Abstract

We explore the potential of 3D metal printing to realize complex conductive terahertz devices. Factors impacting performance such as printing resolution, surface roughness, oxidation, and material loss are investigated via analytical, numerical, and experimental approaches. The high degree of control offered by a 3D-printed topology is exploited to realize a zone plate operating at 530 GHz. Reflection efficiency at this frequency is found to be over 90%. The high-performance of this preliminary device suggest that 3D metal printing can play a strong role in guided-wave and general beam control devices in the terahertz range.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Field imaging near to the surface of terahertz reflective optics using a vector network analyzer

Maryam Hajji, Jonathan Hammler, Dagou Zeze, Claudio Balocco, and Andrew J. Gallant
Appl. Opt. 56(31) 8746-8750 (2017)

Diode-based additive manufacturing of metals using an optically-addressable light valve

Manyalibo J. Matthews, Gabe Guss, Derrek R. Drachenberg, James A. Demuth, John E. Heebner, Eric B. Duoss, Joshua D. Kuntz, and Christopher M. Spadaccini
Opt. Express 25(10) 11788-11800 (2017)

Comparison of the properties of titanium dioxide films prepared by various techniques

Jean M. Bennett, Emile Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, Charles K. Carniglia, R. A. Schmell, Thomas H. Allen, Trudy Tuttle-Hart, Karl H. Guenther, and Andreas Saxer
Appl. Opt. 28(16) 3303-3317 (1989)

References

  • View by:
  • |
  • |
  • |

  1. B. Berman, “3-D printing: The new industrial revolution,” Bus. Horizons 55, 155–162 (2012).
    [Crossref]
  2. G. C. Anzalone, C. Zhang, B. Wijnen, P. G. Sanders, and J. M. Pearce, “A low-cost open-source metal 3-D printer,” IEEE Access 1, 803–810 (2013).
    [Crossref]
  3. C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-source 3D-printable optics equipment,” PLoS One 8, e59840 (2013).
    [Crossref] [PubMed]
  4. K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and J. A. Lewis, “3D printing of interdigitated Li-Ion microbattery architectures,” Adv. Mater. 25, 4539–4543 (2013).
    [Crossref] [PubMed]
  5. P. J. Kitson, M. H. Rosnes, V. Sans, V. Dragone, and L. Cronin, “Configurable 3D-printed millifluidic and microfluidic âĂŸlab on a chipâĂŹ reactionware devices,” Lab Chip 12, 3267–3271 (2012).
    [Crossref] [PubMed]
  6. M. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. Cooper, R. W. Bowman, T. Vilbrandt, and L. Cronin, “Integrated 3D-printed reactionware for chemical synthesis and analysis,” Nature Chem. 4, 349–354 (2012).
    [Crossref]
  7. S. Kim, H. Utsunomiya, J. Koski, B. Wu, M. Cima, J. Sohn, K. Mukai, L. Griffith, and J. Vacanti, “Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels,” Ann. Surg. 228, 8–13 (1998).
    [Crossref] [PubMed]
  8. H. Seitz, W. Rieder, S. Irsen, B. Leukers, and C. Tille, “Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering,” J. Biomed. Mater. Res. B 74, 782–788 (2005).
    [Crossref]
  9. P. Habibovic, U. Gbureck, C. J. Doillon, D. C. Bassett, C. A. van Blitterswijk, and J. E. Barralet, “Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants,” Biomaterials 29, 944–953 (2008).
    [Crossref]
  10. R. Blomaard and J. Biskop, “3D inkjet printing of optics,” in “NIP & Digital Fabrication Conference,” (Society for Imaging Science and Technology, 2015), 1, pp. 39–41.
  11. S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared, Millimeter, Terahertz Waves 35, 993–997 (2014).
    [Crossref]
  12. S. F. Busch, M. Weidenbach, J. C. Balzer, and M. Koch, “THz optics 3D printed with TOPAS,” J. Infrared, Millimeter, Terahertz Waves 37303–307 (2015).
    [Crossref]
  13. J. Suszek, A. Siemion, M. S. Bieda, N. Blocki, D. Coquillat, G. Cywinski, E. Czerwinska, M. Doch, A. Kowalczyk, N. Palka, A. Sobczyk, P. Zagrajek, M Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, “3-D-printed flat optics for THz linear scanners,” IEEE Trans. THz Sci. Technol. 5, 314–316 (2015).
    [Crossref]
  14. D. Guo, J. Mou, H. Qiao, W. Hu, and X. Lv, “A 2× 2 3D printed micro-lens array for THz applications,” in “40th International Conference on Infrared, Millimeter, and Terahertz Waves,” (IEEE, 2015), art. no. 7327641.
  15. A. Squires, E. Constable, and R. Lewis, “3D printed terahertz diffraction gratings and lenses,” J. Infrared, Millimeter, Terahertz Waves 36, 72–80 (2015).
    [Crossref]
  16. L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), paper M3K–7.
  17. X. Wei, C. Liu, Z. Zhang, L. Zhu, J. Wang, K. Wang, Z. Yang, and J. Liu, “Orbit angular momentum encoding at 0.3 THz via 3D printed spiral phase plates,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2014), 92751P.
  18. A. I. Hernandez-Serrano, M. Weidenbach, S. F. Busch, M. Koch, and E. Castro-Camus, “Fabrication of gradient-refractive-index lenses for terahertz applications by three-dimensional printing,” J. Opt. Soc. Am. B 33, 928–931 (2016).
    [Crossref]
  19. W. D. Furlan, V. Ferrando, J. A. Monsoriu, P. Zagrajek, E. Czerwińska, and M. Szustakowski, “3D printed diffractive terahertz lenses,” Opt. Lett. 41, 1748–1751 (2016).
    [Crossref] [PubMed]
  20. C. Liu, X. Wei, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Terahertz imaging system based on bessel beams via 3D printed axicons at 100 GHz,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2014), 92751Q.
  21. P. Nayeri, M. Liang, R. A. Sabory-Garcia, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Z. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
    [Crossref]
  22. L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.-P. Kruth, “A study of the microstructural evolution during selective laser melting of Ti-6Al-4V,” Acta Materialia 58, 3303–3312 (2010).
    [Crossref]
  23. S. Bremen, W. Meiners, and A. Diatlov, “Selective laser melting,” Laser Tech. J. 9, 33–38 (2012).
    [Crossref]
  24. C. Ladd, J.-H. So, J. Muth, and M. D. Dickey, “3D printing of free standing liquid metal microstructures,” Adv. Mater. 25, 5081–5085 (2013).
    [Crossref] [PubMed]
  25. W. E. Frazier, “Metal additive manufacturing: A review,” J. Mater. Eng. Perform. 23, 1917–1928 (2014).
    [Crossref]
  26. S. Pandey, B. Gupta, and A. Nahata, “Terahertz plasmonic waveguides created via 3D printing,” Opt. Express 21, 24422–24430 (2013).
    [Crossref] [PubMed]
  27. J. Liu, R. Mendis, and D. M. Mittleman, “A Maxwell’s fish eye lens for the terahertz region,” Appl. Phys. Lett. 103, 031104 (2013).
    [Crossref]
  28. G. Welsch, R. Boyer, and E. Collings, Materials Properties Handbook: Titanium Alloys (ASM international, 1993).
  29. Y. Dikmelik, J. B. Spicer, M. J. Fitch, and R. Osiander, “Effects of surface roughness on reflection spectra obtained by terahertz time-domain spectroscopy,” Opt. Lett. 31, 3653–3655 (2006).
    [Crossref] [PubMed]
  30. D. M. Pozar, Microwave Engineering (John Wiley & Sons, 2009).
  31. T. Wieting and J. Schriempf, “Infrared absorptances of partially ordered alloys at elevated temperatures,” J. Appl. Phys. 47, 4009–4011 (1976).
    [Crossref]
  32. F. Yang, A. Kaczorowski, and T. D. Wilkinson, “Fast precalculated triangular mesh algorithm for 3D binary computer-generated holograms,” Appl. Opt. 53, 8261–8267 (2014).
    [Crossref]
  33. T. Niu, W.B. Withayachumnankul, S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21, 2875–2889 (2013).
    [Crossref] [PubMed]
  34. L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express 21, 1344–1352 (2013).
    [Crossref] [PubMed]
  35. T. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22, 16148–16160 (2014).
    [Crossref] [PubMed]
  36. D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27, 7137–7144 (2015).
    [Crossref] [PubMed]
  37. K. Rastani, A. Marrakchi, S. F. Habiby, W. M. Hubbard, H. Gilchrist, and R. E. Nahory, “Binary phase Fresnel lenses for generation of two-dimensional beam arrays,” Appl. Opt. 30, 1347–1354 (1991).
    [Crossref] [PubMed]
  38. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
    [Crossref]
  39. J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett. 33, 779–781 (2008).
    [Crossref] [PubMed]
  40. Z. Zhang, H. Fan, H.-F. Xu, J. Qu, and W. Huang, “Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic,” J. Opt. 17, 065611 (2015).
    [Crossref]
  41. D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University, 1999).
    [Crossref]
  42. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).
  43. E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder, “Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior,” Mater. Des. 34, 159–169 (2012).
    [Crossref]
  44. P. Uliasz, T. Knych, M. Piwowarska, and J. Wiecheć, “The influence of heat treatment parameters on the electrical conductivity of AlSi7Mg and AlSi10Mg aluminum cast alloys,” in “13th International Conference on Aluminum Alloys,” (Wiley Online Library, 2012), pp. 129–135.
  45. M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys 42, 065415 (2009).
    [Crossref]
  46. B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss,” J. Opt. Soc. Am. B 28, 917–921 (2011).
    [Crossref]

