Abstract

We propose and implement a new concept for thermochromic plasmonic elements. It is based on vanadium dioxide (VO2) nanocrystals located in the near field of surface plasmon polaritons supported by an otherwise unstructured gold thin film. When the VO2 undergoes the metal-insulator phase transition, the coupling conditions for conversion of light into propagating surface plasmon polaritons change markedly. In particular, we realize thermochromic plasmonic grating couplers with substantial switching contrast as well as tunable plasmonic couplers in a Kretschmann configuration. The use of VO2 nanocrystals permits highly repetitive switching and room temperature operation. Simulations based on the actual dielectric function of our VO2 nanocrystals agree well with the experiment.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Cox and F. Javier García de Abajo, “Electrically tunable nonlinear plasmonics in graphene nanoislands,” Nat. Commun. 5, 5725 (2014).
    [Crossref] [PubMed]
  2. C. Ruppert, F. Föster, A. Zrenner, J. B. Kinzel, A. Wixforth, H. J. Krenner, and M. Betz, “Radio frequency electromechanical control over a surface plasmon polariton coupler,” ACS Photon. 1, 91–95 (2014).
    [Crossref]
  3. J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111, 237405 (2013).
    [Crossref]
  4. N. Rotenberg, M. Betz, and H. M. van Driel, “Ultrafast control of grating-assisted light coupling to surface plasmons,” Opt. Lett. 33, 2137–2139 (2008).
    [Crossref] [PubMed]
  5. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2009).
    [Crossref]
  6. F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3, 34–36 (1959).
    [Crossref]
  7. A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11, 4383–4395 (1975).
    [Crossref]
  8. H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 788–798 (1968).
    [Crossref]
  9. M. Tazawa, P. Jin, and S. Tanemura, “Optical constants of V1−x Wx O2 films,” Appl. Opt. 37, 1858–1861 (1998).
    [Crossref]
  10. J. Zimmer, A. Wixforth, H. Karl, and H. J. Krenner, “Ion beam synthesis of nanothermochromic diffraction gratings with giant switching contrast at telecom wavelengths,” Appl. Phys. Lett. 100, 231911 (2012).
    [Crossref]
  11. T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105, 071107 (2014).
    [Crossref]
  12. T. V. Son, C. O. F. Ba, R. Vallée, and A. Haché, “Nanometer-thick flat lens with adjustable focus,” Appl. Phys. Lett. 105, 231120 (2014).
    [Crossref]
  13. X.-Y. Peng, B. Wang, J. Teng, J. B. Kana Kana, and X. Zhang, “Active near infrared linear polarizer based on VO2 phase transition,” J. Appl. Phys. 114, 163103 (2013).
    [Crossref]
  14. D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
    [Crossref] [PubMed]
  15. J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
    [Crossref]
  16. R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18, 11192–11201 (2010).
    [Crossref] [PubMed]
  17. J. D. Ryckman, K. A. Hallman, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition,” Opt. Express 21, 10753–10763 (2013).
    [Crossref] [PubMed]
  18. K. Appavoo and R. F. Haglund, “Polarization selective phase-change nanomodulator,” Sci. Rep. 4, 6771 (2014).
    [Crossref] [PubMed]
  19. J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88, 133115 (2006).
    [Crossref]
  20. L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express 20, 8700–8709 (2012).
    [Crossref] [PubMed]
  21. Y. Sharma, V. A. Tiruveedhula, J. F. Muth, and A. Dhawan, “VO2 based waveguide-mode plasmonic nano-gratings for optical switching,” Opt. Express 23, 5822–5849 (2015).
    [Crossref] [PubMed]
  22. D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
    [Crossref]
  23. J. Jeong, A. Joushaghani, S. Paradis, D. Alain, and J. K. S. Poon, “Electrically controllable extraordinary optical transmission in gold gratings on vanadium dioxide,” Opt. Lett. 40, 4408–4411 (2015).
    [Crossref] [PubMed]
  24. P. Markov, K. Appavoo, R. F. Haglund, and S. M. Weiss, “Hybrid Si-VO2-Au optical modulator based on near-field plasmonic coupling,” Opt. Express 23, 6878–6887 (2015).
    [Crossref] [PubMed]
  25. B. A. Kruger, A. Joushaghani, and J. K. S. Poon, “Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches,” Opt. Express 20, 23598–23609 (2012).
    [Crossref] [PubMed]
  26. A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
    [Crossref]
  27. M. Beebe, L. Wang, S. E. Madaras, J. M. Klopf, Z. Li, D. Brantley, M. Heimburger, R. A. Wincheski, S. Kittiwatanakul, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Surface plasmon resonance modulation in nanopatterned Au gratings by the insulator-metal transition in vanadium dioxide films,” Opt. Express 23, 13222–13229 (2015).
    [Crossref] [PubMed]
  28. S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel, R. F. Haglund, and A. Roberts, “Tunable optical antennas enabled by the phase transition in vanadium dioxide,” Opt. Express 21, 27503–27508 (2013).
    [Crossref] [PubMed]
  29. M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38, 368–370 (2013).
    [Crossref] [PubMed]
  30. J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1–6 (2016).
  31. Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
    [Crossref]
  32. A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13, 3470–3475 (2013).
    [Crossref] [PubMed]
  33. T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, and T. Saiki, “Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology,” Appl. Phys. Lett. 103, 241101 (2013).
    [Crossref]
  34. T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
    [Crossref] [PubMed]
  35. M. Rudé, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photon. 2, 669–674 (2015).
    [Crossref]
  36. M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund, L. A. Boatner, and T. E. Haynes, “Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance,” Opt. Lett. 30, 558–560 (2005).
    [Crossref] [PubMed]
  37. R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92, 4031–4036 (2002).
    [Crossref]
  38. H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jap. J. Appl. Phys. 46, L113 (2007).
    [Crossref]
  39. R. Lopez, L. Feldman, and R. F. Haglund, “Size-dependent optical properties of VO2 nanoparticle arrays,” Phys. Rev. Lett. 93, 177403 (2004).
    [Crossref]
  40. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer, 1988).
  41. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys Rev B 6, 4370–4379 (1972).
    [Crossref]
  42. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J Opt Soci Am 55, 1205–1209 (1965).
    [Crossref]
  43. E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplas-maschwingungen,” Zeitschrift für Physik 241, 313–324 (1971).
    [Crossref]

