Abstract

We present an active fiber-based retroreflector providing high quality phase-retracing anti-parallel Gaussian laser beams for precision spectroscopy of Doppler sensitive transitions. Our design is well-suited for a number of applications where implementing optical cavities is technically challenging and corner cubes fail to match the demanded requirements, most importantly retracing wavefronts and preservation of the laser polarization. To illustrate the performance of the system, we use it for spectroscopy of the 2S-4P transition in atomic hydrogen and demonstrate an average suppression of the first order Doppler shift to 4 parts in 106 of the full collinear shift. This high degree of cancellation combined with our cryogenic source of hydrogen atoms in the metastable 2S state is sufficient to enable determinations of the Rydberg constant and the proton charge radius with competitive uncertainties. Advantages over the usual Doppler cancellation based on corner cube type retroreflectors are discussed as well as an alternative method using a high finesse cavity.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Narrow coherence-induced peaks in Doppler-free spectra of thorium

Brian M. Tissue and Bryan L. Fearey
J. Opt. Soc. Am. B 11(4) 542-551 (1994)

Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen arcjet plume

John G. Liebeskind, Ronald K. Hanson, and Mark A. Cappelli
Appl. Opt. 32(30) 6117-6127 (1993)

References

  • View by:
  • |
  • |
  • |

  1. W. Demtröder, Laser Spectroscopy, Vol. 2 (Springer-Verlag, 2008).
  2. A. Beyer, J. Alnis, K. Khabarova, A. Matveev, C. G. Parthey, D. C. Yost, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of the 2S-4P transition in atomic hydrogen on a cryogenic beam of optically excited 2S atoms,” Ann. Phys. (Berlin) 525, 671–679 (2013).
    [Crossref]
  3. C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S-2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).
    [Crossref] [PubMed]
  4. R. Pohl, R. Gilman, G. A. Miller, and K. Pachucki, “Muonic hydrogen and the proton radius puzzle,” Annu. Rev. Nucl. Part. Sci. 63, 175–204 (2013).
    [Crossref]
  5. A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
    [Crossref]
  6. D. J. Berkeland, E. A. Hinds, and M. G. Boshier, “Precise optical measurement of Lamb shifts in atomic hydrogen,” Phys. Rev. Lett. 75, 2470–2473 (1995).
    [Crossref] [PubMed]
  7. R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the Li-6, Li-7 D-2 lines,” Phys. Rev. A 87, 032504 (2013).
    [Crossref]
  8. See for instance HM-15-05 from PLX Inc., NY. Reflectivity per surface: 96 % → 88 % total reflectivity.
  9. A. Beyer, L. Maisenbacher, K. Khabarova, A. Matveev, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of 2S-nP transitions in atomic hydrogen for a new determination of the Rydberg constant and the proton charge radius,” Phys. Scr. T165, 014030 (2015).
    [Crossref]
  10. W. He, Y. Fu, Y. Zheng, L. Zhang, J. Wang, Z. Liu, and J. Zheng, “Polarization properties of a corner-cube retroreflector with three-dimensional polarization ray-tracing calculus,” Appl. Opt. 52, 4527–4535 (2013).
    [Crossref] [PubMed]
  11. H. Müller, S. W. Chiow, Q. Long, C. Vo, and S. Chu, “Active sub-Rayleigh alignment of parallel or antiparallel laser beams,” Opt. Lett. 30, 3323–3325 (2005).
    [Crossref]
  12. S. Hannemann, E. J. Salumbides, and W. Ubachs, “Reducing the first-order Doppler shift in a Sagnac interferometer,” Opt. Lett. 32, 1381–1383 (2007).
    [Crossref] [PubMed]
  13. Nufern S405 XP polarization maintaining fiber, mode field diameter MFD = 3.8(5) µm (1/e2 intensity diameter, interpolated at 486 nm), wo = 1.9(25) µm (1/e field radius). AR coated by Diamond SA Via dei Patrizi 5, CH-6616 Losone. R ≤ 0.1%.
  14. Combination of two cemented achromatic lens doublets from QIoptiq, G3222100000 (f = 80 mm) and G32229000 (f = 40 mm) equipped with AR coating (R ≤ 0.1%).
  15. E. G. Neumann, Single Mode Fibers: Fundamentals (Springer-Verlag, 1988).
    [Crossref]
  16. Dielectric high reflecting miror. R = 99.995 % at 486 nm. Custom made by Advanced Thin Films Boulder, CO.
  17. A. E. Siegman, Lasers (University Science Books, 1986).
  18. Thorlabs SM1Z translation mount.
  19. Qioptiq Photonics GmbH & Co. KG, Königsallee 23, D-37081 Göttingen, Germany, http://winlens.de/
  20. Lens-Optics GmbH, Bürgermeister-Neumeyr-Strasse 7, D-85391 Allershausen, Germany. Custom made collimator (f=30 mm) for wavelengths between 380 nm and 410 nm.
  21. Mirror mount: Radiant Dyes Laser Accessories GmbH, MDI-H-2-1”. Two Newport 8301-UHV picomotor actuators have been installed in our lab.
  22. N. Kolachevsky, J. Alnis, C. G. Parthey, A. Matveev, R. Landig, and T. W. Hänsch, “Low phase noise diode laser oscillator for 1S-2S spectroscopy in atomic hydrogen,” Opt. Lett. 36, 4299–4301 (2011).
    [Crossref] [PubMed]
  23. J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities,” Phys. Rev. A 77, 053809 (2008).
    [Crossref]
  24. C. G. Parthey, “Precision Spectroscopy on atomic hydrogen” (PhD thesis, Ludwig-Maximilians-Universität München, 2011).
  25. A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
    [Crossref] [PubMed]
  26. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom - Photon Interactions: Basic Process and Appilcations (Wiley-VCH Verlag GmbH, 2004).
  27. F. Minardi, M. Artoni, P. Cancio, M. Inguscio, G. Giusfredi, and I. Carusotto, “Frequency shift in saturation spectroscopy induced by mechanical effects of light,” Phys. Rev. A 60(5), 4164–4167 (1999).
    [Crossref]
  28. P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA recommended values of the fundamental physical constants: 2010,” Rev. Mod. Phys. 84, 1527–1605 (2012).
    [Crossref]

