Abstract

An efficient polarization beam splitter (PBS) based on an optofluidic ring resonator (OFRR) is proposed and experimentally demonstrated. The PBS relies on the large effective refractive index difference between transverse-electric (TE) and transverse-magnetic (TM) polarization states, since the silica-microcapillary-based OFRR possesses a slab-like geometry configuration in the cross section through which the circulating light travels. To the best of our knowledge, this is the first OFRR-based PBS. In our work, the maximum polarization splitting ratio of up to 30 dB is achieved. Besides, water and ethanol are pumped into the core of the silica microcapillary respectively, and the maximum wavelength tuning range of 7.02 nm is realized when ethanol flows through the core, verifing the tuning principle of the PBS effectively. With such a good performance and simple scheme, this OFRR-based PBS is promising for applications such as tunable optical filters, demultiplexers, and routers.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

10 August 2016: A correction was made to the author affiliations.


OSA Recommended Articles
Extinction ratio and resonant wavelength tuning using three dimensions of silica microresonators

Song Zhu, Yang Liu, Lei Shi, Xinbiao Xu, and Xinliang Zhang
Photon. Res. 4(5) 191-196 (2016)

Design of a compact polarizing beam splitter based on a photonic crystal ring resonator with a triangular lattice

Tianbao Yu, Jiehui Huang, Nianhua Liu, Jianyi Yang, Qinghua Liao, and Xiaoqing Jiang
Appl. Opt. 49(11) 2168-2172 (2010)