2016 (2)

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1–6 (2016).

2015 (7)

M. Beebe, L. Wang, S. E. Madaras, J. M. Klopf, Z. Li, D. Brantley, M. Heimburger, R. A. Wincheski, S. Kittiwatanakul, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Surface plasmon resonance modulation in nanopatterned Au gratings by the insulator-metal transition in vanadium dioxide films,” Opt. Express 23, 13222–13229 (2015).
[Crossref] [PubMed]

M. Rudé, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photon. 2, 669–674 (2015).
[Crossref]

Y. Sharma, V. A. Tiruveedhula, J. F. Muth, and A. Dhawan, “VO2 based waveguide-mode plasmonic nano-gratings for optical switching,” Opt. Express 23, 5822–5849 (2015).
[Crossref] [PubMed]

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

J. Jeong, A. Joushaghani, S. Paradis, D. Alain, and J. K. S. Poon, “Electrically controllable extraordinary optical transmission in gold gratings on vanadium dioxide,” Opt. Lett. 40, 4408–4411 (2015).
[Crossref] [PubMed]

P. Markov, K. Appavoo, R. F. Haglund, and S. M. Weiss, “Hybrid Si-VO2-Au optical modulator based on near-field plasmonic coupling,” Opt. Express 23, 6878–6887 (2015).
[Crossref] [PubMed]

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

2014 (6)

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105, 071107 (2014).
[Crossref]

T. V. Son, C. O. F. Ba, R. Vallée, and A. Haché, “Nanometer-thick flat lens with adjustable focus,” Appl. Phys. Lett. 105, 231120 (2014).
[Crossref]

J. D. Cox and F. Javier García de Abajo, “Electrically tunable nonlinear plasmonics in graphene nanoislands,” Nat. Commun. 5, 5725 (2014).
[Crossref] [PubMed]

C. Ruppert, F. Föster, A. Zrenner, J. B. Kinzel, A. Wixforth, H. J. Krenner, and M. Betz, “Radio frequency electromechanical control over a surface plasmon polariton coupler,” ACS Photon. 1, 91–95 (2014).
[Crossref]

K. Appavoo and R. F. Haglund, “Polarization selective phase-change nanomodulator,” Sci. Rep. 4, 6771 (2014).
[Crossref] [PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