2015 (1)

A. Beyer, L. Maisenbacher, K. Khabarova, A. Matveev, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of 2S-nP transitions in atomic hydrogen for a new determination of the Rydberg constant and the proton charge radius,” Phys. Scr. T165, 014030 (2015).
[Crossref]

2013 (6)

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

A. Beyer, J. Alnis, K. Khabarova, A. Matveev, C. G. Parthey, D. C. Yost, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of the 2S-4P transition in atomic hydrogen on a cryogenic beam of optically excited 2S atoms,” Ann. Phys. (Berlin) 525, 671–679 (2013).
[Crossref]

R. Pohl, R. Gilman, G. A. Miller, and K. Pachucki, “Muonic hydrogen and the proton radius puzzle,” Annu. Rev. Nucl. Part. Sci. 63, 175–204 (2013).
[Crossref]

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the Li-6, Li-7 D-2 lines,” Phys. Rev. A 87, 032504 (2013).
[Crossref]

W. He, Y. Fu, Y. Zheng, L. Zhang, J. Wang, Z. Liu, and J. Zheng, “Polarization properties of a corner-cube retroreflector with three-dimensional polarization ray-tracing calculus,” Appl. Opt. 52, 4527–4535 (2013).
[Crossref] [PubMed]

2012 (1)

P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA recommended values of the fundamental physical constants: 2010,” Rev. Mod. Phys. 84, 1527–1605 (2012).
[Crossref]

2011 (2)

N. Kolachevsky, J. Alnis, C. G. Parthey, A. Matveev, R. Landig, and T. W. Hänsch, “Low phase noise diode laser oscillator for 1S-2S spectroscopy in atomic hydrogen,” Opt. Lett. 36, 4299–4301 (2011).
[Crossref] [PubMed]

C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S-2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).
[Crossref] [PubMed]

2008 (1)

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

2007 (1)

2005 (1)

1999 (1)

F. Minardi, M. Artoni, P. Cancio, M. Inguscio, G. Giusfredi, and I. Carusotto, “Frequency shift in saturation spectroscopy induced by mechanical effects of light,” Phys. Rev. A 60(5), 4164–4167 (1999).
[Crossref]

1995 (1)

D. J. Berkeland, E. A. Hinds, and M. G. Boshier, “Precise optical measurement of Lamb shifts in atomic hydrogen,” Phys. Rev. Lett. 75, 2470–2473 (1995).
[Crossref] [PubMed]

Abgrall, M.

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S-2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).
[Crossref] [PubMed]

Alnis, J.

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

A. Beyer, J. Alnis, K. Khabarova, A. Matveev, C. G. Parthey, D. C. Yost, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of the 2S-4P transition in atomic hydrogen on a cryogenic beam of optically excited 2S atoms,” Ann. Phys. (Berlin) 525, 671–679 (2013).
[Crossref]

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

N. Kolachevsky, J. Alnis, C. G. Parthey, A. Matveev, R. Landig, and T. W. Hänsch, “Low phase noise diode laser oscillator for 1S-2S spectroscopy in atomic hydrogen,” Opt. Lett. 36, 4299–4301 (2011).
[Crossref] [PubMed]

C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S-2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).
[Crossref] [PubMed]

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

Altschul, B.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

Artoni, M.

