Abstract

A simple and low-cost 1550 nm semiconductor laser with subkilohertz intrinsic linewidth is experimentally demonstrated. A commercial distributed feedback diode laser is self-injection locked to the resonance transmission peaks of a fiber Bragg grating Fabry-Perot cavity through a polarization-maintaining fiber ring with the optical path length of 4 m, with the laser frequency noise suppressed by over 70 dB in the Fourier frequency band from 5 Hz and 1 kHz. The laser features an intrinsic Lorentzian linewidth of 125 Hz as well as a relative intensity noise of <–142 dBc/Hz above 2 MHz, and provides over 0.8 nm quasi-continuous tunability, which is suitable for advanced applications requiring a narrow linewidth laser with ultralow frequency noise.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity

Wojciech Lewoczko-Adamczyk, Christoph Pyrlik, Johannes Häger, Sven Schwertfeger, Andreas Wicht, Achim Peters, Götz Erbert, and Günther Tränkle
Opt. Express 23(8) 9705-9709 (2015)

Passive intrinsic-linewidth narrowing of ultraviolet extended-cavity diode laser by weak optical feedback

Polnop Samutpraphoot, Sophie Weber, Qian Lin, Dorian Gangloff, Alexei Bylinskii, Boris Braverman, Akio Kawasaki, Christoph Raab, Wilhelm Kaenders, and Vladan Vuletić
Opt. Express 22(10) 11592-11599 (2014)

Long-external-cavity distributed Bragg reflector laser with subkilohertz intrinsic linewidth

Qian Lin, Mackenzie A. Van Camp, Hao Zhang, Branislav Jelenković, and Vladan Vuletić
Opt. Lett. 37(11) 1989-1991 (2012)

References

  • View by:
  • |
  • |
  • |

  1. E. Luvsandamdin, C. Kürbis, M. Schiemangk, A. Sahm, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space,” Opt. Express 22(7), 7790–7798 (2014).
    [Crossref] [PubMed]
  2. K. Numata, J. Camp, M. A. Krainak, and L. Stolpner, “Performance of planar-waveguide external cavity laser for precision measurements,” Opt. Express 18(22), 22781–22788 (2010).
    [Crossref] [PubMed]
  3. D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photonics Technol. Lett. 14(3), 355–357 (2002).
    [Crossref]
  4. B. Lu, F. Wei, Z. Zhang, D. Xu, Z. Pan, D. Chen, and H. Cai, “Research on tunable local laser used in ground-to-satellite coherent laser communication,” Chin. Opt. Lett. 13(9), 091402 (2015).
    [Crossref]
  5. W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
    [Crossref] [PubMed]
  6. M. Morin, S. Ayotte, C. Latrasse, M. Aube, M. Poulin, Y. Painchaud, N. Gagnon, and G. Lafrance, “What narrow-linewidth semiconductor lasers can do for defense and security?” Proc. SPIE 7677, 76770N (2010).
    [Crossref]
  7. K. Numata, M. Alalusi, L. Stolpner, G. Margaritis, J. Camp, and M. Krainak, “Characteristics of the single-longitudinal-mode planar-waveguide external cavity diode laser at 1064 nm,” Opt. Lett. 39(7), 2101–2104 (2014).
    [Crossref] [PubMed]
  8. R. E. Bartolo, C. K. Kirkendall, V. Kupershmidt, and S. Siala, “Achieving narrow linewidth low-phase noise external cavity semiconductor lasers through the reduction of 1/f noise,” Proc. SPIE 6133, 61330I (2006).
    [Crossref]
  9. W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photonics Technol. Lett. 23(14), 974–976 (2011).
    [Crossref]
  10. M. Wahbeh and R. Kashyap, “Purity of the single frequency mode of a hybrid semiconductor-fiber laser,” Opt. Express 23(12), 16084–16095 (2015).
    [Crossref] [PubMed]
  11. W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35(16), 2822–2824 (2010).
    [Crossref] [PubMed]
  12. W. Lewoczko-Adamczyk, C. Pyrlik, J. Häger, S. Schwertfeger, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity,” Opt. Express 23(8), 9705–9709 (2015).
    [Crossref] [PubMed]
  13. F. Kéfélian, H. Jiang, P. Lemonde, and G. Santarelli, “Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line,” Opt. Lett. 34(7), 914–916 (2009).
    [Crossref] [PubMed]
  14. J. F. Cliche, Y. Painchaud, C. Latrasse, M. J. Picard, I. Alexandre, and M. Têtu, “Ultra-narrow Bragg grating for active semiconductor laser linewidth reduction through electrical feedback,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (Optical Society of America, 2007), paper BTuE2.
  15. Q. Lin, M. A. Van Camp, H. Zhang, B. Jelenković, and V. Vuletić, “Long-external-cavity distributed Bragg reflector laser with subkilohertz intrinsic linewidth,” Opt. Lett. 37(11), 1989–1991 (2012).
    [Crossref] [PubMed]
  16. P. Samutpraphoot, S. Weber, Q. Lin, D. Gangloff, A. Bylinskii, B. Braverman, A. Kawasaki, C. Raab, W. Kaenders, and V. Vuletić, “Passive intrinsic-linewidth narrowing of ultraviolet extended-cavity diode laser by weak optical feedback,” Opt. Express 22(10), 11592–11599 (2014).
    [Crossref] [PubMed]
  17. J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry–Perot filters and variable saturable absorbers,” Opt. Commun. 267(1), 177–181 (2006).
    [Crossref]
  18. X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
    [Crossref]
  19. D. Xu, F. Yang, D. Chen, F. Wei, H. Cai, Z. Fang, and R. Qu, “Laser phase and frequency noise measurement by Michelson interferometer composed of a 3 × 3 optical fiber coupler,” Opt. Express 23(17), 22386–22393 (2015).
    [Crossref] [PubMed]
  20. H. Li and N. B. Abraham, “Analysis of the noise spectra of a laser diode with optical feedback from a high-finesse resonator,” IEEE J. Quantum Electron. 25(8), 1782–1793 (1989).
    [Crossref]
  21. S. Bennetts, G. D. McDonald, K. S. Hardman, J. E. Debs, C. C. N. Kuhn, J. D. Close, and N. P. Robins, “External cavity diode lasers with 5kHz linewidth and 200nm tuning range at 1.55μm and methods for linewidth measurement,” Opt. Express 22(9), 10642–10654 (2014).
    [Crossref] [PubMed]