2013 (8)

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13, 3470–3475 (2013).
[Crossref] [PubMed]

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, and T. Saiki, “Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology,” Appl. Phys. Lett. 103, 241101 (2013).
[Crossref]

S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel, R. F. Haglund, and A. Roberts, “Tunable optical antennas enabled by the phase transition in vanadium dioxide,” Opt. Express 21, 27503–27508 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38, 368–370 (2013).
[Crossref] [PubMed]

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111, 237405 (2013).
[Crossref]

X.-Y. Peng, B. Wang, J. Teng, J. B. Kana Kana, and X. Zhang, “Active near infrared linear polarizer based on VO2 phase transition,” J. Appl. Phys. 114, 163103 (2013).
[Crossref]

J. D. Ryckman, K. A. Hallman, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition,” Opt. Express 21, 10753–10763 (2013).
[Crossref] [PubMed]

2012 (3)

2010 (2)

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18, 11192–11201 (2010).
[Crossref] [PubMed]

2009 (1)

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2009).
[Crossref]

2008 (1)

2007 (1)

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jap. J. Appl. Phys. 46, L113 (2007).
[Crossref]

2006 (1)

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88, 133115 (2006).
[Crossref]

2005 (1)

2004 (1)

R. Lopez, L. Feldman, and R. F. Haglund, “Size-dependent optical properties of VO2 nanoparticle arrays,” Phys. Rev. Lett. 93, 177403 (2004).
[Crossref]

2002 (1)

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92, 4031–4036 (2002).
[Crossref]

1998 (1)

1975 (1)

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11, 4383–4395 (1975).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys Rev B 6, 4370–4379 (1972).
[Crossref]

1971 (1)

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplas-maschwingungen,” Zeitschrift für Physik 241, 313–324 (1971).
[Crossref]

1968 (1)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 788–798 (1968).
[Crossref]

1965 (1)

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J Opt Soci Am 55, 1205–1209 (1965).
[Crossref]

1959 (1)

F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3, 34–36 (1959).
[Crossref]

Alain, D.

J. Jeong, A. Joushaghani, S. Paradis, D. Alain, and J. K. S. Poon, “Electrically controllable extraordinary optical transmission in gold gratings on vanadium dioxide,” Opt. Lett. 40, 4408–4411 (2015).
[Crossref] [PubMed]

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

Appavoo, K.

P. Markov, K. Appavoo, R. F. Haglund, and S. M. Weiss, “Hybrid Si-VO2-Au optical modulator based on near-field plasmonic coupling,” Opt. Express 23, 6878–6887 (2015).
[Crossref] [PubMed]

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

K. Appavoo and R. F. Haglund, “Polarization selective phase-change nanomodulator,” Sci. Rep. 4, 6771 (2014).
[Crossref] [PubMed]

Atwater, H. A.

Ba, C. O. F.

T. V. Son, C. O. F. Ba, R. Vallée, and A. Haché, “Nanometer-thick flat lens with adjustable focus,” Appl. Phys. Lett. 105, 231120 (2014).
[Crossref]

Barker, A. S.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 788–798 (1968).
[Crossref]

Basov, D. N.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38, 368–370 (2013).
[Crossref] [PubMed]

Beebe, M.

Berglund, C. N.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 788–798 (1968).
[Crossref]

Betz, M.

C. Ruppert, F. Föster, A. Zrenner, J. B. Kinzel, A. Wixforth, H. J. Krenner, and M. Betz, “Radio frequency electromechanical control over a surface plasmon polariton coupler,” ACS Photon. 1, 91–95 (2014).
[Crossref]

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105, 071107 (2014).
[Crossref]

N. Rotenberg, M. Betz, and H. M. van Driel, “Ultrafast control of grating-assisted light coupling to surface plasmons,” Opt. Lett. 33, 2137–2139 (2008).
[Crossref] [PubMed]

Blanchard, R.

Boatner, L. A.

M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund, L. A. Boatner, and T. E. Haynes, “Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance,” Opt. Lett. 30, 558–560 (2005).
[Crossref] [PubMed]

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92, 4031–4036 (2002).
[Crossref]

Brantley, D.

Briggs, R. M.

Calle, F.