F. Minardi, M. Artoni, P. Cancio, M. Inguscio, G. Giusfredi, and I. Carusotto, “Frequency shift in saturation spectroscopy induced by mechanical effects of light,” Phys. Rev. A 60(5), 4164–4167 (1999).
[Crossref]

Berkeland, D. J.

D. J. Berkeland, E. A. Hinds, and M. G. Boshier, “Precise optical measurement of Lamb shifts in atomic hydrogen,” Phys. Rev. Lett. 75, 2470–2473 (1995).
[Crossref] [PubMed]

Bernhardt, B.

C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S-2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).
[Crossref] [PubMed]

Beyer, A.

A. Beyer, L. Maisenbacher, K. Khabarova, A. Matveev, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of 2S-nP transitions in atomic hydrogen for a new determination of the Rydberg constant and the proton charge radius,” Phys. Scr. T165, 014030 (2015).
[Crossref]

A. Beyer, J. Alnis, K. Khabarova, A. Matveev, C. G. Parthey, D. C. Yost, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of the 2S-4P transition in atomic hydrogen on a cryogenic beam of optically excited 2S atoms,” Ann. Phys. (Berlin) 525, 671–679 (2013).
[Crossref]

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S-2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).
[Crossref] [PubMed]

Boshier, M. G.

D. J. Berkeland, E. A. Hinds, and M. G. Boshier, “Precise optical measurement of Lamb shifts in atomic hydrogen,” Phys. Rev. Lett. 75, 2470–2473 (1995).
[Crossref] [PubMed]

Brewer, S. M.

R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the Li-6, Li-7 D-2 lines,” Phys. Rev. A 87, 032504 (2013).
[Crossref]

Brown, R. C.

R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the Li-6, Li-7 D-2 lines,” Phys. Rev. A 87, 032504 (2013).
[Crossref]

Cancio, P.

F. Minardi, M. Artoni, P. Cancio, M. Inguscio, G. Giusfredi, and I. Carusotto, “Frequency shift in saturation spectroscopy induced by mechanical effects of light,” Phys. Rev. A 60(5), 4164–4167 (1999).
[Crossref]

Carusotto, I.

F. Minardi, M. Artoni, P. Cancio, M. Inguscio, G. Giusfredi, and I. Carusotto, “Frequency shift in saturation spectroscopy induced by mechanical effects of light,” Phys. Rev. A 60(5), 4164–4167 (1999).
[Crossref]

Chiow, S. W.

Chu, S.

Cohen-Tannoudji, C.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom - Photon Interactions: Basic Process and Appilcations (Wiley-VCH Verlag GmbH, 2004).

Demtröder, W.

W. Demtröder, Laser Spectroscopy, Vol. 2 (Springer-Verlag, 2008).

Droste, S.

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

Dupont-Roc, J.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom - Photon Interactions: Basic Process and Appilcations (Wiley-VCH Verlag GmbH, 2004).

Fu, Y.

Gillaspy, J. D.

R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the Li-6, Li-7 D-2 lines,” Phys. Rev. A 87, 032504 (2013).
[Crossref]

Gilman, R.

R. Pohl, R. Gilman, G. A. Miller, and K. Pachucki, “Muonic hydrogen and the proton radius puzzle,” Annu. Rev. Nucl. Part. Sci. 63, 175–204 (2013).
[Crossref]

Giusfredi, G.

F. Minardi, M. Artoni, P. Cancio, M. Inguscio, G. Giusfredi, and I. Carusotto, “Frequency shift in saturation spectroscopy induced by mechanical effects of light,” Phys. Rev. A 60(5), 4164–4167 (1999).
[Crossref]

Grosche, G.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

Grynberg, G.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom - Photon Interactions: Basic Process and Appilcations (Wiley-VCH Verlag GmbH, 2004).

Hannemann, S.

Hänsch, T. W.

A. Beyer, L. Maisenbacher, K. Khabarova, A. Matveev, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of 2S-nP transitions in atomic hydrogen for a new determination of the Rydberg constant and the proton charge radius,” Phys. Scr. T165, 014030 (2015).
[Crossref]

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

A. Beyer, J. Alnis, K. Khabarova, A. Matveev, C. G. Parthey, D. C. Yost, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of the 2S-4P transition in atomic hydrogen on a cryogenic beam of optically excited 2S atoms,” Ann. Phys. (Berlin) 525, 671–679 (2013).
[Crossref]

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

N. Kolachevsky, J. Alnis, C. G. Parthey, A. Matveev, R. Landig, and T. W. Hänsch, “Low phase noise diode laser oscillator for 1S-2S spectroscopy in atomic hydrogen,” Opt. Lett. 36, 4299–4301 (2011).
[Crossref] [PubMed]

C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S-2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).
[Crossref] [PubMed]

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

He, W.