2016 (2)

2015 (5)

S. F. Busch, M. Weidenbach, J. C. Balzer, and M. Koch, “THz optics 3D printed with TOPAS,” J. Infrared, Millimeter, Terahertz Waves 37303–307 (2015).
[Crossref]

J. Suszek, A. Siemion, M. S. Bieda, N. Blocki, D. Coquillat, G. Cywinski, E. Czerwinska, M. Doch, A. Kowalczyk, N. Palka, A. Sobczyk, P. Zagrajek, M Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, “3-D-printed flat optics for THz linear scanners,” IEEE Trans. THz Sci. Technol. 5, 314–316 (2015).
[Crossref]

A. Squires, E. Constable, and R. Lewis, “3D printed terahertz diffraction gratings and lenses,” J. Infrared, Millimeter, Terahertz Waves 36, 72–80 (2015).
[Crossref]

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27, 7137–7144 (2015).
[Crossref] [PubMed]

Z. Zhang, H. Fan, H.-F. Xu, J. Qu, and W. Huang, “Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic,” J. Opt. 17, 065611 (2015).
[Crossref]

2014 (5)

T. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22, 16148–16160 (2014).
[Crossref] [PubMed]

F. Yang, A. Kaczorowski, and T. D. Wilkinson, “Fast precalculated triangular mesh algorithm for 3D binary computer-generated holograms,” Appl. Opt. 53, 8261–8267 (2014).
[Crossref]

W. E. Frazier, “Metal additive manufacturing: A review,” J. Mater. Eng. Perform. 23, 1917–1928 (2014).
[Crossref]

P. Nayeri, M. Liang, R. A. Sabory-Garcia, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Z. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
[Crossref]

S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared, Millimeter, Terahertz Waves 35, 993–997 (2014).
[Crossref]

2013 (8)

G. C. Anzalone, C. Zhang, B. Wijnen, P. G. Sanders, and J. M. Pearce, “A low-cost open-source metal 3-D printer,” IEEE Access 1, 803–810 (2013).
[Crossref]

C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-source 3D-printable optics equipment,” PLoS One 8, e59840 (2013).
[Crossref] [PubMed]

K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and J. A. Lewis, “3D printing of interdigitated Li-Ion microbattery architectures,” Adv. Mater. 25, 4539–4543 (2013).
[Crossref] [PubMed]

C. Ladd, J.-H. So, J. Muth, and M. D. Dickey, “3D printing of free standing liquid metal microstructures,” Adv. Mater. 25, 5081–5085 (2013).
[Crossref] [PubMed]

S. Pandey, B. Gupta, and A. Nahata, “Terahertz plasmonic waveguides created via 3D printing,” Opt. Express 21, 24422–24430 (2013).
[Crossref] [PubMed]

J. Liu, R. Mendis, and D. M. Mittleman, “A Maxwell’s fish eye lens for the terahertz region,” Appl. Phys. Lett. 103, 031104 (2013).
[Crossref]

T. Niu, W.B. Withayachumnankul, S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21, 2875–2889 (2013).
[Crossref] [PubMed]

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express 21, 1344–1352 (2013).
[Crossref] [PubMed]

2012 (5)

E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder, “Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior,” Mater. Des. 34, 159–169 (2012).
[Crossref]

S. Bremen, W. Meiners, and A. Diatlov, “Selective laser melting,” Laser Tech. J. 9, 33–38 (2012).
[Crossref]

P. J. Kitson, M. H. Rosnes, V. Sans, V. Dragone, and L. Cronin, “Configurable 3D-printed millifluidic and microfluidic âĂŸlab on a chipâĂŹ reactionware devices,” Lab Chip 12, 3267–3271 (2012).
[Crossref] [PubMed]

M. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. Cooper, R. W. Bowman, T. Vilbrandt, and L. Cronin, “Integrated 3D-printed reactionware for chemical synthesis and analysis,” Nature Chem. 4, 349–354 (2012).
[Crossref]

B. Berman, “3-D printing: The new industrial revolution,” Bus. Horizons 55, 155–162 (2012).
[Crossref]

2011 (1)

2010 (1)

L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.-P. Kruth, “A study of the microstructural evolution during selective laser melting of Ti-6Al-4V,” Acta Materialia 58, 3303–3312 (2010).
[Crossref]

2009 (1)

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys 42, 065415 (2009).
[Crossref]

2008 (2)

J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett. 33, 779–781 (2008).
[Crossref] [PubMed]

P. Habibovic, U. Gbureck, C. J. Doillon, D. C. Bassett, C. A. van Blitterswijk, and J. E. Barralet, “Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants,” Biomaterials 29, 944–953 (2008).
[Crossref]

2006 (1)

2005 (1)

H. Seitz, W. Rieder, S. Irsen, B. Leukers, and C. Tille, “Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering,” J. Biomed. Mater. Res. B 74, 782–788 (2005).
[Crossref]

2001 (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

1998 (1)

S. Kim, H. Utsunomiya, J. Koski, B. Wu, M. Cima, J. Sohn, K. Mukai, L. Griffith, and J. Vacanti, “Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels,” Ann. Surg. 228, 8–13 (1998).
[Crossref] [PubMed]

1991 (1)

1976 (1)

T. Wieting and J. Schriempf, “Infrared absorptances of partially ordered alloys at elevated temperatures,” J. Appl. Phys. 47, 4009–4011 (1976).
[Crossref]

Abbott, D.

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27, 7137–7144 (2015).
[Crossref] [PubMed]

T. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22, 16148–16160 (2014).
[Crossref] [PubMed]

Ahn, B. Y.

K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and J. A. Lewis, “3D printing of interdigitated Li-Ion microbattery architectures,” Adv. Mater. 25, 4539–4543 (2013).
[Crossref] [PubMed]

Alda, J.