2015 (5)

2014 (4)

2012 (1)

2011 (1)

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photonics Technol. Lett. 23(14), 974–976 (2011).
[Crossref]

2010 (3)

2009 (1)

2008 (1)

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

2006 (2)

R. E. Bartolo, C. K. Kirkendall, V. Kupershmidt, and S. Siala, “Achieving narrow linewidth low-phase noise external cavity semiconductor lasers through the reduction of 1/f noise,” Proc. SPIE 6133, 61330I (2006).
[Crossref]

J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry–Perot filters and variable saturable absorbers,” Opt. Commun. 267(1), 177–181 (2006).
[Crossref]

2002 (1)

D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photonics Technol. Lett. 14(3), 355–357 (2002).
[Crossref]

1989 (1)

H. Li and N. B. Abraham, “Analysis of the noise spectra of a laser diode with optical feedback from a high-finesse resonator,” IEEE J. Quantum Electron. 25(8), 1782–1793 (1989).
[Crossref]

Abraham, N. B.

H. Li and N. B. Abraham, “Analysis of the noise spectra of a laser diode with optical feedback from a high-finesse resonator,” IEEE J. Quantum Electron. 25(8), 1782–1793 (1989).
[Crossref]

Alalusi, M.

Aube, M.

M. Morin, S. Ayotte, C. Latrasse, M. Aube, M. Poulin, Y. Painchaud, N. Gagnon, and G. Lafrance, “What narrow-linewidth semiconductor lasers can do for defense and security?” Proc. SPIE 7677, 76770N (2010).
[Crossref]

Ayotte, S.

M. Morin, S. Ayotte, C. Latrasse, M. Aube, M. Poulin, Y. Painchaud, N. Gagnon, and G. Lafrance, “What narrow-linewidth semiconductor lasers can do for defense and security?” Proc. SPIE 7677, 76770N (2010).
[Crossref]

Baney, D. M.

D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photonics Technol. Lett. 14(3), 355–357 (2002).
[Crossref]

Bartolo, R. E.