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111, 237405 (2013).
[Crossref]

Cao, T.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

Capasso, F.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38, 368–370 (2013).
[Crossref] [PubMed]

Cavalleri, A.

Chigrin, D. N.

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13, 3470–3475 (2013).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys Rev B 6, 4370–4379 (1972).
[Crossref]

Cox, J. D.

J. D. Cox and F. Javier García de Abajo, “Electrically tunable nonlinear plasmonics in graphene nanoislands,” Nat. Commun. 5, 5725 (2014).
[Crossref] [PubMed]

Cryan, M. J.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

Davis, T. J.

De Angelis, F.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Dhawan, A.

Di Fabrizio, E.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Diest, K.

Donev, E. U.

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88, 133115 (2006).
[Crossref]

Earl, S. K.

Feldman, L.

R. Lopez, L. Feldman, and R. F. Haglund, “Size-dependent optical properties of VO2 nanoparticle arrays,” Phys. Rev. Lett. 93, 177403 (2004).
[Crossref]

Feldman, L. C.

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88, 133115 (2006).
[Crossref]

M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund, L. A. Boatner, and T. E. Haynes, “Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance,” Opt. Lett. 30, 558–560 (2005).
[Crossref] [PubMed]

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92, 4031–4036 (2002).
[Crossref]

Föster, F.

C. Ruppert, F. Föster, A. Zrenner, J. B. Kinzel, A. Wixforth, H. J. Krenner, and M. Betz, “Radio frequency electromechanical control over a surface plasmon polariton coupler,” ACS Photon. 1, 91–95 (2014).
[Crossref]

Genevet, P.

Gholipour, B.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Goldflam, M.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Gong, Y.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

Gu, Y.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

Guinea, F.

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111, 237405 (2013).
[Crossref]

Haché, A.

T. V. Son, C. O. F. Ba, R. Vallée, and A. Haché, “Nanometer-thick flat lens with adjustable focus,” Appl. Phys. Lett. 105, 231120 (2014).
[Crossref]

Haglund, R. F.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

P. Markov, K. Appavoo, R. F. Haglund, and S. M. Weiss, “Hybrid Si-VO2-Au optical modulator based on near-field plasmonic coupling,” Opt. Express 23, 6878–6887 (2015).
[Crossref] [PubMed]

K. Appavoo and R. F. Haglund, “Polarization selective phase-change nanomodulator,” Sci. Rep. 4, 6771 (2014).
[Crossref] [PubMed]

J. D. Ryckman, K. A. Hallman, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition,” Opt. Express 21, 10753–10763 (2013).
[Crossref] [PubMed]

S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel, R. F. Haglund, and A. Roberts, “Tunable optical antennas enabled by the phase transition in vanadium dioxide,” Opt. Express 21, 27503–27508 (2013).
[Crossref] [PubMed]

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88, 133115 (2006).
[Crossref]

M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund, L. A. Boatner, and T. E. Haynes, “Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance,” Opt. Lett. 30, 558–560 (2005).
[Crossref] [PubMed]

R. Lopez, L. Feldman, and R. F. Haglund, “Size-dependent optical properties of VO2 nanoparticle arrays,” Phys. Rev. Lett. 93, 177403 (2004).
[Crossref]

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92, 4031–4036 (2002).
[Crossref]

Hallman, K. A.

Haynes, T. E.

M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund, L. A. Boatner, and T. E. Haynes, “Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance,” Opt. Lett. 30, 558–560 (2005).
[Crossref] [PubMed]

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92, 4031–4036 (2002).
[Crossref]

He, J.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1–6 (2016).

Heimburger, M.

Hewak, D. W.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Hira, T.

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, and T. Saiki, “Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology,” Appl. Phys. Lett. 103, 241101 (2013).
[Crossref]

Homma, T.

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, and T. Saiki, “Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology,” Appl. Phys. Lett. 103, 241101 (2013).
[Crossref]

Hong, M.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

Huang, C. C.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

James, T. D.

Javier García de Abajo, F.

J. D. Cox and F. Javier García de Abajo, “Electrically tunable nonlinear plasmonics in graphene nanoislands,” Nat. Commun. 5, 5725 (2014).
[Crossref] [PubMed]

Jeong, J.

Ji, Y.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1–6 (2016).

Jian, L.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

Jin, P.