Anzalone, G. C.

G. C. Anzalone, C. Zhang, B. Wijnen, P. G. Sanders, and J. M. Pearce, “A low-cost open-source metal 3-D printer,” IEEE Access 1, 803–810 (2013).
[Crossref]

Anzalone, N. C.

C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-source 3D-printable optics equipment,” PLoS One 8, e59840 (2013).
[Crossref] [PubMed]

Attwood, D.

D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University, 1999).
[Crossref]

Balzer, J. C.

S. F. Busch, M. Weidenbach, J. C. Balzer, and M. Koch, “THz optics 3D printed with TOPAS,” J. Infrared, Millimeter, Terahertz Waves 37303–307 (2015).
[Crossref]

Barralet, J. E.

P. Habibovic, U. Gbureck, C. J. Doillon, D. C. Bassett, C. A. van Blitterswijk, and J. E. Barralet, “Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants,” Biomaterials 29, 944–953 (2008).
[Crossref]

Bassett, D. C.

P. Habibovic, U. Gbureck, C. J. Doillon, D. C. Bassett, C. A. van Blitterswijk, and J. E. Barralet, “Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants,” Biomaterials 29, 944–953 (2008).
[Crossref]

Berman, B.

B. Berman, “3-D printing: The new industrial revolution,” Bus. Horizons 55, 155–162 (2012).
[Crossref]

Bhaskaran, M.

Bieda, M. S.

J. Suszek, A. Siemion, M. S. Bieda, N. Blocki, D. Coquillat, G. Cywinski, E. Czerwinska, M. Doch, A. Kowalczyk, N. Palka, A. Sobczyk, P. Zagrajek, M Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, “3-D-printed flat optics for THz linear scanners,” IEEE Trans. THz Sci. Technol. 5, 314–316 (2015).
[Crossref]

Biskop, J.

R. Blomaard and J. Biskop, “3D inkjet printing of optics,” in “NIP & Digital Fabrication Conference,” (Society for Imaging Science and Technology, 2015), 1, pp. 39–41.

Blitterswijk, C. A. van

P. Habibovic, U. Gbureck, C. J. Doillon, D. C. Bassett, C. A. van Blitterswijk, and J. E. Barralet, “Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants,” Biomaterials 29, 944–953 (2008).
[Crossref]

Blocki, N.

J. Suszek, A. Siemion, M. S. Bieda, N. Blocki, D. Coquillat, G. Cywinski, E. Czerwinska, M. Doch, A. Kowalczyk, N. Palka, A. Sobczyk, P. Zagrajek, M Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, “3-D-printed flat optics for THz linear scanners,” IEEE Trans. THz Sci. Technol. 5, 314–316 (2015).
[Crossref]

Blomaard, R.

R. Blomaard and J. Biskop, “3D inkjet printing of optics,” in “NIP & Digital Fabrication Conference,” (Society for Imaging Science and Technology, 2015), 1, pp. 39–41.

Boreman, G.

Bowman, R. W.

M. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. Cooper, R. W. Bowman, T. Vilbrandt, and L. Cronin, “Integrated 3D-printed reactionware for chemical synthesis and analysis,” Nature Chem. 4, 349–354 (2012).
[Crossref]

Boyer, R.

G. Welsch, R. Boyer, and E. Collings, Materials Properties Handbook: Titanium Alloys (ASM international, 1993).

Brandl, E.

E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder, “Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior,” Mater. Des. 34, 159–169 (2012).
[Crossref]

Bremen, S.

S. Bremen, W. Meiners, and A. Diatlov, “Selective laser melting,” Laser Tech. J. 9, 33–38 (2012).
[Crossref]

Buchbinder, D.

E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder, “Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior,” Mater. Des. 34, 159–169 (2012).
[Crossref]

Busch, S.

S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared, Millimeter, Terahertz Waves 35, 993–997 (2014).
[Crossref]

Busch, S. F.

Castro-Camus, E.

Cima, M.

S. Kim, H. Utsunomiya, J. Koski, B. Wu, M. Cima, J. Sohn, K. Mukai, L. Griffith, and J. Vacanti, “Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels,” Ann. Surg. 228, 8–13 (1998).
[Crossref] [PubMed]

Collings, E.

G. Welsch, R. Boyer, and E. Collings, Materials Properties Handbook: Titanium Alloys (ASM international, 1993).

Constable, E.

A. Squires, E. Constable, and R. Lewis, “3D printed terahertz diffraction gratings and lenses,” J. Infrared, Millimeter, Terahertz Waves 36, 72–80 (2015).
[Crossref]

Cooper, G. J.

M. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. Cooper, R. W. Bowman, T. Vilbrandt, and L. Cronin, “Integrated 3D-printed reactionware for chemical synthesis and analysis,” Nature Chem. 4, 349–354 (2012).
[Crossref]

Coquillat, D.

J. Suszek, A. Siemion, M. S. Bieda, N. Blocki, D. Coquillat, G. Cywinski, E. Czerwinska, M. Doch, A. Kowalczyk, N. Palka, A. Sobczyk, P. Zagrajek, M Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, “3-D-printed flat optics for THz linear scanners,” IEEE Trans. THz Sci. Technol. 5, 314–316 (2015).
[Crossref]

Craeghs, T.

L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.-P. Kruth, “A study of the microstructural evolution during selective laser melting of Ti-6Al-4V,” Acta Materialia 58, 3303–3312 (2010).
[Crossref]

Cronin, L.

P. J. Kitson, M. H. Rosnes, V. Sans, V. Dragone, and L. Cronin, “Configurable 3D-printed millifluidic and microfluidic âĂŸlab on a chipâĂŹ reactionware devices,” Lab Chip 12, 3267–3271 (2012).
[Crossref] [PubMed]

M. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. Cooper, R. W. Bowman, T. Vilbrandt, and L. Cronin, “Integrated 3D-printed reactionware for chemical synthesis and analysis,” Nature Chem. 4, 349–354 (2012).
[Crossref]

Cywinski, G.

J. Suszek, A. Siemion, M. S. Bieda, N. Blocki, D. Coquillat, G. Cywinski, E. Czerwinska, M. Doch, A. Kowalczyk, N. Palka, A. Sobczyk, P. Zagrajek, M Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, “3-D-printed flat optics for THz linear scanners,” IEEE Trans. THz Sci. Technol. 5, 314–316 (2015).
[Crossref]

Czerwinska, E.

W. D. Furlan, V. Ferrando, J. A. Monsoriu, P. Zagrajek, E. Czerwińska, and M. Szustakowski, “3D printed diffractive terahertz lenses,” Opt. Lett. 41, 1748–1751 (2016).
[Crossref] [PubMed]

J. Suszek, A. Siemion, M. S. Bieda, N. Blocki, D. Coquillat, G. Cywinski, E. Czerwinska, M. Doch, A. Kowalczyk, N. Palka, A. Sobczyk, P. Zagrajek, M Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, “3-D-printed flat optics for THz linear scanners,” IEEE Trans. THz Sci. Technol. 5, 314–316 (2015).
[Crossref]

Dearing, M. T.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Diatlov, A.

S. Bremen, W. Meiners, and A. Diatlov, “Selective laser melting,” Laser Tech. J. 9, 33–38 (2012).
[Crossref]

Dickey, M. D.

C. Ladd, J.-H. So, J. Muth, and M. D. Dickey, “3D printing of free standing liquid metal microstructures,” Adv. Mater. 25, 5081–5085 (2013).
[Crossref] [PubMed]

Dikmelik, Y.

Dillon, S. J.

K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and J. A. Lewis, “3D printing of interdigitated Li-Ion microbattery architectures,” Adv. Mater. 25, 4539–4543 (2013).
[Crossref] [PubMed]

Doch, M.

