012).
[Crossref]

Other (3)

L. Wang, M. Wang, M. C. Yang, L. J. Shi, H. Yang, and L. G. Deng, “Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization,” Chin. Phys. B (to be published).

B. T. Draine and P. J. Flatau, “User Guide for the Discrete Dipole Approximation Code DDSCAT 7.3,” (2013).

I.-C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (John Wiley & Sons, Inc., 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic setup of the lasing measurement. λ/2, P and NBS are half-wave plate, polarizer beam splitter and neutral beam splitter, respectively. The rubbing direction of the cell, the excited stripe and the polarization of pump light are parallel to the x-axis.

Fig. 2
Fig. 2

Evolution of the emission spectra from (a) Sample 1, (c) Sample 2 and (e) Sample 3 in the cell of 10 μm in thickness. (b), (d) and (f) are the corresponding peak intensity and FWHM as a function of the pump energy.

Fig. 3
Fig. 3

Schematic illustration of the formation of the low threshold RL in the DDNLC containing Au NPs.

Fig. 4
Fig. 4

(a) The emission spectra of Sample 2 in the cells of 10 μm, 17 μm and 26 μm in thickness. The pump energy is fixed at 8.39 μJ/pulse. (b) Evolution of the output intensity versus the pump energy from Sample 2 in different cells.

Fig. 5
Fig. 5

(a) and (b) The emission spectra versus the applied DC electric field from Sample 2 in the cell of 10 μm in thickness at a fixed pump energy of 17.87 μJ/pulse. The polarization of the pump light is (a) parallel and (b) perpendicular to the rubbing direction. The inset shows the variation of the output intensity when the electric field increases from 0 V/μm to 2.1 V/μm. (c) The emission spectra at different DC electric field from Sample 3 in the cell of 17 μm in thickness. The pump energy is fixed at 38.80 μJ/pulse.

Fig. 6
Fig. 6

(a) The schematic diagram of the direction-dependent RL. The variation of the output intensity versus the angle θ from (b) Sample 2 in the cell of 10 μm in thickness and from (c) Sample 3 in the cell of 17 μm in thickness.

Tables (1)

Tables Icon

Table 1 Composition of the three samples.

Metrics