Hinds, E. A.

D. J. Berkeland, E. A. Hinds, and M. G. Boshier, “Precise optical measurement of Lamb shifts in atomic hydrogen,” Phys. Rev. Lett. 75, 2470–2473 (1995).
[Crossref] [PubMed]

Holzwarth, R.

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S-2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).
[Crossref] [PubMed]

Inguscio, M.

F. Minardi, M. Artoni, P. Cancio, M. Inguscio, G. Giusfredi, and I. Carusotto, “Frequency shift in saturation spectroscopy induced by mechanical effects of light,” Phys. Rev. A 60(5), 4164–4167 (1999).
[Crossref]

Khabarova, K.

A. Beyer, L. Maisenbacher, K. Khabarova, A. Matveev, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of 2S-nP transitions in atomic hydrogen for a new determination of the Rydberg constant and the proton charge radius,” Phys. Scr. T165, 014030 (2015).
[Crossref]

A. Beyer, J. Alnis, K. Khabarova, A. Matveev, C. G. Parthey, D. C. Yost, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of the 2S-4P transition in atomic hydrogen on a cryogenic beam of optically excited 2S atoms,” Ann. Phys. (Berlin) 525, 671–679 (2013).
[Crossref]

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

Kolachevsky, N.

A. Beyer, L. Maisenbacher, K. Khabarova, A. Matveev, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of 2S-nP transitions in atomic hydrogen for a new determination of the Rydberg constant and the proton charge radius,” Phys. Scr. T165, 014030 (2015).
[Crossref]

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

A. Beyer, J. Alnis, K. Khabarova, A. Matveev, C. G. Parthey, D. C. Yost, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of the 2S-4P transition in atomic hydrogen on a cryogenic beam of optically excited 2S atoms,” Ann. Phys. (Berlin) 525, 671–679 (2013).
[Crossref]

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

N. Kolachevsky, J. Alnis, C. G. Parthey, A. Matveev, R. Landig, and T. W. Hänsch, “Low phase noise diode laser oscillator for 1S-2S spectroscopy in atomic hydrogen,” Opt. Lett. 36, 4299–4301 (2011).
[Crossref] [PubMed]

C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S-2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).
[Crossref] [PubMed]

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

Landig, R.

Laurent, Ph.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S-2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).
[Crossref] [PubMed]

Legero, T.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

Liu, Z.

Long, Q.

Maisenbacher, L.

A. Beyer, L. Maisenbacher, K. Khabarova, A. Matveev, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of 2S-nP transitions in atomic hydrogen for a new determination of the Rydberg constant and the proton charge radius,” Phys. Scr. T165, 014030 (2015).
[Crossref]

Maistrou, A.

C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S-2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).
[Crossref] [PubMed]

Matveev, A.

A. Beyer, L. Maisenbacher, K. Khabarova, A. Matveev, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of 2S-nP transitions in atomic hydrogen for a new determination of the Rydberg constant and the proton charge radius,” Phys. Scr. T165, 014030 (2015).
[Crossref]

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

A. Beyer, J. Alnis, K. Khabarova, A. Matveev, C. G. Parthey, D. C. Yost, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of the 2S-4P transition in atomic hydrogen on a cryogenic beam of optically excited 2S atoms,” Ann. Phys. (Berlin) 525, 671–679 (2013).
[Crossref]

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

N. Kolachevsky, J. Alnis, C. G. Parthey, A. Matveev, R. Landig, and T. W. Hänsch, “Low phase noise diode laser oscillator for 1S-2S spectroscopy in atomic hydrogen,” Opt. Lett. 36, 4299–4301 (2011).
[Crossref] [PubMed]

C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S-2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).
[Crossref] [PubMed]

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

Miller, G. A.

R. Pohl, R. Gilman, G. A. Miller, and K. Pachucki, “Muonic hydrogen and the proton radius puzzle,” Annu. Rev. Nucl. Part. Sci. 63, 175–204 (2013).
[Crossref]

Minardi, F.

F. Minardi, M. Artoni, P. Cancio, M. Inguscio, G. Giusfredi, and I. Carusotto, “Frequency shift in saturation spectroscopy induced by mechanical effects of light,” Phys. Rev. A 60(5), 4164–4167 (1999).
[Crossref]

Mohr, P. J.

P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA recommended values of the fundamental physical constants: 2010,” Rev. Mod. Phys. 84, 1527–1605 (2012).
[Crossref]

Müller, H.

Neumann, E. G.

E. G. Neumann, Single Mode Fibers: Fundamentals (Springer-Verlag, 1988).
[Crossref]

Newell, D. B.