J. Suszek, A. Siemion, M. S. Bieda, N. Blocki, D. Coquillat, G. Cywinski, E. Czerwinska, M. Doch, A. Kowalczyk, N. Palka, A. Sobczyk, P. Zagrajek, M Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, “3-D-printed flat optics for THz linear scanners,” IEEE Trans. THz Sci. Technol. 5, 314–316 (2015).
[Crossref]

Doillon, C. J.

P. Habibovic, U. Gbureck, C. J. Doillon, D. C. Bassett, C. A. van Blitterswijk, and J. E. Barralet, “Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants,” Biomaterials 29, 944–953 (2008).
[Crossref]

Dragone, V.

P. J. Kitson, M. H. Rosnes, V. Sans, V. Dragone, and L. Cronin, “Configurable 3D-printed millifluidic and microfluidic âĂŸlab on a chipâĂŹ reactionware devices,” Lab Chip 12, 3267–3271 (2012).
[Crossref] [PubMed]

Dubois, C.

Dufresne, E. R.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Dupuis, A.

Elsherbeni, A. Z.

P. Nayeri, M. Liang, R. A. Sabory-Garcia, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Z. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
[Crossref]

Fan, H.

Z. Zhang, H. Fan, H.-F. Xu, J. Qu, and W. Huang, “Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic,” J. Opt. 17, 065611 (2015).
[Crossref]

Faria, R. P.

C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-source 3D-printable optics equipment,” PLoS One 8, e59840 (2013).
[Crossref] [PubMed]

Ferrando, V.

Fey, M.

S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared, Millimeter, Terahertz Waves 35, 993–997 (2014).
[Crossref]

Fitch, M. J.

Frazier, W. E.

W. E. Frazier, “Metal additive manufacturing: A review,” J. Mater. Eng. Perform. 23, 1917–1928 (2014).
[Crossref]

Fumeaux, C.

Furlan, W. D.

Gbureck, U.

P. Habibovic, U. Gbureck, C. J. Doillon, D. C. Bassett, C. A. van Blitterswijk, and J. E. Barralet, “Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants,” Biomaterials 29, 944–953 (2008).
[Crossref]

Gehm, M.

P. Nayeri, M. Liang, R. A. Sabory-Garcia, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Z. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
[Crossref]

Gilchrist, H.

Ginn, J.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

Grier, D. G.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Griffith, L.

S. Kim, H. Utsunomiya, J. Koski, B. Wu, M. Cima, J. Sohn, K. Mukai, L. Griffith, and J. Vacanti, “Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels,” Ann. Surg. 228, 8–13 (1998).
[Crossref] [PubMed]

Guo, D.

D. Guo, J. Mou, H. Qiao, W. Hu, and X. Lv, “A 2× 2 3D printed micro-lens array for THz applications,” in “40th International Conference on Infrared, Millimeter, and Terahertz Waves,” (IEEE, 2015), art. no. 7327641.

Gupta, B.

Gutruf, P.

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27, 7137–7144 (2015).
[Crossref] [PubMed]

T. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22, 16148–16160 (2014).
[Crossref] [PubMed]

Habibovic, P.

P. Habibovic, U. Gbureck, C. J. Doillon, D. C. Bassett, C. A. van Blitterswijk, and J. E. Barralet, “Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants,” Biomaterials 29, 944–953 (2008).
[Crossref]

Habiby, S. F.

Headland, D.

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27, 7137–7144 (2015).
[Crossref] [PubMed]

Heckenberger, U.

E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder, “Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior,” Mater. Des. 34, 159–169 (2012).
[Crossref]

Hernandez-Serrano, A. I.

Holzinger, V.

E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder, “Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior,” Mater. Des. 34, 159–169 (2012).
[Crossref]

Hu, W.

D. Guo, J. Mou, H. Qiao, W. Hu, and X. Lv, “A 2× 2 3D printed micro-lens array for THz applications,” in “40th International Conference on Infrared, Millimeter, and Terahertz Waves,” (IEEE, 2015), art. no. 7327641.

Huang, W.

Z. Zhang, H. Fan, H.-F. Xu, J. Qu, and W. Huang, “Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic,” J. Opt. 17, 065611 (2015).
[Crossref]

Hubbard, W. M.

Irsen, S.

H. Seitz, W. Rieder, S. Irsen, B. Leukers, and C. Tille, “Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering,” J. Biomed. Mater. Res. B 74, 782–788 (2005).
[Crossref]

Jansen, C.

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys 42, 065415 (2009).
[Crossref]

Kaczorowski, A.

Kim, S.

S. Kim, H. Utsunomiya, J. Koski, B. Wu, M. Cima, J. Sohn, K. Mukai, L. Griffith, and J. Vacanti, “Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels,” Ann. Surg. 228, 8–13 (1998).
[Crossref] [PubMed]

Kitson, P. J.

M. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. Cooper, R. W. Bowman, T. Vilbrandt, and L. Cronin, “Integrated 3D-printed reactionware for chemical synthesis and analysis,” Nature Chem. 4, 349–354 (2012).
[Crossref]

P. J. Kitson, M. H. Rosnes, V. Sans, V. Dragone, and L. Cronin, “Configurable 3D-printed millifluidic and microfluidic âĂŸlab on a chipâĂŹ reactionware devices,” Lab Chip 12, 3267–3271 (2012).
[Crossref] [PubMed]

Knap, W.

J. Suszek, A. Siemion, M. S. Bieda, N. Blocki, D. Coquillat, G. Cywinski, E. Czerwinska, M. Doch, A. Kowalczyk, N. Palka, A. Sobczyk, P. Zagrajek, M Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, “3-D-printed flat optics for THz linear scanners,” IEEE Trans. THz Sci. Technol. 5, 314–316 (2015).
[Crossref]

Knych, T.

P. Uliasz, T. Knych, M. Piwowarska, and J. Wiecheć, “The influence of heat treatment parameters on the electrical conductivity of AlSi7Mg and AlSi10Mg aluminum cast alloys,” in “13th International Conference on Aluminum Alloys,” (Wiley Online Library, 2012), pp. 129–135.

Koch, M.

A. I. Hernandez-Serrano, M. Weidenbach, S. F. Busch, M. Koch, and E. Castro-Camus, “Fabrication of gradient-refractive-index lenses for terahertz applications by three-dimensional printing,” J. Opt. Soc. Am. B 33, 928–931 (2016).
[Crossref]

S. F. Busch, M. Weidenbach, J. C. Balzer, and M. Koch, “THz optics 3D printed with TOPAS,” J. Infrared, Millimeter, Terahertz Waves 37303–307 (2015).
[Crossref]

S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared, Millimeter, Terahertz Waves 35, 993–997 (2014).
[Crossref]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys 42, 065415 (2009).
[Crossref]

Kolodziejczyk, A.

J. Suszek, A. Siemion, M. S. Bieda, N. Blocki, D. Coquillat, G. Cywinski, E. Czerwinska, M. Doch, A. Kowalczyk, N. Palka, A. Sobczyk, P. Zagrajek, M Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, “3-D-printed flat optics for THz linear scanners,” IEEE Trans. THz Sci. Technol. 5, 314–316 (2015).
[Crossref]

Koski, J.

S. Kim, H. Utsunomiya, J. Koski, B. Wu, M. Cima, J. Sohn, K. Mukai, L. Griffith, and J. Vacanti, “Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels,” Ann. Surg. 228, 8–13 (1998).
[Crossref] [PubMed]

Kowalczyk, A.

J. Suszek, A. Siemion, M. S. Bieda, N. Blocki, D. Coquillat, G. Cywinski, E. Czerwinska, M. Doch, A. Kowalczyk, N. Palka, A. Sobczyk, P. Zagrajek, M Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, “3-D-printed flat optics for THz linear scanners,” IEEE Trans. THz Sci. Technol. 5, 314–316 (2015).
[Crossref]

Kruth, J.-P.