R. E. Bartolo, C. K. Kirkendall, V. Kupershmidt, and S. Siala, “Achieving narrow linewidth low-phase noise external cavity semiconductor lasers through the reduction of 1/f noise,” Proc. SPIE 6133, 61330I (2006).
[Crossref]

Bennetts, S.

Brattain, M. A.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photonics Technol. Lett. 23(14), 974–976 (2011).
[Crossref]

Braverman, B.

Bylinskii, A.

Cai, H.

Camp, J.

Chen, D.

Cheng, X. P.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Close, J. D.

Debs, J. E.

Eliyahu, D.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

Erbert, G.

Fang, Z.

Gagnon, N.

M. Morin, S. Ayotte, C. Latrasse, M. Aube, M. Poulin, Y. Painchaud, N. Gagnon, and G. Lafrance, “What narrow-linewidth semiconductor lasers can do for defense and security?” Proc. SPIE 7677, 76770N (2010).
[Crossref]

Gangloff, D.

Häger, J.

Hardman, K. S.

Huang, D.

J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry–Perot filters and variable saturable absorbers,” Opt. Commun. 267(1), 177–181 (2006).
[Crossref]

Ilchenko, V. S.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35(16), 2822–2824 (2010).
[Crossref] [PubMed]

Jelenkovic, B.

Jiang, H.

Juodawlkis, P. W.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photonics Technol. Lett. 23(14), 974–976 (2011).
[Crossref]

Kaenders, W.

Kashyap, R.

Kawasaki, A.

Kéfélian, F.

Kirkendall, C. K.

R. E. Bartolo, C. K. Kirkendall, V. Kupershmidt, and S. Siala, “Achieving narrow linewidth low-phase noise external cavity semiconductor lasers through the reduction of 1/f noise,” Proc. SPIE 6133, 61330I (2006).
[Crossref]

Krainak, M.

Krainak, M. A.

Kuhn, C. C. N.

Kupershmidt, V.

R. E. Bartolo, C. K. Kirkendall, V. Kupershmidt, and S. Siala, “Achieving narrow linewidth low-phase noise external cavity semiconductor lasers through the reduction of 1/f noise,” Proc. SPIE 6133, 61330I (2006).
[Crossref]

Kürbis, C.

Lafrance, G.

M. Morin, S. Ayotte, C. Latrasse, M. Aube, M. Poulin, Y. Painchaud, N. Gagnon, and G. Lafrance, “What narrow-linewidth semiconductor lasers can do for defense and security?” Proc. SPIE 7677, 76770N (2010).
[Crossref]

Latrasse, C.

M. Morin, S. Ayotte, C. Latrasse, M. Aube, M. Poulin, Y. Painchaud, N. Gagnon, and G. Lafrance, “What narrow-linewidth semiconductor lasers can do for defense and security?” Proc. SPIE 7677, 76770N (2010).
[Crossref]

Lemonde, P.

Lewoczko-Adamczyk, W.

Li, H.

H. Li and N. B. Abraham, “Analysis of the noise spectra of a laser diode with optical feedback from a high-finesse resonator,” IEEE J. Quantum Electron. 25(8), 1782–1793 (1989).
[Crossref]

Liang, W.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35(16), 2822–2824 (2010).
[Crossref] [PubMed]

Lin, Q.

Loh, W.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photonics Technol. Lett. 23(14), 974–976 (2011).
[Crossref]

Lu, B.

Luvsandamdin, E.

Maleki, L.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35(16), 2822–2824 (2010).
[Crossref] [PubMed]

Margaritis, G.

Matsko, A. B.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35(16), 2822–2824 (2010).
[Crossref] [PubMed]

McDonald, G. D.

Missaggia, L. J.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photonics Technol. Lett. 23(14), 974–976 (2011).
[Crossref]

Morin, M.

M. Morin, S. Ayotte, C. Latrasse, M. Aube, M. Poulin, Y. Painchaud, N. Gagnon, and G. Lafrance, “What narrow-linewidth semiconductor lasers can do for defense and security?” Proc. SPIE 7677, 76770N (2010).
[Crossref]

Motamedi, A.

D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photonics Technol. Lett. 14(3), 355–357 (2002).
[Crossref]

Numata, K.

O’Donnell, F. J.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photonics Technol. Lett. 23(14), 974–976 (2011).
[Crossref]

Painchaud, Y.