References

  • View by:
  • |
  • |
  • |

  1. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
    [Crossref]
  2. D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
    [Crossref]
  3. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
    [Crossref]
  4. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
    [Crossref] [PubMed]
  5. T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
    [Crossref]
  6. C. Vazquez, J. M. S. Pena, S. E. Vargas, A. L. Aranda, and I. Perez, “Optical router for optical fiber sensor networks based on a liquid crystal cell,” IEEE Sens. J. 3(4), 513–518 (2003).
    [Crossref]
  7. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64(6), 062311 (2001).
    [Crossref]
  8. Y. Zhang, Y. Zhang, and B. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15(15), 9287–9292 (2007).
    [Crossref] [PubMed]
  9. R.-C. Tyan, A. A. Salvekar, H.-P. Chou, C.-C. Cheng, A. Scherer, P.-C. Sun, F. Xu, and Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14(7), 1627–1636 (1997).
    [Crossref]
  10. J. A. Davis, J. Adachi, C. R. Fernández-Pousa, and I. Moreno, “Polarization beam splitters using polarization diffraction gratings,” Opt. Lett. 26(9), 587–589 (2001).
    [Crossref] [PubMed]
  11. T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 17(2), 393–395 (2005).
    [Crossref]
  12. J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
    [Crossref]
  13. K. Saitoh, Y. Sato, and M. Koshiba, “Polarization splitter in three-core photonic crystal fibers,” Opt. Express 12(17), 3940–3946 (2004).
    [Crossref] [PubMed]
  14. L. Wu, M. Mazilu, J.-F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, “Planar photonic crystal polarization splitter,” Opt. Lett. 29(14), 1620–1622 (2004).
    [Crossref] [PubMed]
  15. V. Mocella, P. Dardano, L. Moretti, and I. Rendina, “A polarizing beam splitter using negative refraction of photonic crystals,” Opt. Express 13(19), 7699–7707 (2005).
    [Crossref] [PubMed]
  16. X. Ao and S. He, “Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction,” Opt. Lett. 30(16), 2152–2154 (2005).
    [Crossref] [PubMed]
  17. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photonics Technol. Lett. 17(7), 1435–1437 (2005).
    [Crossref]
  18. Y. Shi, D. Dai, and S. He, “Proposal for an Ultracompact Polarization-Beam Splitter Based on a Photonic-Crystal-Assisted Multimode Interference Coupler,” IEEE Photonics Technol. Lett. 19(9–12), 825–827 (2007).
    [Crossref]
  19. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006).
    [Crossref] [PubMed]
  20. M. A. Komatsu, K. Saitoh, and M. Koshiba, “Design of miniaturized silicon wire and slot waveguide polarization splitterbased on a resonant tunneling,” Opt. Express 17(21), 19225–19233 (2009).
    [Crossref] [PubMed]
  21. D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express 19(19), 18614–18620 (2011).
    [Crossref] [PubMed]
  22. J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38(1), 4–6 (2013).
    [Crossref] [PubMed]
  23. X. Guan, H. Wu, Y. Shi, L. Wosinski, and D. Dai, “Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire,” Opt. Lett. 38(16), 3005–3008 (2013).
    [Crossref] [PubMed]
  24. X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
    [Crossref] [PubMed]
  25. J. Xiao, Y. Xu, and X. Sun, “Proposal for a compact silicon microring resonator-based polarization demultiplexer,” J. Nanophotonics 9(1), 093055 (2015).
    [Crossref]
  26. Q. Huang, Y. Yu, and J. Yu, “Design and realization of a microracetrack resonator based polarization splitter in silicon-on-insulator,” J. Opt. A, Pure Appl. Opt. 11(1), 015506 (2009).
    [Crossref]
  27. X. Xu, H. Gu, Y. Zheng, M. Wei, D. Zheng, R. Xiao, and Z. Qiang, “Polarization beam splitter based on honeycomb-lattice photonic crystal ring resonators,” J. Mod. Opt. 61(5), 373–378 (2014).
    [Crossref]
  28. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  29. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref] [PubMed]
  30. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
    [Crossref] [PubMed]
  31. M. Pöllinger and A. Rauschenbeutel, “All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect,” Opt. Express 18(17), 17764–17775 (2010).
    [Crossref] [PubMed]
  32. Y. Wang, K. Zhang, S. Zhou, Y. H. Wu, M. B. Chi, and P. Hao, “Coupled-mode induced transparency in a bottle whispering-gallery-mode resonator,” Opt. Lett. 41(8), 1825–1828 (2016).
    [Crossref] [PubMed]
  33. E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
    [Crossref] [PubMed]
  34. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
    [Crossref] [PubMed]
  35. X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
    [Crossref] [PubMed]
  36. D. Farnesi, A. Barucci, G. C. Righini, G. N. Conti, and S. Soria, “Generation of hyper-parametric oscillations in silica microbubbles,” Opt. Lett. 40(19), 4508–4511 (2015).
    [Crossref] [PubMed]
  37. N. Riesen, W. Q. Zhang, and T. M. Monro, “Dispersion analysis of whispering gallery mode microbubble resonators,” Opt. Express 24(8), 8832–8847 (2016).
    [Crossref] [PubMed]
  38. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006).
    [Crossref] [PubMed]
  39. Y. Yang, S. Saurabh, J. M. Ward, and S. Nic Chormaic, “High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing,” Opt. Express 24(1), 294–299 (2016).
    [Crossref] [PubMed]
  40. Y. Sun, J. D. Suter, and X. Fan, “Robust integrated optofluidic-ring-resonator dye lasers,” Opt. Lett. 34(7), 1042–1044 (2009).
    [Crossref] [PubMed]
  41. L. Ren, X. Wu, M. Li, X. Zhang, L. Liu, and L. Xu, “Ultrasensitive label-free coupled optofluidic ring laser sensor,” Opt. Lett. 37(18), 3873–3875 (2012).
    [Crossref] [PubMed]
  42. H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
    [Crossref] [PubMed]
  43. K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22(2), 1267–1276 (2014).
    [Crossref] [PubMed]
  44. K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
    [Crossref]
  45. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [Crossref] [PubMed]
  46. S. I. Shopova, Y. Sun, A. T. Rosenberger, and X. Fan, “Highly sensitive tuning of coupled optical ring resonators by microfluidics,” Microfluid. Nanofluidics 6(3), 425–429 (2009).
    [Crossref]
  47. Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
    [Crossref] [PubMed]
  48. S. Leon-Saval, T. Birks, W. Wadsworth, P. St J Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004).
    [Crossref] [PubMed]
  49. M. Oxborrow, “Traceable 2-D Finite-Element Simulation of the Whispering-Gallery Modes of Axisymmetric Electromagnetic Resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
    [Crossref]
  50. Y. Z. Yan, C. L. Zou, S. B. Yan, F. W. Sun, Z. Ji, J. Liu, Y. G. Zhang, L. Wang, C. Y. Xue, W. D. Zhang, Z. F. Han, and J. J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
    [Crossref] [PubMed]
  51. Y. Yan, S. Yan, Z. Ji, J. Liu, C. Xue, W. Zhang, and J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012).
    [Crossref]
  52. T. Tang, X. Wu, L. Liu, and L. Xu, “Packaged optofluidic microbubble resonators for optical sensing,” Appl. Opt. 55(2), 395–399 (2016).
    [Crossref] [PubMed]
  53. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Refractometric sensor based on whispering-gallery modes of thin capillarie,” Opt. Express 15(19), 12011–12016 (2007).
    [Crossref] [PubMed]
  54. H. Gilles, S. Girard, and J. Hamel, “Simple technique for measuring the Goos-Hänchen effect with polarization modulation and a position-sensitive detector,” Opt. Lett. 27(16), 1421–1423 (2002).
    [Crossref] [PubMed]
  55. J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–527 (2014).
    [Crossref]