L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.-P. Kruth, “A study of the microstructural evolution during selective laser melting of Ti-6Al-4V,” Acta Materialia 58, 3303–3312 (2010).
[Crossref]

Ladd, C.

C. Ladd, J.-H. So, J. Muth, and M. D. Dickey, “3D printing of free standing liquid metal microstructures,” Adv. Mater. 25, 5081–5085 (2013).
[Crossref] [PubMed]

Lail, B.

Leukers, B.

H. Seitz, W. Rieder, S. Irsen, B. Leukers, and C. Tille, “Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering,” J. Biomed. Mater. Res. B 74, 782–788 (2005).
[Crossref]

Lewis, J. A.

K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and J. A. Lewis, “3D printing of interdigitated Li-Ion microbattery architectures,” Adv. Mater. 25, 4539–4543 (2013).
[Crossref] [PubMed]

Lewis, R.

A. Squires, E. Constable, and R. Lewis, “3D printed terahertz diffraction gratings and lenses,” J. Infrared, Millimeter, Terahertz Waves 36, 72–80 (2015).
[Crossref]

Li, S.

L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), paper M3K–7.

Li, Z.

L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), paper M3K–7.

Liang, M.

P. Nayeri, M. Liang, R. A. Sabory-Garcia, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Z. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
[Crossref]

Liu, C.

C. Liu, X. Wei, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Terahertz imaging system based on bessel beams via 3D printed axicons at 100 GHz,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2014), 92751Q.

X. Wei, C. Liu, Z. Zhang, L. Zhu, J. Wang, K. Wang, Z. Yang, and J. Liu, “Orbit angular momentum encoding at 0.3 THz via 3D printed spiral phase plates,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2014), 92751P.

Liu, J.

J. Liu, R. Mendis, and D. M. Mittleman, “A Maxwell’s fish eye lens for the terahertz region,” Appl. Phys. Lett. 103, 031104 (2013).
[Crossref]

C. Liu, X. Wei, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Terahertz imaging system based on bessel beams via 3D printed axicons at 100 GHz,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2014), 92751Q.

L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), paper M3K–7.

X. Wei, C. Liu, Z. Zhang, L. Zhu, J. Wang, K. Wang, Z. Yang, and J. Liu, “Orbit angular momentum encoding at 0.3 THz via 3D printed spiral phase plates,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2014), 92751P.

Lv, X.

D. Guo, J. Mou, H. Qiao, W. Hu, and X. Lv, “A 2× 2 3D printed micro-lens array for THz applications,” in “40th International Conference on Infrared, Millimeter, and Terahertz Waves,” (IEEE, 2015), art. no. 7327641.

Marrakchi, A.

Meiners, W.

S. Bremen, W. Meiners, and A. Diatlov, “Selective laser melting,” Laser Tech. J. 9, 33–38 (2012).
[Crossref]

Mendis, R.

J. Liu, R. Mendis, and D. M. Mittleman, “A Maxwell’s fish eye lens for the terahertz region,” Appl. Phys. Lett. 103, 031104 (2013).
[Crossref]

Menekse, H.

Mitchell, A.

Mittleman, D. M.

J. Liu, R. Mendis, and D. M. Mittleman, “A Maxwell’s fish eye lens for the terahertz region,” Appl. Phys. Lett. 103, 031104 (2013).
[Crossref]

Monsoriu, J. A.

Mou, J.

D. Guo, J. Mou, H. Qiao, W. Hu, and X. Lv, “A 2× 2 3D printed micro-lens array for THz applications,” in “40th International Conference on Infrared, Millimeter, and Terahertz Waves,” (IEEE, 2015), art. no. 7327641.

Mukai, K.

S. Kim, H. Utsunomiya, J. Koski, B. Wu, M. Cima, J. Sohn, K. Mukai, L. Griffith, and J. Vacanti, “Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels,” Ann. Surg. 228, 8–13 (1998).
[Crossref] [PubMed]

Muth, J.

C. Ladd, J.-H. So, J. Muth, and M. D. Dickey, “3D printing of free standing liquid metal microstructures,” Adv. Mater. 25, 5081–5085 (2013).
[Crossref] [PubMed]

Nahata, A.

Nahory, R. E.

Nayeri, P.

P. Nayeri, M. Liang, R. A. Sabory-Garcia, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Z. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
[Crossref]

Nirantar, S.

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27, 7137–7144 (2015).
[Crossref] [PubMed]

Niu, T.

Osiander, R.

Palka, N.

J. Suszek, A. Siemion, M. S. Bieda, N. Blocki, D. Coquillat, G. Cywinski, E. Czerwinska, M. Doch, A. Kowalczyk, N. Palka, A. Sobczyk, P. Zagrajek, M Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, “3-D-printed flat optics for THz linear scanners,” IEEE Trans. THz Sci. Technol. 5, 314–316 (2015).
[Crossref]

Pandey, S.

Pearce, J. M.

G. C. Anzalone, C. Zhang, B. Wijnen, P. G. Sanders, and J. M. Pearce, “A low-cost open-source metal 3-D printer,” IEEE Access 1, 803–810 (2013).
[Crossref]

C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-source 3D-printable optics equipment,” PLoS One 8, e59840 (2013).
[Crossref] [PubMed]

Piwowarska, M.

P. Uliasz, T. Knych, M. Piwowarska, and J. Wiecheć, “The influence of heat treatment parameters on the electrical conductivity of AlSi7Mg and AlSi10Mg aluminum cast alloys,” in “13th International Conference on Aluminum Alloys,” (Wiley Online Library, 2012), pp. 129–135.

Pozar, D. M.

D. M. Pozar, Microwave Engineering (John Wiley & Sons, 2009).

Probst, T.

S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared, Millimeter, Terahertz Waves 35, 993–997 (2014).
[Crossref]

Qiao, H.

D. Guo, J. Mou, H. Qiao, W. Hu, and X. Lv, “A 2× 2 3D printed micro-lens array for THz applications,” in “40th International Conference on Infrared, Millimeter, and Terahertz Waves,” (IEEE, 2015), art. no. 7327641.

Qu, J.

Z. Zhang, H. Fan, H.-F. Xu, J. Qu, and W. Huang, “Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic,” J. Opt. 17, 065611 (2015).
[Crossref]

Rastani, K.

Richmond, C. J.

M. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. Cooper, R. W. Bowman, T. Vilbrandt, and L. Cronin, “Integrated 3D-printed reactionware for chemical synthesis and analysis,” Nature Chem. 4, 349–354 (2012).
[Crossref]

Rieder, W.

H. Seitz, W. Rieder, S. Irsen, B. Leukers, and C. Tille, “Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering,” J. Biomed. Mater. Res. B 74, 782–788 (2005).
[Crossref]

Rosnes, M. H.

P. J. Kitson, M. H. Rosnes, V. Sans, V. Dragone, and L. Cronin, “Configurable 3D-printed millifluidic and microfluidic âĂŸlab on a chipâĂŹ reactionware devices,” Lab Chip 12, 3267–3271 (2012).
[Crossref] [PubMed]

Sabory-Garcia, R. A.

P. Nayeri, M. Liang, R. A. Sabory-Garcia, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Z. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
[Crossref]

Sanders, P. G.

G. C. Anzalone, C. Zhang, B. Wijnen, P. G. Sanders, and J. M. Pearce, “A low-cost open-source metal 3-D printer,” IEEE Access 1, 803–810 (2013).
[Crossref]

Sans, V.