P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA recommended values of the fundamental physical constants: 2010,” Rev. Mod. Phys. 84, 1527–1605 (2012).
[Crossref]

Pachucki, K.

R. Pohl, R. Gilman, G. A. Miller, and K. Pachucki, “Muonic hydrogen and the proton radius puzzle,” Annu. Rev. Nucl. Part. Sci. 63, 175–204 (2013).
[Crossref]

Parthey, C. G.

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

A. Beyer, J. Alnis, K. Khabarova, A. Matveev, C. G. Parthey, D. C. Yost, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of the 2S-4P transition in atomic hydrogen on a cryogenic beam of optically excited 2S atoms,” Ann. Phys. (Berlin) 525, 671–679 (2013).
[Crossref]

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

N. Kolachevsky, J. Alnis, C. G. Parthey, A. Matveev, R. Landig, and T. W. Hänsch, “Low phase noise diode laser oscillator for 1S-2S spectroscopy in atomic hydrogen,” Opt. Lett. 36, 4299–4301 (2011).
[Crossref] [PubMed]

C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S-2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).
[Crossref] [PubMed]

C. G. Parthey, “Precision Spectroscopy on atomic hydrogen” (PhD thesis, Ludwig-Maximilians-Universität München, 2011).

Peters, E.

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

Pohl, R.

A. Beyer, L. Maisenbacher, K. Khabarova, A. Matveev, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of 2S-nP transitions in atomic hydrogen for a new determination of the Rydberg constant and the proton charge radius,” Phys. Scr. T165, 014030 (2015).
[Crossref]

R. Pohl, R. Gilman, G. A. Miller, and K. Pachucki, “Muonic hydrogen and the proton radius puzzle,” Annu. Rev. Nucl. Part. Sci. 63, 175–204 (2013).
[Crossref]

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

A. Beyer, J. Alnis, K. Khabarova, A. Matveev, C. G. Parthey, D. C. Yost, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of the 2S-4P transition in atomic hydrogen on a cryogenic beam of optically excited 2S atoms,” Ann. Phys. (Berlin) 525, 671–679 (2013).
[Crossref]

C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S-2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).
[Crossref] [PubMed]

Porto, J. V.

R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the Li-6, Li-7 D-2 lines,” Phys. Rev. A 87, 032504 (2013).
[Crossref]

Predehl, K.

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S-2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).
[Crossref] [PubMed]

Rovera, D.

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S-2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).
[Crossref] [PubMed]

Salomon, Ch.

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S-2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).
[Crossref] [PubMed]

Salumbides, E. J.

Sansonetti, C. J.

R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the Li-6, Li-7 D-2 lines,” Phys. Rev. A 87, 032504 (2013).
[Crossref]

Schnatz, H.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Simien, C. E.

R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the Li-6, Li-7 D-2 lines,” Phys. Rev. A 87, 032504 (2013).
[Crossref]

Tan, J. N.

R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the Li-6, Li-7 D-2 lines,” Phys. Rev. A 87, 032504 (2013).
[Crossref]

Taylor, B. N.

P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA recommended values of the fundamental physical constants: 2010,” Rev. Mod. Phys. 84, 1527–1605 (2012).
[Crossref]

Terra, O.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

Ubachs, W.

Udem, T.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

Udem, Th.

A. Beyer, L. Maisenbacher, K. Khabarova, A. Matveev, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of 2S-nP transitions in atomic hydrogen for a new determination of the Rydberg constant and the proton charge radius,” Phys. Scr. T165, 014030 (2015).
[Crossref]

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

A. Beyer, J. Alnis, K. Khabarova, A. Matveev, C. G. Parthey, D. C. Yost, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of the 2S-4P transition in atomic hydrogen on a cryogenic beam of optically excited 2S atoms,” Ann. Phys. (Berlin) 525, 671–679 (2013).
[Crossref]

C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S-2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).
[Crossref] [PubMed]

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

Vo, C.

Wang, J.

Weyers, S.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

Wilken, T.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S-2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).
[Crossref] [PubMed]

Wu, S.

R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the Li-6, Li-7 D-2 lines,” Phys. Rev. A 87, 032504 (2013).
[Crossref]

Yost, D. C.

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

A. Beyer, J. Alnis, K. Khabarova, A. Matveev, C. G. Parthey, D. C. Yost, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of the 2S-4P transition in atomic hydrogen on a cryogenic beam of optically excited 2S atoms,” Ann. Phys. (Berlin) 525, 671–679 (2013).
[Crossref]

Zhang, L.

Zheng, J.

Zheng, Y.