2016 (4)

2015 (3)

D. Farnesi, A. Barucci, G. C. Righini, G. N. Conti, and S. Soria, “Generation of hyper-parametric oscillations in silica microbubbles,” Opt. Lett. 40(19), 4508–4511 (2015).
[Crossref] [PubMed]

J. Xiao, Y. Xu, and X. Sun, “Proposal for a compact silicon microring resonator-based polarization demultiplexer,” J. Nanophotonics 9(1), 093055 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

2014 (7)

X. Xu, H. Gu, Y. Zheng, M. Wei, D. Zheng, R. Xiao, and Z. Qiang, “Polarization beam splitter based on honeycomb-lattice photonic crystal ring resonators,” J. Mod. Opt. 61(5), 373–378 (2014).
[Crossref]

X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
[Crossref] [PubMed]

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22(2), 1267–1276 (2014).
[Crossref] [PubMed]

K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
[Crossref]

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–527 (2014).
[Crossref]

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (3)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

Y. Yan, S. Yan, Z. Ji, J. Liu, C. Xue, W. Zhang, and J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012).
[Crossref]

L. Ren, X. Wu, M. Li, X. Zhang, L. Liu, and L. Xu, “Ultrasensitive label-free coupled optofluidic ring laser sensor,” Opt. Lett. 37(18), 3873–3875 (2012).
[Crossref] [PubMed]

2011 (4)

Y. Z. Yan, C. L. Zou, S. B. Yan, F. W. Sun, Z. Ji, J. Liu, Y. G. Zhang, L. Wang, C. Y. Xue, W. D. Zhang, Z. F. Han, and J. J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express 19(19), 18614–18620 (2011).
[Crossref] [PubMed]

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (4)

Q. Huang, Y. Yu, and J. Yu, “Design and realization of a microracetrack resonator based polarization splitter in silicon-on-insulator,” J. Opt. A, Pure Appl. Opt. 11(1), 015506 (2009).
[Crossref]

M. A. Komatsu, K. Saitoh, and M. Koshiba, “Design of miniaturized silicon wire and slot waveguide polarization splitterbased on a resonant tunneling,” Opt. Express 17(21), 19225–19233 (2009).
[Crossref] [PubMed]

Y. Sun, J. D. Suter, and X. Fan, “Robust integrated optofluidic-ring-resonator dye lasers,” Opt. Lett. 34(7), 1042–1044 (2009).
[Crossref] [PubMed]

S. I. Shopova, Y. Sun, A. T. Rosenberger, and X. Fan, “Highly sensitive tuning of coupled optical ring resonators by microfluidics,” Microfluid. Nanofluidics 6(3), 425–429 (2009).
[Crossref]

2008 (1)

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[Crossref] [PubMed]

2007 (7)

M. Oxborrow, “Traceable 2-D Finite-Element Simulation of the Whispering-Gallery Modes of Axisymmetric Electromagnetic Resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Refractometric sensor based on whispering-gallery modes of thin capillarie,” Opt. Express 15(19), 12011–12016 (2007).
[Crossref] [PubMed]

Y. Shi, D. Dai, and S. He, “Proposal for an Ultracompact Polarization-Beam Splitter Based on a Photonic-Crystal-Assisted Multimode Interference Coupler,” IEEE Photonics Technol. Lett. 19(9–12), 825–827 (2007).
[Crossref]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Y. Zhang, Y. Zhang, and B. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15(15), 9287–9292 (2007).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (4)

V. Mocella, P. Dardano, L. Moretti, and I. Rendina, “A polarizing beam splitter using negative refraction of photonic crystals,” Opt. Express 13(19), 7699–7707 (2005).
[Crossref] [PubMed]

X. Ao and S. He, “Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction,” Opt. Lett. 30(16), 2152–2154 (2005).
[Crossref] [PubMed]

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photonics Technol. Lett. 17(7), 1435–1437 (2005).
[Crossref]

T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 17(2), 393–395 (2005).
[Crossref]

2004 (4)

2003 (4)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

C. Vazquez, J. M. S. Pena, S. E. Vargas, A. L. Aranda, and I. Perez, “Optical router for optical fiber sensor networks based on a liquid crystal cell,” IEEE Sens. J. 3(4), 513–518 (2003).
[Crossref]

2002 (1)

2001 (2)

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64(6), 062311 (2001).
[Crossref]

J. A. Davis, J. Adachi, C. R. Fernández-Pousa, and I. Moreno, “Polarization beam splitters using polarization diffraction gratings,” Opt. Lett. 26(9), 587–589 (2001).
[Crossref] [PubMed]

1997 (1)

Achiam, Y.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Adachi, J.