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jap. J. Appl. Phys. 46, L113 (2007).
[Crossref]

M. Tazawa, P. Jin, and S. Tanemura, “Optical constants of V1−x Wx O2 films,” Appl. Opt. 37, 1858–1861 (1998).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys Rev B 6, 4370–4379 (1972).
[Crossref]

Jostmeier, T.

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105, 071107 (2014).
[Crossref]

Joushaghani, A.

Kakiuchida, H.

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jap. J. Appl. Phys. 46, L113 (2007).
[Crossref]

Kana Kana, J. B.

X.-Y. Peng, B. Wang, J. Teng, J. B. Kana Kana, and X. Zhang, “Active near infrared linear polarizer based on VO2 phase transition,” J. Appl. Phys. 114, 163103 (2013).
[Crossref]

Karl, H.

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105, 071107 (2014).
[Crossref]

J. Zimmer, A. Wixforth, H. Karl, and H. J. Krenner, “Ion beam synthesis of nanothermochromic diffraction gratings with giant switching contrast at telecom wavelengths,” Appl. Phys. Lett. 100, 231911 (2012).
[Crossref]

Kats, M. A.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38, 368–370 (2013).
[Crossref] [PubMed]

Kerbusch, J.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Kinzel, J. B.

C. Ruppert, F. Föster, A. Zrenner, J. B. Kinzel, A. Wixforth, H. J. Krenner, and M. Betz, “Radio frequency electromechanical control over a surface plasmon polariton coupler,” ACS Photon. 1, 91–95 (2014).
[Crossref]

Kittiwatanakul, S.

Klopf, J. M.

Knight, K.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Krenner, H. J.

C. Ruppert, F. Föster, A. Zrenner, J. B. Kinzel, A. Wixforth, H. J. Krenner, and M. Betz, “Radio frequency electromechanical control over a surface plasmon polariton coupler,” ACS Photon. 1, 91–95 (2014).
[Crossref]

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105, 071107 (2014).
[Crossref]

J. Zimmer, A. Wixforth, H. Karl, and H. J. Krenner, “Ion beam synthesis of nanothermochromic diffraction gratings with giant switching contrast at telecom wavelengths,” Appl. Phys. Lett. 100, 231911 (2012).
[Crossref]

Kretschmann, E.

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplas-maschwingungen,” Zeitschrift für Physik 241, 313–324 (1971).
[Crossref]

Kruger, B. A.

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

B. A. Kruger, A. Joushaghani, and J. K. S. Poon, “Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches,” Opt. Express 20, 23598–23609 (2012).
[Crossref] [PubMed]

Kuwamura, K.

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, and T. Saiki, “Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology,” Appl. Phys. Lett. 103, 241101 (2013).
[Crossref]

Lei, D. Y.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

Li, Z.

Ligmajer, F.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

Lin, Y.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1–6 (2016).

Liu, M.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Lopez, R.

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88, 133115 (2006).
[Crossref]

R. Lopez, L. Feldman, and R. F. Haglund, “Size-dependent optical properties of VO2 nanoparticle arrays,” Phys. Rev. Lett. 93, 177403 (2004).
[Crossref]

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92, 4031–4036 (2002).
[Crossref]

López, R.

Lu, J.

Lukaszew, R. A.

MacDonald, K. F.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2009).
[Crossref]

Madaras, S. E.

Maier, S. A.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

Malitson, I. H.

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J Opt Soci Am 55, 1205–1209 (1965).
[Crossref]

Markov, P.

Marvel, R. E.

Maß, T. W. W.

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13, 3470–3475 (2013).
[Crossref] [PubMed]

McCallum, J. C.

McLeod, A. S.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Mehmood, M. Q.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

Michel, A.-K. U.

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13, 3470–3475 (2013).
[Crossref] [PubMed]

Morin, F. J.

F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3, 34–36 (1959).
[Crossref]

Mott, N. F.

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11, 4383–4395 (1975).
[Crossref]

Muth, J. F.

Nakao, S.

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jap. J. Appl. Phys. 46, L113 (2007).
[Crossref]

Nawrodt, R.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Paradis, S.

J. Jeong, A. Joushaghani, S. Paradis, D. Alain, and J. K. S. Poon, “Electrically controllable extraordinary optical transmission in gold gratings on vanadium dioxide,” Opt. Lett. 40, 4408–4411 (2015).
[Crossref] [PubMed]

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

Pedrós, J.