Ann. Phys. (Berlin) (1)

A. Beyer, J. Alnis, K. Khabarova, A. Matveev, C. G. Parthey, D. C. Yost, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of the 2S-4P transition in atomic hydrogen on a cryogenic beam of optically excited 2S atoms,” Ann. Phys. (Berlin) 525, 671–679 (2013).
[Crossref]

Annu. Rev. Nucl. Part. Sci. (1)

R. Pohl, R. Gilman, G. A. Miller, and K. Pachucki, “Muonic hydrogen and the proton radius puzzle,” Annu. Rev. Nucl. Part. Sci. 63, 175–204 (2013).
[Crossref]

Appl. Opt. (1)

J. Phys. Conf. Ser. (1)

A. Beyer, C. G. Parthey, N. Kolachevsky, J. Alnis, K. Khabarova, R. Pohl, E. Peters, D. C. Yost, A. Matveev, K. Predehl, S. Droste, T. Wilken, R. Holzwarth, T. W. Hänsch, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and Th. Udem, “Precision spectroscopy of atomic hydrogen,” J. Phys. Conf. Ser. 467, 012003 (2013).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (3)

F. Minardi, M. Artoni, P. Cancio, M. Inguscio, G. Giusfredi, and I. Carusotto, “Frequency shift in saturation spectroscopy induced by mechanical effects of light,” Phys. Rev. A 60(5), 4164–4167 (1999).
[Crossref]

R. C. Brown, S. Wu, J. V. Porto, C. J. Sansonetti, C. E. Simien, S. M. Brewer, J. N. Tan, and J. D. Gillaspy, “Quantum interference and light polarization effects in unresolvable atomic lines: Application to a precise measurement of the Li-6, Li-7 D-2 lines,” Phys. Rev. A 87, 032504 (2013).
[Crossref]

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities,” Phys. Rev. A 77, 053809 (2008).
[Crossref]

Phys. Rev. Lett. (3)

D. J. Berkeland, E. A. Hinds, and M. G. Boshier, “Precise optical measurement of Lamb shifts in atomic hydrogen,” Phys. Rev. Lett. 75, 2470–2473 (1995).
[Crossref] [PubMed]

C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, Th. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, and T. W. Hänsch, “Improved measurement of the hydrogen 1S-2S transition frequency,” Phys. Rev. Lett. 107, 203001 (2011).
[Crossref] [PubMed]

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, Ch. Salomon, Ph. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S-2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref] [PubMed]

Phys. Scr. (1)

A. Beyer, L. Maisenbacher, K. Khabarova, A. Matveev, R. Pohl, Th. Udem, T. W. Hänsch, and N. Kolachevsky, “Precision spectroscopy of 2S-nP transitions in atomic hydrogen for a new determination of the Rydberg constant and the proton charge radius,” Phys. Scr. T165, 014030 (2015).
[Crossref]

Rev. Mod. Phys. (1)

P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA recommended values of the fundamental physical constants: 2010,” Rev. Mod. Phys. 84, 1527–1605 (2012).
[Crossref]

Other (13)

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom - Photon Interactions: Basic Process and Appilcations (Wiley-VCH Verlag GmbH, 2004).

W. Demtröder, Laser Spectroscopy, Vol. 2 (Springer-Verlag, 2008).

Nufern S405 XP polarization maintaining fiber, mode field diameter MFD = 3.8(5) µm (1/e2 intensity diameter, interpolated at 486 nm), wo = 1.9(25) µm (1/e field radius). AR coated by Diamond SA Via dei Patrizi 5, CH-6616 Losone. R ≤ 0.1%.

Combination of two cemented achromatic lens doublets from QIoptiq, G3222100000 (f = 80 mm) and G32229000 (f = 40 mm) equipped with AR coating (R ≤ 0.1%).

E. G. Neumann, Single Mode Fibers: Fundamentals (Springer-Verlag, 1988).
[Crossref]

Dielectric high reflecting miror. R = 99.995 % at 486 nm. Custom made by Advanced Thin Films Boulder, CO.

A. E. Siegman, Lasers (University Science Books, 1986).

Thorlabs SM1Z translation mount.

Qioptiq Photonics GmbH & Co. KG, Königsallee 23, D-37081 Göttingen, Germany, http://winlens.de/

Lens-Optics GmbH, Bürgermeister-Neumeyr-Strasse 7, D-85391 Allershausen, Germany. Custom made collimator (f=30 mm) for wavelengths between 380 nm and 410 nm.

Mirror mount: Radiant Dyes Laser Accessories GmbH, MDI-H-2-1”. Two Newport 8301-UHV picomotor actuators have been installed in our lab.