M. Morin, S. Ayotte, C. Latrasse, M. Aube, M. Poulin, Y. Painchaud, N. Gagnon, and G. Lafrance, “What narrow-linewidth semiconductor lasers can do for defense and security?” Proc. SPIE 7677, 76770N (2010).
[Crossref]

Pan, Z.

Peters, A.

Plant, J. J.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photonics Technol. Lett. 23(14), 974–976 (2011).
[Crossref]

Poulin, M.

M. Morin, S. Ayotte, C. Latrasse, M. Aube, M. Poulin, Y. Painchaud, N. Gagnon, and G. Lafrance, “What narrow-linewidth semiconductor lasers can do for defense and security?” Proc. SPIE 7677, 76770N (2010).
[Crossref]

Pyrlik, C.

Qu, R.

Raab, C.

Robins, N. P.

Sahm, A.

Samutpraphoot, P.

Santarelli, G.

Savchenkov, A. A.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35(16), 2822–2824 (2010).
[Crossref] [PubMed]

Schiemangk, M.

Schwertfeger, S.

Seidel, D.

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35(16), 2822–2824 (2010).
[Crossref] [PubMed]

Shum, P.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Siala, S.

R. E. Bartolo, C. K. Kirkendall, V. Kupershmidt, and S. Siala, “Achieving narrow linewidth low-phase noise external cavity semiconductor lasers through the reduction of 1/f noise,” Proc. SPIE 6133, 61330I (2006).
[Crossref]

Stolpner, L.

Sun, J.

J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry–Perot filters and variable saturable absorbers,” Opt. Commun. 267(1), 177–181 (2006).
[Crossref]

Szafraniec, B.

D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photonics Technol. Lett. 14(3), 355–357 (2002).
[Crossref]

Tan, W. C.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Tang, M.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Tränkle, G.

Tse, C. H.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Van Camp, M. A.

Vuletic, V.

Wahbeh, M.

Weber, S.

Wei, F.

Wicht, A.

Wu, R. F.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Xu, D.

Yang, F.

Yuan, X.

J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry–Perot filters and variable saturable absorbers,” Opt. Commun. 267(1), 177–181 (2006).
[Crossref]

Zhang, H.

Zhang, J.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Zhang, X.

J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry–Perot filters and variable saturable absorbers,” Opt. Commun. 267(1), 177–181 (2006).
[Crossref]

Zhang, Z.

Zhou, J. L.

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

H. Li and N. B. Abraham, “Analysis of the noise spectra of a laser diode with optical feedback from a high-finesse resonator,” IEEE J. Quantum Electron. 25(8), 1782–1793 (1989).
[Crossref]

IEEE Photonics Technol. Lett. (3)

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photonics Technol. Lett. 23(14), 974–976 (2011).
[Crossref]

D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photonics Technol. Lett. 14(3), 355–357 (2002).
[Crossref]

X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Pérot etalon,” IEEE Photonics Technol. Lett. 20(12), 976–978 (2008).
[Crossref]

Nat. Commun. (1)

W. Liang, V. S. Ilchenko, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry–Perot filters and variable saturable absorbers,” Opt. Commun. 267(1), 177–181 (2006).
[Crossref]

Opt. Express (7)

P. Samutpraphoot, S. Weber, Q. Lin, D. Gangloff, A. Bylinskii, B. Braverman, A. Kawasaki, C. Raab, W. Kaenders, and V. Vuletić, “Passive intrinsic-linewidth narrowing of ultraviolet extended-cavity diode laser by weak optical feedback,” Opt. Express 22(10), 11592–11599 (2014).
[Crossref] [PubMed]

D. Xu, F. Yang, D. Chen, F. Wei, H. Cai, Z. Fang, and R. Qu, “Laser phase and frequency noise measurement by Michelson interferometer composed of a 3 × 3 optical fiber coupler,” Opt. Express 23(17), 22386–22393 (2015).
[Crossref] [PubMed]

W. Lewoczko-Adamczyk, C. Pyrlik, J. Häger, S. Schwertfeger, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity,” Opt. Express 23(8), 9705–9709 (2015).
[Crossref] [PubMed]