Adamczyk, O.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Andrés, M. V.

Ao, X.

Aranda, A. L.

C. Vazquez, J. M. S. Pena, S. E. Vargas, A. L. Aranda, and I. Perez, “Optical router for optical fiber sensor networks based on a liquid crystal cell,” IEEE Sens. J. 3(4), 513–518 (2003).
[Crossref]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Baets, R.

Bahl, G.

K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22(2), 1267–1276 (2014).
[Crossref] [PubMed]

K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
[Crossref]

Barucci, A.

Bauters, J.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

Beom-Hoan, O.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Bhandare, S.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Birks, T.

Bogaerts, W.

Bowers, J. E.

Cheng, C.-C.

Chi, M. B.

Chou, H.-P.

Chu, P. K.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–527 (2014).
[Crossref]

Conti, G. N.

Dai, D.

X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
[Crossref] [PubMed]

J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38(1), 4–6 (2013).
[Crossref] [PubMed]

X. Guan, H. Wu, Y. Shi, L. Wosinski, and D. Dai, “Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire,” Opt. Lett. 38(16), 3005–3008 (2013).
[Crossref] [PubMed]

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express 19(19), 18614–18620 (2011).
[Crossref] [PubMed]

Y. Shi, D. Dai, and S. He, “Proposal for an Ultracompact Polarization-Beam Splitter Based on a Photonic-Crystal-Assisted Multimode Interference Coupler,” IEEE Photonics Technol. Lett. 19(9–12), 825–827 (2007).
[Crossref]

Dardano, P.

Davis, J. A.

De La Rue, R. M.

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Díez, A.

Dumon, P.

Fainman, Y.

Fallahi, M.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photonics Technol. Lett. 17(7), 1435–1437 (2005).
[Crossref]

Fan, X.

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

S. I. Shopova, Y. Sun, A. T. Rosenberger, and X. Fan, “Highly sensitive tuning of coupled optical ring resonators by microfluidics,” Microfluid. Nanofluidics 6(3), 425–429 (2009).
[Crossref]

Y. Sun, J. D. Suter, and X. Fan, “Robust integrated optofluidic-ring-resonator dye lasers,” Opt. Lett. 34(7), 1042–1044 (2009).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[Crossref] [PubMed]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006).
[Crossref] [PubMed]

Farnesi, D.

Fernández-Pousa, C. R.

Franson, J. D.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64(6), 062311 (2001).
[Crossref]

Fukuda, H.

Gallet, J.-F.

Gao, S.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Gilles, H.

Gimeno, B.

Girard, S.

Grossard, N.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Gu, H.

X. Xu, H. Gu, Y. Zheng, M. Wei, D. Zheng, R. Xiao, and Z. Qiang, “Polarization beam splitter based on honeycomb-lattice photonic crystal ring resonators,” J. Mod. Opt. 61(5), 373–378 (2014).
[Crossref]

Guan, X.

Hamel, J.

Han, K.

K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
[Crossref]

K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22(2), 1267–1276 (2014).
[Crossref] [PubMed]

Han, Z. F.

Hao, P.

Hauden, J.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

He, S.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

Y. Shi, D. Dai, and S. He, “Proposal for an Ultracompact Polarization-Beam Splitter Based on a Photonic-Crystal-Assisted Multimode Interference Coupler,” IEEE Photonics Technol. Lett. 19(9–12), 825–827 (2007).
[Crossref]

X. Ao and S. He, “Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction,” Opt. Lett. 30(16), 2152–2154 (2005).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Hoffmann, S.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Holzwarth, R.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Hong, J. M.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Huang, G.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–527 (2014).
[Crossref]

Huang, Q.

Q. Huang, Y. Yu, and J. Yu, “Design and realization of a microracetrack resonator based polarization splitter in silicon-on-insulator,” J. Opt. A, Pure Appl. Opt. 11(1), 015506 (2009).
[Crossref]

Ibrahim, S. K.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Itabashi, S.

Jacobs, B. C.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64(6), 062311 (2001).
[Crossref]

Jeong, J. W.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Ji, Z.

Y. Yan, S. Yan, Z. Ji, J. Liu, C. Xue, W. Zhang, and J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012).
[Crossref]

Y. Z. Yan, C. L. Zou, S. B. Yan, F. W. Sun, Z. Ji, J. Liu, Y. G. Zhang, L. Wang, C. Y. Xue, W. D. Zhang, Z. F. Han, and J. J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
[Crossref] [PubMed]

Jugessur, A.

Kim, J. H.

Kim, S.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Kippenberg, T. J.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

Kiravittaya, S.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

Komatsu, M. A.

Koshiba, M.