P. J. Kitson, M. H. Rosnes, V. Sans, V. Dragone, and L. Cronin, “Configurable 3D-printed millifluidic and microfluidic âĂŸlab on a chipâĂŹ reactionware devices,” Lab Chip 12, 3267–3271 (2012).
[Crossref] [PubMed]

Schäfer, F.

S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared, Millimeter, Terahertz Waves 35, 993–997 (2014).
[Crossref]

Scheller, M.

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys 42, 065415 (2009).
[Crossref]

Schriempf, J.

T. Wieting and J. Schriempf, “Infrared absorptances of partially ordered alloys at elevated temperatures,” J. Appl. Phys. 47, 4009–4011 (1976).
[Crossref]

Seitz, H.

H. Seitz, W. Rieder, S. Irsen, B. Leukers, and C. Tille, “Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering,” J. Biomed. Mater. Res. B 74, 782–788 (2005).
[Crossref]

Seo, J. Y.

K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and J. A. Lewis, “3D printing of interdigitated Li-Ion microbattery architectures,” Adv. Mater. 25, 4539–4543 (2013).
[Crossref] [PubMed]

Shah, C. M.

Sheets, S. A.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Siemion, A.

J. Suszek, A. Siemion, M. S. Bieda, N. Blocki, D. Coquillat, G. Cywinski, E. Czerwinska, M. Doch, A. Kowalczyk, N. Palka, A. Sobczyk, P. Zagrajek, M Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, “3-D-printed flat optics for THz linear scanners,” IEEE Trans. THz Sci. Technol. 5, 314–316 (2015).
[Crossref]

Skorobogatiy, M.

So, J.-H.

C. Ladd, J.-H. So, J. Muth, and M. D. Dickey, “3D printing of free standing liquid metal microstructures,” Adv. Mater. 25, 5081–5085 (2013).
[Crossref] [PubMed]

Sobczyk, A.

J. Suszek, A. Siemion, M. S. Bieda, N. Blocki, D. Coquillat, G. Cywinski, E. Czerwinska, M. Doch, A. Kowalczyk, N. Palka, A. Sobczyk, P. Zagrajek, M Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, “3-D-printed flat optics for THz linear scanners,” IEEE Trans. THz Sci. Technol. 5, 314–316 (2015).
[Crossref]

Sohn, J.

S. Kim, H. Utsunomiya, J. Koski, B. Wu, M. Cima, J. Sohn, K. Mukai, L. Griffith, and J. Vacanti, “Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels,” Ann. Surg. 228, 8–13 (1998).
[Crossref] [PubMed]

Spalding, G. C.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Spicer, J. B.

Squires, A.

A. Squires, E. Constable, and R. Lewis, “3D printed terahertz diffraction gratings and lenses,” J. Infrared, Millimeter, Terahertz Waves 36, 72–80 (2015).
[Crossref]

Sriram, S.

Stoeffler, K.

Sun, K.

K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and J. A. Lewis, “3D printing of interdigitated Li-Ion microbattery architectures,” Adv. Mater. 25, 4539–4543 (2013).
[Crossref] [PubMed]

Suszek, J.

J. Suszek, A. Siemion, M. S. Bieda, N. Blocki, D. Coquillat, G. Cywinski, E. Czerwinska, M. Doch, A. Kowalczyk, N. Palka, A. Sobczyk, P. Zagrajek, M Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, “3-D-printed flat optics for THz linear scanners,” IEEE Trans. THz Sci. Technol. 5, 314–316 (2015).
[Crossref]

Symes, M. D.

M. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. Cooper, R. W. Bowman, T. Vilbrandt, and L. Cronin, “Integrated 3D-printed reactionware for chemical synthesis and analysis,” Nature Chem. 4, 349–354 (2012).
[Crossref]

Sypek, M.

J. Suszek, A. Siemion, M. S. Bieda, N. Blocki, D. Coquillat, G. Cywinski, E. Czerwinska, M. Doch, A. Kowalczyk, N. Palka, A. Sobczyk, P. Zagrajek, M Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, “3-D-printed flat optics for THz linear scanners,” IEEE Trans. THz Sci. Technol. 5, 314–316 (2015).
[Crossref]

Szustakowski, M.

Thijs, L.

L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.-P. Kruth, “A study of the microstructural evolution during selective laser melting of Ti-6Al-4V,” Acta Materialia 58, 3303–3312 (2010).
[Crossref]

Tille, C.

H. Seitz, W. Rieder, S. Irsen, B. Leukers, and C. Tille, “Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering,” J. Biomed. Mater. Res. B 74, 782–788 (2005).
[Crossref]

Tuo, M.

P. Nayeri, M. Liang, R. A. Sabory-Garcia, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Z. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
[Crossref]

Uliasz, P.

P. Uliasz, T. Knych, M. Piwowarska, and J. Wiecheć, “The influence of heat treatment parameters on the electrical conductivity of AlSi7Mg and AlSi10Mg aluminum cast alloys,” in “13th International Conference on Aluminum Alloys,” (Wiley Online Library, 2012), pp. 129–135.

Ung, B.

Ung, S.-Y.

Upadhyay, A.

Utsunomiya, H.

S. Kim, H. Utsunomiya, J. Koski, B. Wu, M. Cima, J. Sohn, K. Mukai, L. Griffith, and J. Vacanti, “Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels,” Ann. Surg. 228, 8–13 (1998).
[Crossref] [PubMed]

Vacanti, J.

S. Kim, H. Utsunomiya, J. Koski, B. Wu, M. Cima, J. Sohn, K. Mukai, L. Griffith, and J. Vacanti, “Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels,” Ann. Surg. 228, 8–13 (1998).
[Crossref] [PubMed]

Van Humbeeck, J.

L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.-P. Kruth, “A study of the microstructural evolution during selective laser melting of Ti-6Al-4V,” Acta Materialia 58, 3303–3312 (2010).
[Crossref]

Verhaeghe, F.

L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.-P. Kruth, “A study of the microstructural evolution during selective laser melting of Ti-6Al-4V,” Acta Materialia 58, 3303–3312 (2010).
[Crossref]

Vilbrandt, T.

M. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. Cooper, R. W. Bowman, T. Vilbrandt, and L. Cronin, “Integrated 3D-printed reactionware for chemical synthesis and analysis,” Nature Chem. 4, 349–354 (2012).
[Crossref]

Wang, J.

X. Wei, C. Liu, Z. Zhang, L. Zhu, J. Wang, K. Wang, Z. Yang, and J. Liu, “Orbit angular momentum encoding at 0.3 THz via 3D printed spiral phase plates,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2014), 92751P.

L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), paper M3K–7.

Wang, K.

L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), paper M3K–7.

X. Wei, C. Liu, Z. Zhang, L. Zhu, J. Wang, K. Wang, Z. Yang, and J. Liu, “Orbit angular momentum encoding at 0.3 THz via 3D printed spiral phase plates,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2014), 92751P.

C. Liu, X. Wei, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Terahertz imaging system based on bessel beams via 3D printed axicons at 100 GHz,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2014), 92751Q.

Wei, T.-S.

K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and J. A. Lewis, “3D printing of interdigitated Li-Ion microbattery architectures,” Adv. Mater. 25, 4539–4543 (2013).
[Crossref] [PubMed]

Wei, X.

C. Liu, X. Wei, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Terahertz imaging system based on bessel beams via 3D printed axicons at 100 GHz,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2014), 92751Q.

L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), paper M3K–7.

X. Wei, C. Liu, Z. Zhang, L. Zhu, J. Wang, K. Wang, Z. Yang, and J. Liu, “Orbit angular momentum encoding at 0.3 THz via 3D printed spiral phase plates,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2014), 92751P.

Weidenbach, M.