E. Luvsandamdin, C. Kürbis, M. Schiemangk, A. Sahm, A. Wicht, A. Peters, G. Erbert, and G. Tränkle, “Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space,” Opt. Express 22(7), 7790–7798 (2014).
[Crossref] [PubMed]

K. Numata, J. Camp, M. A. Krainak, and L. Stolpner, “Performance of planar-waveguide external cavity laser for precision measurements,” Opt. Express 18(22), 22781–22788 (2010).
[Crossref] [PubMed]

M. Wahbeh and R. Kashyap, “Purity of the single frequency mode of a hybrid semiconductor-fiber laser,” Opt. Express 23(12), 16084–16095 (2015).
[Crossref] [PubMed]

S. Bennetts, G. D. McDonald, K. S. Hardman, J. E. Debs, C. C. N. Kuhn, J. D. Close, and N. P. Robins, “External cavity diode lasers with 5kHz linewidth and 200nm tuning range at 1.55μm and methods for linewidth measurement,” Opt. Express 22(9), 10642–10654 (2014).
[Crossref] [PubMed]

Opt. Lett. (4)

Proc. SPIE (2)

R. E. Bartolo, C. K. Kirkendall, V. Kupershmidt, and S. Siala, “Achieving narrow linewidth low-phase noise external cavity semiconductor lasers through the reduction of 1/f noise,” Proc. SPIE 6133, 61330I (2006).
[Crossref]

M. Morin, S. Ayotte, C. Latrasse, M. Aube, M. Poulin, Y. Painchaud, N. Gagnon, and G. Lafrance, “What narrow-linewidth semiconductor lasers can do for defense and security?” Proc. SPIE 7677, 76770N (2010).
[Crossref]

Other (1)

J. F. Cliche, Y. Painchaud, C. Latrasse, M. J. Picard, I. Alexandre, and M. Têtu, “Ultra-narrow Bragg grating for active semiconductor laser linewidth reduction through electrical feedback,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (Optical Society of America, 2007), paper BTuE2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the apparatus. Callouts indicate the relationship between the spectra of the self-injection locked DFB diode laser and the transmission spectrum of the FBG-FP. DFB LD: distributed feedback diode laser, TEC: temperature controller; FBG-FP: fiber Bragg grating Fabry–Perot cavity, VOA: variable optical attenuator, OSA: optical spectrum analyzer, LFNA: laser-frequency noise analyzer, and all of the optical components are pigtailed with the polarization maintained fibers.
Fig. 2
Fig. 2 Optical spectra of the DFB diode laser self-injection locked to different resonance transmission peaks (colored) and the transmission spectrum of the FBG-FP cavity (gray). The DFB diode laser output spectra for different driven currents are marked by different colors: (a) 136 mA, (b) 131 mA, (c) 125 mA, (d) 118 mA, (e) 113 mA, and (f) 107 mA. The dashed vertical lines separate the specific spectrum at different operation temperatures.
Fig. 3
Fig. 3 Power spectra of the beat note signal for the free-running DFB diode laser (gray) and self-injection locked DFB diode laser with resonant optical feedback (blue).
Fig. 4
Fig. 4 Frequency-noise power spectral density (left axis) of the (a) RIO ORIONTM ECDL module, (b) Koheras BASIK fiber laser, (c) self-injection locked DFB diode laser with resonant optical feedback, (d) free-running DFB diode laser, (e) beta separation line given by 8ln2f2 (left axis), and (f) integral laser linewidth (FWHM) obtained using the method of [19] (right axis).
Fig. 5
Fig. 5 Relative intensity noise (RIN) of the free-running DFB diode laser (blue line) and the self-injection locked DFB diode laser with resonant optical feedback (red line). The measurement background noise limitation (gray line) is also shown for comparison.
Fig. 6
Fig. 6 Optical power (left axis, red curve) and wavelength (right axis, blue curve) variations versus drive current for the (a) free-running DFB diode laser and (b) self-injection locked DFB diode laser with resonant optical feedback. The right axis represents optical frequency difference from 1549.551 nm. The inset of (b) is an enlarged view of the optical frequency tuning during the drive current sweeping when the DFB diode laser is self-injection locked to a specific resonance transmission peaks of the FBG-FP cavity.
Fig. 7
Fig. 7 Recording of the optical frequency drift from 1549.55 nm of the self-injection locked DFB diode laser with resonant optical feedback.

Metrics