Krauss, T. F.

Lee, E.-H.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Lee, S. G.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Leon-Saval, S.

Li, B.

Li, M.

Liang, D.

Liang, T. K.

T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 17(2), 393–395 (2005).
[Crossref]

Liu, J.

Y. Yan, S. Yan, Z. Ji, J. Liu, C. Xue, W. Zhang, and J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012).
[Crossref]

Y. Z. Yan, C. L. Zou, S. B. Yan, F. W. Sun, Z. Ji, J. Liu, Y. G. Zhang, L. Wang, C. Y. Xue, W. D. Zhang, Z. F. Han, and J. J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
[Crossref] [PubMed]

Liu, L.

Liu, T.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photonics Technol. Lett. 17(7), 1435–1437 (2005).
[Crossref]

Liu, Y.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Mansuripur, M.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photonics Technol. Lett. 17(7), 1435–1437 (2005).
[Crossref]

Mason, M.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Mazilu, M.

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Mei, Y.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–527 (2014).
[Crossref]

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Mocella, V.

Moloney, J. V.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photonics Technol. Lett. 17(7), 1435–1437 (2005).
[Crossref]

Monro, T. M.

Moreno, I.

Moretti, L.

Nic Chormaic, S.

Noe, R.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Oveys, H.

Oxborrow, M.

M. Oxborrow, “Traceable 2-D Finite-Element Simulation of the Whispering-Gallery Modes of Axisymmetric Electromagnetic Resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

Park, S. R.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Park, S.-G.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Pena, J. M. S.

C. Vazquez, J. M. S. Pena, S. E. Vargas, A. L. Aranda, and I. Perez, “Optical router for optical fiber sensor networks based on a liquid crystal cell,” IEEE Sens. J. 3(4), 513–518 (2003).
[Crossref]

Perez, I.

C. Vazquez, J. M. S. Pena, S. E. Vargas, A. L. Aranda, and I. Perez, “Optical router for optical fiber sensor networks based on a liquid crystal cell,” IEEE Sens. J. 3(4), 513–518 (2003).
[Crossref]

Peveling, R.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Pfau, T.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Pittman, T. B.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64(6), 062311 (2001).
[Crossref]

Pluk, E.

Pöllinger, M.

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Porrmann, M.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Porte, H.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Pu, S.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

Qiang, Z.

X. Xu, H. Gu, Y. Zheng, M. Wei, D. Zheng, R. Xiao, and Z. Qiang, “Polarization beam splitter based on honeycomb-lattice photonic crystal ring resonators,” J. Mod. Opt. 61(5), 373–378 (2014).
[Crossref]

Rauschenbeutel, A.

Ren, L.

Rendina, I.

Riesen, N.

Righini, G. C.

Rosenberger, A. T.

S. I. Shopova, Y. Sun, A. T. Rosenberger, and X. Fan, “Highly sensitive tuning of coupled optical ring resonators by microfluidics,” Microfluid. Nanofluidics 6(3), 425–429 (2009).
[Crossref]

Ryu, H. H.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Saitoh, K.

Salvekar, A. A.

Sanchez, S.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

Sandel, D.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

Sato, Y.

Saurabh, S.

Scherer, A.

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Schmidt, O. G.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

Schulze, S.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Shi, L.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

Shi, Y.

Shinojima, H.

Shopova, S. I.

S. I. Shopova, Y. Sun, A. T. Rosenberger, and X. Fan, “Highly sensitive tuning of coupled optical ring resonators by microfluidics,” Microfluid. Nanofluidics 6(3), 425–429 (2009).
[Crossref]

Smith, E. J.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

Soria, S.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

St J Russell, P.

Sun, F. W.

Sun, P.-C.

Sun, X.

J. Xiao, Y. Xu, and X. Sun, “Proposal for a compact silicon microring resonator-based polarization demultiplexer,” J. Nanophotonics 9(1), 093055 (2015).
[Crossref]

Sun, Y.

S. I. Shopova, Y. Sun, A. T. Rosenberger, and X. Fan, “Highly sensitive tuning of coupled optical ring resonators by microfluidics,” Microfluid. Nanofluidics 6(3), 425–429 (2009).
[Crossref]

Y. Sun, J. D. Suter, and X. Fan, “Robust integrated optofluidic-ring-resonator dye lasers,” Opt. Lett. 34(7), 1042–1044 (2009).
[Crossref] [PubMed]

Suter, J. D.

Y. Sun, J. D. Suter, and X. Fan, “Robust integrated optofluidic-ring-resonator dye lasers,” Opt. Lett. 34(7), 1042–1044 (2009).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[Crossref] [PubMed]

Taillaert, D.

Tang, T.