A. I. Hernandez-Serrano, M. Weidenbach, S. F. Busch, M. Koch, and E. Castro-Camus, “Fabrication of gradient-refractive-index lenses for terahertz applications by three-dimensional printing,” J. Opt. Soc. Am. B 33, 928–931 (2016).
[Crossref]

S. F. Busch, M. Weidenbach, J. C. Balzer, and M. Koch, “THz optics 3D printed with TOPAS,” J. Infrared, Millimeter, Terahertz Waves 37303–307 (2015).
[Crossref]

S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared, Millimeter, Terahertz Waves 35, 993–997 (2014).
[Crossref]

Welsch, G.

G. Welsch, R. Boyer, and E. Collings, Materials Properties Handbook: Titanium Alloys (ASM international, 1993).

Wiechec, J.

P. Uliasz, T. Knych, M. Piwowarska, and J. Wiecheć, “The influence of heat treatment parameters on the electrical conductivity of AlSi7Mg and AlSi10Mg aluminum cast alloys,” in “13th International Conference on Aluminum Alloys,” (Wiley Online Library, 2012), pp. 129–135.

Wieting, T.

T. Wieting and J. Schriempf, “Infrared absorptances of partially ordered alloys at elevated temperatures,” J. Appl. Phys. 47, 4009–4011 (1976).
[Crossref]

Wietzke, S.

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys 42, 065415 (2009).
[Crossref]

Wijnen, B.

G. C. Anzalone, C. Zhang, B. Wijnen, P. G. Sanders, and J. M. Pearce, “A low-cost open-source metal 3-D printer,” IEEE Access 1, 803–810 (2013).
[Crossref]

Wilkinson, T. D.

Withayachumnankul, W.

Withayachumnankul, W.B.

Wu, B.

S. Kim, H. Utsunomiya, J. Koski, B. Wu, M. Cima, J. Sohn, K. Mukai, L. Griffith, and J. Vacanti, “Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels,” Ann. Surg. 228, 8–13 (1998).
[Crossref] [PubMed]

Xin, H.

P. Nayeri, M. Liang, R. A. Sabory-Garcia, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Z. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
[Crossref]

Xu, H.-F.

Z. Zhang, H. Fan, H.-F. Xu, J. Qu, and W. Huang, “Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic,” J. Opt. 17, 065611 (2015).
[Crossref]

Yan, J.

M. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. Cooper, R. W. Bowman, T. Vilbrandt, and L. Cronin, “Integrated 3D-printed reactionware for chemical synthesis and analysis,” Nature Chem. 4, 349–354 (2012).
[Crossref]

Yang, F.

P. Nayeri, M. Liang, R. A. Sabory-Garcia, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Z. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
[Crossref]

F. Yang, A. Kaczorowski, and T. D. Wilkinson, “Fast precalculated triangular mesh algorithm for 3D binary computer-generated holograms,” Appl. Opt. 53, 8261–8267 (2014).
[Crossref]

Yang, Z.

C. Liu, X. Wei, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Terahertz imaging system based on bessel beams via 3D printed axicons at 100 GHz,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2014), 92751Q.

X. Wei, C. Liu, Z. Zhang, L. Zhu, J. Wang, K. Wang, Z. Yang, and J. Liu, “Orbit angular momentum encoding at 0.3 THz via 3D printed spiral phase plates,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2014), 92751P.

Zagrajek, P.

W. D. Furlan, V. Ferrando, J. A. Monsoriu, P. Zagrajek, E. Czerwińska, and M. Szustakowski, “3D printed diffractive terahertz lenses,” Opt. Lett. 41, 1748–1751 (2016).
[Crossref] [PubMed]

J. Suszek, A. Siemion, M. S. Bieda, N. Blocki, D. Coquillat, G. Cywinski, E. Czerwinska, M. Doch, A. Kowalczyk, N. Palka, A. Sobczyk, P. Zagrajek, M Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, “3-D-printed flat optics for THz linear scanners,” IEEE Trans. THz Sci. Technol. 5, 314–316 (2015).
[Crossref]

Zaremba, M

J. Suszek, A. Siemion, M. S. Bieda, N. Blocki, D. Coquillat, G. Cywinski, E. Czerwinska, M. Doch, A. Kowalczyk, N. Palka, A. Sobczyk, P. Zagrajek, M Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, “3-D-printed flat optics for THz linear scanners,” IEEE Trans. THz Sci. Technol. 5, 314–316 (2015).
[Crossref]

Zhang, C.

G. C. Anzalone, C. Zhang, B. Wijnen, P. G. Sanders, and J. M. Pearce, “A low-cost open-source metal 3-D printer,” IEEE Access 1, 803–810 (2013).
[Crossref]

C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-source 3D-printable optics equipment,” PLoS One 8, e59840 (2013).
[Crossref] [PubMed]

Zhang, H.

L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), paper M3K–7.

Zhang, Z.

Z. Zhang, H. Fan, H.-F. Xu, J. Qu, and W. Huang, “Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic,” J. Opt. 17, 065611 (2015).
[Crossref]

L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), paper M3K–7.

X. Wei, C. Liu, Z. Zhang, L. Zhu, J. Wang, K. Wang, Z. Yang, and J. Liu, “Orbit angular momentum encoding at 0.3 THz via 3D printed spiral phase plates,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2014), 92751P.

C. Liu, X. Wei, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Terahertz imaging system based on bessel beams via 3D printed axicons at 100 GHz,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2014), 92751Q.

Zhu, L.

X. Wei, C. Liu, Z. Zhang, L. Zhu, J. Wang, K. Wang, Z. Yang, and J. Liu, “Orbit angular momentum encoding at 0.3 THz via 3D printed spiral phase plates,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2014), 92751P.

L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), paper M3K–7.

Zou, L.

Acta Materialia (1)

L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.-P. Kruth, “A study of the microstructural evolution during selective laser melting of Ti-6Al-4V,” Acta Materialia 58, 3303–3312 (2010).
[Crossref]

Adv. Mater. (3)

C. Ladd, J.-H. So, J. Muth, and M. D. Dickey, “3D printing of free standing liquid metal microstructures,” Adv. Mater. 25, 5081–5085 (2013).
[Crossref] [PubMed]

D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, “Terahertz magnetic mirror realized with dielectric resonator antennas,” Adv. Mater. 27, 7137–7144 (2015).
[Crossref] [PubMed]

K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and J. A. Lewis, “3D printing of interdigitated Li-Ion microbattery architectures,” Adv. Mater. 25, 4539–4543 (2013).
[Crossref] [PubMed]

Ann. Surg. (1)

S. Kim, H. Utsunomiya, J. Koski, B. Wu, M. Cima, J. Sohn, K. Mukai, L. Griffith, and J. Vacanti, “Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels,” Ann. Surg. 228, 8–13 (1998).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. Liu, R. Mendis, and D. M. Mittleman, “A Maxwell’s fish eye lens for the terahertz region,” Appl. Phys. Lett. 103, 031104 (2013).
[Crossref]

Biomaterials (1)

P. Habibovic, U. Gbureck, C. J. Doillon, D. C. Bassett, C. A. van Blitterswijk, and J. E. Barralet, “Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants,” Biomaterials 29, 944–953 (2008).
[Crossref]

Bus. Horizons (1)

B. Berman, “3-D printing: The new industrial revolution,” Bus. Horizons 55, 155–162 (2012).
[Crossref]

IEEE Access (1)

G. C. Anzalone, C. Zhang, B. Wijnen, P. G. Sanders, and J. M. Pearce, “A low-cost open-source metal 3-D printer,” IEEE Access 1, 803–810 (2013).
[Crossref]

IEEE Trans. Antennas Propag. (1)

P. Nayeri, M. Liang, R. A. Sabory-Garcia, M. Tuo, F. Yang, M. Gehm, H. Xin, and A. Z. Elsherbeni, “3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves,” IEEE Trans. Antennas Propag. 62, 2000–2008 (2014).
[Crossref]