C. G. Parthey, “Precision Spectroscopy on atomic hydrogen” (PhD thesis, Ludwig-Maximilians-Universität München, 2011).

See for instance HM-15-05 from PLX Inc., NY. Reflectivity per surface: 96 % → 88 % total reflectivity.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Cancellation of the first order Doppler effect by utilizing counter-propagating laser beams. Left: counter-propagating laser beams at an angle different from α = 90° with respect to the atomic trajectory. The observed spectrum is a doublet with a separation Δν = 2vcos(α). The individual line shapes (LS1 and LS2) resulting from the interaction with one of the laser beams are indicated by dashed lines, the observed spectrum by a black solid line. The frequency detuning is measured in units of the natural line width Γ. Right: For an atom crossing the lasers at α = 90° the two components overlap. In either case the line center is unaffected provided that both laser beams have the same intensity. In practice one has to deal with curved wavefronts. Also in this case the average local first order Doppler effect vanishes provided that the wave fronts retrace each other, i.e. wave vectors k 1 and k 2 are anti-parallel at any given point.
Fig. 2
Fig. 2 Schematic view of the active fiber-based retroreflector (AFR). The main components are a polarization maintaining single mode optical fiber (PM fiber 1), a collimator with low imaging aberrations (f = 27 mm) and an actively stabilized high reflectivity mirror (HR, R = 99.995%). The light emerging from fiber 1 is collimated such that the waist (w0 = 2.1 mm) is located on the flat HR mirror at a distance of dm = 260 mm. For an ideal Gaussian beam, this configuration leads to exactly retracing wave fronts. Deviations from this ideal situation may be due to spherical aberrations of the collimating lens. Experimentally this is verified by using an atomic beam with a variable mean velocity (see Sec. 6). Another polarization maintaining single mode fiber (PM fiber 2) is used as mode cleaner to improve reproducibility of the coupling efficiency to PM fiber 1. The latter may be affected by the settings of the acousto-optic modulator (AOM), the electro-optic modulator (EOM) and the laser operating conditions. PD: photo-detector, PZT: piezo-electric transducer, PBS: polarizing beam splitter, CL: coupling lens.
Fig. 3
Fig. 3 Estimation of the alignment sensitivity of the active fiber-based retroreflector (AFR) shown in Fig. 2. a) Misalignment of the returning beam by an angle θ leads to misplacement of the focus by Δx ≈ θf and hence to a reduced re-coupling efficiency back into the single mode fiber. The convolution of the returning mode with the fiber mode as shown in b) gives exp ( Δ x 2 / w 0 2 ) with a full width at half maximum of Δ θ FWHM = 2 w 0 ln ( 2 ) / f. For f = 27 mm and w0 = 1.90(25) µm as specified [13] we obtain ∆θFWHM = 117 p(15)µrad. c) Intensity measured at PD1 (Fig. 2) as a function of the returning beam angular misalignment (tilt). The misalignment is inferred from the applied PZT voltage and has been calibrated by measuring the beam deflection angle as a function of PZT voltage at a distance of 5 m. The response curve follows a Gaussian as expected and has a full width at half maximum of 111.05 (13) µrad, in good agreement with the estimation using a) and b). For comparison the response curve of another collimator with f = 15 mm is shown (light gray). The reduced sensitivity to misalignment and the larger half width at half maximum of 222.1 (3) µrad corresponds well to the reduction in focal distance.
Fig. 4
Fig. 4 Comparison of measured beam profiles for two different collimators tested for the active fiber based retroreflector (AFR). Upper row: collimator used in the current design (two achromatic lens doublets [14], f = 27 mm). Bottom row: single aspheric lens (f = 30 mm). Distances correspond to the intersection points of the forward (130 mm) and the backward (390 mm) traveling light with the atomic beam (see Fig. 2). Due to deviations from the ideal aspheric shape (surface roughness 0.3 µm RMS), the beam profiles produced by the aspheric lens are not exactly Gaussian and the wave fronts do not exactly retrace each other. A slightly misaligned Michelson interferometer gives a qualitative estimate on the phase front distortions (right column).
Fig. 5
Fig. 5 Simulation of re-coupling losses (blue, right scale) and residual uncompensated Doppler shift (left scale) for an atom with velocity v = 300 m/s as a function of the axial lens displacement δdfc for an otherwise ideal active fiber-based retroreflector. The waist size of 2.1 mm in the simulation corresponds to the one determined for the lens assembly used in the current design (two achromatic lens doublets [14], f = 27 mm). The Gaussian beams in forward and backward direction perfectly re-trace each other at δdfc = 0, where the beam waist is located on the surface of the flat high reflecting mirror (Fig. 2). Atomic trajectories intersect the laser beams at angles δα1 = 0 degree (green), δα2 = 0.08 degree (orange) and δα3 = 0.16 degree (red). If δdfc = 0, Doppler shifts are perfectly canceled, independent of the laser-to-atomic-beam angle α = π/2 + δα. A small displacement of δdfc = 15 µm (gray dashed line) results in a re-coupling loss of 12 % already, constituting a sensitive experimental handle on axial collimator misalignment.