Tang, Y.

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Tsang, H. K.

T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 17(2), 393–395 (2005).
[Crossref]

Tsuchizawa, T.

Tyan, R.-C.

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Van Thourhout, D.

Vargas, S. E.

C. Vazquez, J. M. S. Pena, S. E. Vargas, A. L. Aranda, and I. Perez, “Optical router for optical fiber sensor networks based on a liquid crystal cell,” IEEE Sens. J. 3(4), 513–518 (2003).
[Crossref]

Vazquez, C.

C. Vazquez, J. M. S. Pena, S. E. Vargas, A. L. Aranda, and I. Perez, “Optical router for optical fiber sensor networks based on a liquid crystal cell,” IEEE Sens. J. 3(4), 513–518 (2003).
[Crossref]

Wadsworth, W.

Wang, J.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–527 (2014).
[Crossref]

J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38(1), 4–6 (2013).
[Crossref] [PubMed]

Wang, L.

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Wang, Y.

Wang, Z.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

Ward, J. M.

Watanabe, T.

Wei, M.

X. Xu, H. Gu, Y. Zheng, M. Wei, D. Zheng, R. Xiao, and Z. Qiang, “Polarization beam splitter based on honeycomb-lattice photonic crystal ring resonators,” J. Mod. Opt. 61(5), 373–378 (2014).
[Crossref]

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[Crossref] [PubMed]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006).
[Crossref] [PubMed]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Woo, D.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

Wosinski, L.

Wu, H.

Wu, L.

Wu, X.

Wu, Y. H.

Xiao, J.

J. Xiao, Y. Xu, and X. Sun, “Proposal for a compact silicon microring resonator-based polarization demultiplexer,” J. Nanophotonics 9(1), 093055 (2015).
[Crossref]

Xiao, R.

X. Xu, H. Gu, Y. Zheng, M. Wei, D. Zheng, R. Xiao, and Z. Qiang, “Polarization beam splitter based on honeycomb-lattice photonic crystal ring resonators,” J. Mod. Opt. 61(5), 373–378 (2014).
[Crossref]

Xiong, J.

Y. Yan, S. Yan, Z. Ji, J. Liu, C. Xue, W. Zhang, and J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012).
[Crossref]

Xiong, J. J.

Xu, D.-X.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

Xu, F.

Xu, L.

Xu, X.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

X. Xu, H. Gu, Y. Zheng, M. Wei, D. Zheng, R. Xiao, and Z. Qiang, “Polarization beam splitter based on honeycomb-lattice photonic crystal ring resonators,” J. Mod. Opt. 61(5), 373–378 (2014).
[Crossref]

Xu, Y.

J. Xiao, Y. Xu, and X. Sun, “Proposal for a compact silicon microring resonator-based polarization demultiplexer,” J. Nanophotonics 9(1), 093055 (2015).
[Crossref]

Xue, C.

Y. Yan, S. Yan, Z. Ji, J. Liu, C. Xue, W. Zhang, and J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012).
[Crossref]

Xue, C. Y.

Yamada, K.

Yan, S.

Y. Yan, S. Yan, Z. Ji, J. Liu, C. Xue, W. Zhang, and J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012).
[Crossref]

Yan, S. B.

Yan, Y.

Y. Yan, S. Yan, Z. Ji, J. Liu, C. Xue, W. Zhang, and J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012).
[Crossref]

Yan, Y. Z.

Yang, Y.

Yu, J.

Q. Huang, Y. Yu, and J. Yu, “Design and realization of a microracetrack resonator based polarization splitter in silicon-on-insulator,” J. Opt. A, Pure Appl. Opt. 11(1), 015506 (2009).
[Crossref]

Yu, Y.

Q. Huang, Y. Yu, and J. Yu, “Design and realization of a microracetrack resonator based polarization splitter in silicon-on-insulator,” J. Opt. A, Pure Appl. Opt. 11(1), 015506 (2009).
[Crossref]

Yun, S. H.

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

Zakharian, A. R.

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photonics Technol. Lett. 17(7), 1435–1437 (2005).
[Crossref]

Zamora, V.

Zhan, T.

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–527 (2014).
[Crossref]

Zhang, K.

Zhang, W.

Y. Yan, S. Yan, Z. Ji, J. Liu, C. Xue, W. Zhang, and J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012).
[Crossref]

Zhang, W. D.

Zhang, W. Q.

Zhang, X.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

L. Ren, X. Wu, M. Li, X. Zhang, L. Liu, and L. Xu, “Ultrasensitive label-free coupled optofluidic ring laser sensor,” Opt. Lett. 37(18), 3873–3875 (2012).
[Crossref] [PubMed]

Zhang, Y.