IEEE Trans. THz Sci. Technol. (1)

J. Suszek, A. Siemion, M. S. Bieda, N. Blocki, D. Coquillat, G. Cywinski, E. Czerwinska, M. Doch, A. Kowalczyk, N. Palka, A. Sobczyk, P. Zagrajek, M Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, “3-D-printed flat optics for THz linear scanners,” IEEE Trans. THz Sci. Technol. 5, 314–316 (2015).
[Crossref]

J. Appl. Phys. (1)

T. Wieting and J. Schriempf, “Infrared absorptances of partially ordered alloys at elevated temperatures,” J. Appl. Phys. 47, 4009–4011 (1976).
[Crossref]

J. Biomed. Mater. Res. B (1)

H. Seitz, W. Rieder, S. Irsen, B. Leukers, and C. Tille, “Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering,” J. Biomed. Mater. Res. B 74, 782–788 (2005).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (3)

S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” J. Infrared, Millimeter, Terahertz Waves 35, 993–997 (2014).
[Crossref]

S. F. Busch, M. Weidenbach, J. C. Balzer, and M. Koch, “THz optics 3D printed with TOPAS,” J. Infrared, Millimeter, Terahertz Waves 37303–307 (2015).
[Crossref]

A. Squires, E. Constable, and R. Lewis, “3D printed terahertz diffraction gratings and lenses,” J. Infrared, Millimeter, Terahertz Waves 36, 72–80 (2015).
[Crossref]

J. Mater. Eng. Perform. (1)

W. E. Frazier, “Metal additive manufacturing: A review,” J. Mater. Eng. Perform. 23, 1917–1928 (2014).
[Crossref]

J. Opt. (1)

Z. Zhang, H. Fan, H.-F. Xu, J. Qu, and W. Huang, “Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic,” J. Opt. 17, 065611 (2015).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. D: Appl. Phys (1)

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys 42, 065415 (2009).
[Crossref]

Lab Chip (1)

P. J. Kitson, M. H. Rosnes, V. Sans, V. Dragone, and L. Cronin, “Configurable 3D-printed millifluidic and microfluidic âĂŸlab on a chipâĂŹ reactionware devices,” Lab Chip 12, 3267–3271 (2012).
[Crossref] [PubMed]

Laser Tech. J. (1)

S. Bremen, W. Meiners, and A. Diatlov, “Selective laser melting,” Laser Tech. J. 9, 33–38 (2012).
[Crossref]

Mater. Des. (1)

E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder, “Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior,” Mater. Des. 34, 159–169 (2012).
[Crossref]

Nature Chem. (1)

M. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. Cooper, R. W. Bowman, T. Vilbrandt, and L. Cronin, “Integrated 3D-printed reactionware for chemical synthesis and analysis,” Nature Chem. 4, 349–354 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

PLoS One (1)

C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-source 3D-printable optics equipment,” PLoS One 8, e59840 (2013).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Other (10)

D. M. Pozar, Microwave Engineering (John Wiley & Sons, 2009).

G. Welsch, R. Boyer, and E. Collings, Materials Properties Handbook: Titanium Alloys (ASM international, 1993).

R. Blomaard and J. Biskop, “3D inkjet printing of optics,” in “NIP & Digital Fabrication Conference,” (Society for Imaging Science and Technology, 2015), 1, pp. 39–41.

C. Liu, X. Wei, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Terahertz imaging system based on bessel beams via 3D printed axicons at 100 GHz,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2014), 92751Q.

L. Zhu, X. Wei, J. Wang, Z. Zhang, Z. Li, H. Zhang, S. Li, K. Wang, and J. Liu, “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), paper M3K–7.

X. Wei, C. Liu, Z. Zhang, L. Zhu, J. Wang, K. Wang, Z. Yang, and J. Liu, “Orbit angular momentum encoding at 0.3 THz via 3D printed spiral phase plates,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2014), 92751P.

D. Guo, J. Mou, H. Qiao, W. Hu, and X. Lv, “A 2× 2 3D printed micro-lens array for THz applications,” in “40th International Conference on Infrared, Millimeter, and Terahertz Waves,” (IEEE, 2015), art. no. 7327641.

P. Uliasz, T. Knych, M. Piwowarska, and J. Wiecheć, “The influence of heat treatment parameters on the electrical conductivity of AlSi7Mg and AlSi10Mg aluminum cast alloys,” in “13th International Conference on Aluminum Alloys,” (Wiley Online Library, 2012), pp. 129–135.

D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University, 1999).
[Crossref]

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Fabricated flat metal disk, showing (a) photograph of ∼75 mm-diameter sample, and (b,c) optical profiler data at two different locations on the sample surface, with standard deviations σh of 10.78 and 10.28 μm respectively
Fig. 2
Fig. 2 Characterization of 3D-printed titanium alloy (a) measurement setup (b) examples of measured spectra, and (c) measured reflection coefficient at normal incidence, where error bars are shown as colored regions, and (i–iv) represent different locations on the sample surface.
Fig. 3
Fig. 3 Reflection of radiation from sample surface, neglecting surface roughness, showing (a) oxide-on-metal structure, with internal reflection in the dielectric layer, and (b) Equivalent transmission-line model, where ZI is the input impedance of the surface.
Fig. 4
Fig. 4 Modeling of printed metal, fit to measured results, where (i–iv) correspond to measurements in Fig. 2(c). Scattering reflection coefficient, transmission line model reflection coefficient, and overall modeled reflection coefficient are given by ρr, ρl, and ρtotal, respectively. The fitting parameters σh, μl, and σl are the standard deviation of surface roughness, and the mean and standard deviation of oxide layer thickness, respectively. The reflection coefficient of perfectly smooth grade-5 titanium metal is also given in (i), as ρbare, smooth.
Fig. 5
Fig. 5 Zone plate design, showing (a) skewing of concentric circles into ellipses, (b) photograph of fabricated ∼50 mm-diameter sample, with chosen zone radii rm = 5.33 mm, 7.54 mm, 9.25 mm, 10.70 mm, 11.98 mm, …, and ridge height of Δh = 200 μm, and (c) measurement setup for oblique characterization of focal spot.
Fig. 6
Fig. 6 Field distribution in the focal plane at 530 GHz. (a) Measured linear amplitude distribution, (b) simulated results, and (c) simulated result, incorporating 3° angular misalignment. For closer comparison, cross-sectional field profiles are given in (d) and (e).
Fig. 7
Fig. 7 Measured focal spot (a) below operating frequency, (b) at operating frequency, and (c) above operating frequency.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ρ r = exp [ 2 ( ω σ h c ) 2 ] .
Z = μ 0 ϵ 0 ( ϵ r j ϵ i ) ,
γ = j ω μ 0 ϵ 0 ( ϵ r j ϵ i ) .
Z I ( L ) = Z ox Z m + Z ox tanh ( γ ox L ) Z ox + Z m tanh ( γ ox L ) ,
ρ TLM ( L ) = Z I ( L ) Z 0 Z I ( L ) + Z 0 .
ρ l = ρ TLM ( L ) = Z I ( L ) Z 0 Z I ( L ) + Z 0 .
Z I ( L ) = 1 σ l 2 π 0 Z I ( l ) exp ( ( l μ l ) 2 2 σ l 2 ) d l .
I lower = 1 σ l 2 π 0 exp ( ( t μ l ) 2 2 σ l 2 ) d l .
ρ total = ρ r ρ l .
Δ ϕ = 4 π λ Δ h cos θ .
r m = m λ f + m 2 λ 2 4 , m = 1 , 2 , 3 ,
( x cos π 4 ) 2 + y 2 = r m 2 .

Metrics