Fig. 6
Fig. 6 Beam profiles acquired for the two collimators discussed in Fig. 3(c) (identical scale in all pictures). Both collimators produce acceptable beam profiles at moderate distances of up to 390 mm. The lens assembly used in the final design (f = 27 mm [14]) produces a smooth Gaussian intensity profile even at a distance of 9.5 m (top row). In contrast to that, residual spherical aberrations cause significant radial intensity modulations at much smaller distances in case of the lens assembly used in a legacy version of our AFR (f = 15 mm, middle row). The simulated beam profiles in the bottom row have been used for estimations of the residual uncompensated Doppler shift due to spherical aberrations in Fig. 7.
Fig. 7
Fig. 7 Uncompensated residual Doppler shift for an atom traveling at v = 300 m/s and different imperfections of the active fiber-based retroreflector (AFR). For an ideal AFR, the Doppler shift is compensated independent of the laser-to-atomic-beam angle α (green squares). The case k 1 + k 2 0 = 0 (ε = 10 µrad for the case shown) for an otherwise ideal AFR leads to a constant shift of the observed resonance, where the offset is defined by Eq. (2) (orange circles). The presence of spherical aberrations (see simulated beam profiles in Fig. 6) leads to α-dependent shifts of several tens of kilohertz (red triangles).
Fig. 8
Fig. 8 FFT trace of the in-loop error signal produced by the lock-in amplifier in one of the AFR mirror feedback channels (tilt). The frequency interval [31 mHz; 12.2Hz] has been recorded with a resolution band width (RBW1) of 31 mHz (left of black dashed line), for the interval [12.2Hz; 97.4Hz] RBW2 = 244 mHz (right of black dashed line). The difference in RBW has been accounted for by scaling the amplitudes measured in the second interval by the ratio RBW1/RBW2. The feedback bandwidth of 30 Hz (green dashed line) is determined by the crossing point of the noise figures in the stabilized (black) and unstabilized case (red). A servo bump is located at about 45 Hz.
Fig. 9
Fig. 9 Observed transition frequency in the lab frame with and without Doppler suppression. Imperfections of the active fiber-based retroreflector are characterized by a differential measurement of the 2S-4P transition at an angle of α = 89.60° ± 0.03° (α as defined in Fig. 2, 4 hours of data acquisition). Red circles: Doppler suppression off, i.e. the shutter in Fig. 2 is closed. Black circles: Doppler suppression active, i.e. shutter open. Experimental uncertainties for the latter case are small on this scale and shown inside the open circles. For better readability, the frequency axis is offset by 616 THz such that the linear fit of the black data extrapolates to zero at v = 0. The observed slope η1 (Doppler suppression on) of the extracted transition frequency as a function of atom mean velocity 〈v〉 is limited by statistics and compatible with zero. Due to its large sensitivity to the Doppler shift (η2 = 14.1(1.4) kHz/(m/s)), the data with the Doppler cancellation switched off is a suitable tool for the determination of α, however not for precision spectroscopy at an accuracy level of a few tens of kilohertz, i.e. a few parts in 105 of the full collinear Doppler shift. Still, intercepts at v = 0 of the two data sets coincide within the given uncertainties.
Fig. 10
Fig. 10 Characterization of residual uncompensated first order Doppler shift. The angle between the atomic beam and the counter-propagating laser beams provided by the active fiber-based retroreflector (AFR) is adjusted to α = 90° ± 0.08°. Line centers of the 2S-4P transition in atomic hydrogen have been extracted from a total number of 48,000 resonance profiles as a function of the mean velocity of the atoms contributing to the respective signal. Blue data points indicate average values of the residual uncompensated Doppler shift slope ηj per measurement day and active AFR (similar to black data in Fig. 9). Average uncertainties per day amount to about 35 m−1. No excessive scatter of the experimental data is observed and we determine the overall average to be ηexp = 3(8) m−1. This limit corresponds to a reduction of the collinear Doppler shift η(90°) = 2.05 × 106 m−1 to less than 4 parts in 106.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ v D = 1 2 π k v = v λ cos ( α ) ,
Δ v resid = 1 2 v λ [ sin ( δ α ) sin ( δ α ε ) ] v 2 λ ε .
L r c ( w 0 w r ) 2 ( w 0 2 + w r 2 ) 2 ,
w r = w 0 f 2 [ [ 2 d f c d m 2 ( d f c + d m ) f + f 2 ] 2 + [ 2 ( d f c f ) ( d f c d m ( d f c + d m ) f ) λ π w 0 2 ] 2 ] 1 / 2 .
Δ v D = η ( δ α ) × v ,
η ( δ α ) = 1 λ × sin ( δ α ) .
Δ v D , m v 2 λ × δ α × ξ .

Metrics