Zhang, Y. G.

Zhao, P.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

Zheng, D.

X. Xu, H. Gu, Y. Zheng, M. Wei, D. Zheng, R. Xiao, and Z. Qiang, “Polarization beam splitter based on honeycomb-lattice photonic crystal ring resonators,” J. Mod. Opt. 61(5), 373–378 (2014).
[Crossref]

Zheng, Y.

X. Xu, H. Gu, Y. Zheng, M. Wei, D. Zheng, R. Xiao, and Z. Qiang, “Polarization beam splitter based on honeycomb-lattice photonic crystal ring resonators,” J. Mod. Opt. 61(5), 373–378 (2014).
[Crossref]

Zhou, S.

Zhu, H.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[Crossref] [PubMed]

Zhu, K.

K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
[Crossref]

Zou, C. L.

Zourob, M.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[Crossref] [PubMed]

Analyst (Lond.) (1)

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Han, K. Zhu, and G. Bahl, “Opto-mechano-fluidic viscometer,” Appl. Phys. Lett. 105(1), 014103 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (5)

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photonics Technol. Lett. 19(24), 1988–1990 (2007).
[Crossref]

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photonics Technol. Lett. 17(7), 1435–1437 (2005).
[Crossref]

Y. Shi, D. Dai, and S. He, “Proposal for an Ultracompact Polarization-Beam Splitter Based on a Photonic-Crystal-Assisted Multimode Interference Coupler,” IEEE Photonics Technol. Lett. 19(9–12), 825–827 (2007).
[Crossref]

T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 17(2), 393–395 (2005).
[Crossref]

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15(1), 72–74 (2003).
[Crossref]

IEEE Sens. J. (1)

C. Vazquez, J. M. S. Pena, S. E. Vargas, A. L. Aranda, and I. Perez, “Optical router for optical fiber sensor networks based on a liquid crystal cell,” IEEE Sens. J. 3(4), 513–518 (2003).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

M. Oxborrow, “Traceable 2-D Finite-Element Simulation of the Whispering-Gallery Modes of Axisymmetric Electromagnetic Resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

J. Mod. Opt. (1)

X. Xu, H. Gu, Y. Zheng, M. Wei, D. Zheng, R. Xiao, and Z. Qiang, “Polarization beam splitter based on honeycomb-lattice photonic crystal ring resonators,” J. Mod. Opt. 61(5), 373–378 (2014).
[Crossref]

J. Nanophotonics (1)

J. Xiao, Y. Xu, and X. Sun, “Proposal for a compact silicon microring resonator-based polarization demultiplexer,” J. Nanophotonics 9(1), 093055 (2015).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

Q. Huang, Y. Yu, and J. Yu, “Design and realization of a microracetrack resonator based polarization splitter in silicon-on-insulator,” J. Opt. A, Pure Appl. Opt. 11(1), 015506 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

Lab Chip (1)

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

Laser Photonics Rev. (2)

J. Wang, T. Zhan, G. Huang, P. K. Chu, and Y. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photonics Rev. 8(4), 521–527 (2014).
[Crossref]

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

Light Sci. Appl. (1)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

Microfluid. Nanofluidics (1)

S. I. Shopova, Y. Sun, A. T. Rosenberger, and X. Fan, “Highly sensitive tuning of coupled optical ring resonators by microfluidics,” Microfluid. Nanofluidics 6(3), 425–429 (2009).
[Crossref]

Nano Lett. (1)

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

Nat. Methods (1)

X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Nature (3)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Yan, S. Yan, Z. Ji, J. Liu, C. Xue, W. Zhang, and J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012).
[Crossref]

Opt. Express (14)

Y. Z. Yan, C. L. Zou, S. B. Yan, F. W. Sun, Z. Ji, J. Liu, Y. G. Zhang, L. Wang, C. Y. Xue, W. D. Zhang, Z. F. Han, and J. J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19(7), 5753–5759 (2011).
[Crossref] [PubMed]

S. Leon-Saval, T. Birks, W. Wadsworth, P. St J Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004).
[Crossref] [PubMed]

N. Riesen, W. Q. Zhang, and T. M. Monro, “Dispersion analysis of whispering gallery mode microbubble resonators,” Opt. Express 24(8), 8832–8847 (2016).
[Crossref] [PubMed]

K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22(2), 1267–1276 (2014).
[Crossref] [PubMed]

Y. Yang, S. Saurabh, J. M. Ward, and S. Nic Chormaic, “High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing,” Opt. Express 24(1), 294–299 (2016).
[Crossref] [PubMed]

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Refractometric sensor based on whispering-gallery modes of thin capillarie,” Opt. Express 15(19), 12011–12016 (2007).
[Crossref] [PubMed]

M. Pöllinger and A. Rauschenbeutel, “All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect,” Opt. Express 18(17), 17764–17775 (2010).
[Crossref] [PubMed]

V. Mocella, P. Dardano, L. Moretti, and I. Rendina, “A polarizing beam splitter using negative refraction of photonic crystals,” Opt. Express 13(19), 7699–7707 (2005).
[Crossref] [PubMed]

K. Saitoh, Y. Sato, and M. Koshiba, “Polarization splitter in three-core photonic crystal fibers,” Opt. Express 12(17), 3940–3946 (2004).
[Crossref] [PubMed]

Y. Zhang, Y. Zhang, and B. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15(15), 9287–9292 (2007).
[Crossref] [PubMed]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006).
[Crossref] [PubMed]

M. A. Komatsu, K. Saitoh, and M. Koshiba, “Design of miniaturized silicon wire and slot waveguide polarization splitterbased on a resonant tunneling,” Opt. Express 17(21), 19225–19233 (2009).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express 19(19), 18614–18620 (2011).
[Crossref] [PubMed]

Opt. Lett. (12)

J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38(1), 4–6 (2013).
[Crossref] [PubMed]

X. Guan, H. Wu, Y. Shi, L. Wosinski, and D. Dai, “Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire,” Opt. Lett. 38(16), 3005–3008 (2013).
[Crossref] [PubMed]

X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
[Crossref] [PubMed]

J. A. Davis, J. Adachi, C. R. Fernández-Pousa, and I. Moreno, “Polarization beam splitters using polarization diffraction gratings,” Opt. Lett. 26(9), 587–589 (2001).
[Crossref] [PubMed]

L. Wu, M. Mazilu, J.-F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, “Planar photonic crystal polarization splitter,” Opt. Lett. 29(14), 1620–1622 (2004).
[Crossref] [PubMed]

X. Ao and S. He, “Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction,” Opt. Lett. 30(16), 2152–2154 (2005).
[Crossref] [PubMed]

Y. Wang, K. Zhang, S. Zhou, Y. H. Wu, M. B. Chi, and P. Hao, “Coupled-mode induced transparency in a bottle whispering-gallery-mode resonator,” Opt. Lett. 41(8), 1825–1828 (2016).
[Crossref] [PubMed]

H. Gilles, S. Girard, and J. Hamel, “Simple technique for measuring the Goos-Hänchen effect with polarization modulation and a position-sensitive detector,” Opt. Lett. 27(16), 1421–1423 (2002).
[Crossref] [PubMed]

Y. Sun, J. D. Suter, and X. Fan, “Robust integrated optofluidic-ring-resonator dye lasers,” Opt. Lett. 34(7), 1042–1044 (2009).
[Crossref] [PubMed]

L. Ren, X. Wu, M. Li, X. Zhang, L. Liu, and L. Xu, “Ultrasensitive label-free coupled optofluidic ring laser sensor,” Opt. Lett. 37(18), 3873–3875 (2012).
[Crossref] [PubMed]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006).
[Crossref] [PubMed]

D. Farnesi, A. Barucci, G. C. Righini, G. N. Conti, and S. Soria, “Generation of hyper-parametric oscillations in silica microbubbles,” Opt. Lett. 40(19), 4508–4511 (2015).
[Crossref] [PubMed]

Phys. Rev. A (1)

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64(6), 062311 (2001).
[Crossref]

Phys. Rev. Lett. (1)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 A schematic illustration of an OFRR-PBS.
Fig. 2
Fig. 2 The illustration of enchanced birefringence in the OFRR. T and R represent the wall thickness and the outer radius, respectively.
Fig. 3
Fig. 3 (a) TE mode field distribution, and (b) TM mode field distribution. The white arrows show the direction of electric fields. (c) The effective RI of two orthogonal modes as a function of the wavelength ranging from 1535 nm to 1565 nm. (d) The effective RI difference of fundamental TM mode and TE mode as a function of the wall thickness of the silica microcapillary at 1550 nm. The outer diameter of the silica microcapillary is 72 μm. The case of the thickness of 36 μm corresponds to a solid rod while that of less than 36 μm indicates a hollow-core capillary.
Fig. 4
Fig. 4 An optical micrograph of the OFRR-PBS.
Fig. 5
Fig. 5 (a) The transmission spectra out of the through port with air in the core of the silica microcapillary. (b) The resonance tuning with TE polarization. (c) The resonance tuning with TM polarization.
Fig. 6
Fig. 6 Two orthogonal polarizations extracted by the through port and the drop port when there is (a-b) air, (c-d) water and (e-f) ethanol in the core.

Metrics