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111, 237405 (2013).
[Crossref]

Peng, X.-Y.

X.-Y. Peng, B. Wang, J. Teng, J. B. Kana Kana, and X. Zhang, “Active near infrared linear polarizer based on VO2 phase transition,” J. Appl. Phys. 114, 163103 (2013).
[Crossref]

Poon, J. K. S.

Pruneri, V.

M. Rudé, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photon. 2, 669–674 (2015).
[Crossref]

Pryce, I. M.

Qazilbash, M. M.

Qiu, C.-W.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

Quidant, R.

M. Rudé, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photon. 2, 669–674 (2015).
[Crossref]

Raether, H.

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer, 1988).

Ramanathan, S.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38, 368–370 (2013).
[Crossref] [PubMed]

Renger, J.

M. Rudé, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photon. 2, 669–674 (2015).
[Crossref]

Rensberg, J.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Rini, M.

Roberts, A.

Ronning, C.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Rotenberg, N.

Rudé, M.

M. Rudé, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photon. 2, 669–674 (2015).
[Crossref]

Ruppert, C.

C. Ruppert, F. Föster, A. Zrenner, J. B. Kinzel, A. Wixforth, H. J. Krenner, and M. Betz, “Radio frequency electromechanical control over a surface plasmon polariton coupler,” ACS Photon. 1, 91–95 (2014).
[Crossref]

Ryckman, J. D.

Saiki, T.

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, and T. Saiki, “Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology,” Appl. Phys. Lett. 103, 241101 (2013).
[Crossref]

Salinga, M.

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13, 3470–3475 (2013).
[Crossref] [PubMed]

Samson, Z. L.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2009).
[Crossref]

Sámson, Z. L.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Schiefele, J.

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111, 237405 (2013).
[Crossref]

Schoenlein, R. W.

Schönauer, K.

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13, 3470–3475 (2013).
[Crossref] [PubMed]

Schwarz, C.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Sharma, Y.

Simpson, R. E.

M. Rudé, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photon. 2, 669–674 (2015).
[Crossref]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

Sols, F.

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111, 237405 (2013).
[Crossref]

Son, T. V.

T. V. Son, C. O. F. Ba, R. Vallée, and A. Haché, “Nanometer-thick flat lens with adjustable focus,” Appl. Phys. Lett. 105, 231120 (2014).
[Crossref]

Sonnefraud, Y.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

Srivastava, A.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

Stewart Aitchison, J.

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

Stockman, M. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2009).
[Crossref]

Suh, J. Y.

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88, 133115 (2006).
[Crossref]

Sun, W.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1–6 (2016).

Sweatlock, L. A.

Tanemura, S.

Taubner, T.

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13, 3470–3475 (2013).
[Crossref] [PubMed]

Tazawa, M.

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jap. J. Appl. Phys. 46, L113 (2007).
[Crossref]

M. Tazawa, P. Jin, and S. Tanemura, “Optical constants of V1−x Wx O2 films,” Appl. Opt. 37, 1858–1861 (1998).
[Crossref]

Teng, J.

X.-Y. Peng, B. Wang, J. Teng, J. B. Kana Kana, and X. Zhang, “Active near infrared linear polarizer based on VO2 phase transition,” J. Appl. Phys. 114, 163103 (2013).
[Crossref]

Tiruveedhula, V. A.

Uchiyama, T.

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, and T. Saiki, “Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology,” Appl. Phys. Lett. 103, 241101 (2013).
[Crossref]

Vallée, R.

T. V. Son, C. O. F. Ba, R. Vallée, and A. Haché, “Nanometer-thick flat lens with adjustable focus,” Appl. Phys. Lett. 105, 231120 (2014).
[Crossref]

van Driel, H. M.

Venkatesan, T.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

Verleur, H. W.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 788–798 (1968).
[Crossref]

Wang, B.

X.-Y. Peng, B. Wang, J. Teng, J. B. Kana Kana, and X. Zhang, “Active near infrared linear polarizer based on VO2 phase transition,” J. Appl. Phys. 114, 163103 (2013).
[Crossref]

Wang, D.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

Wang, L.

Wang, S.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1–6 (2016).

Wang, X.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1–6 (2016).

Wei, C.

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

Weiss, S. M.

Wincheski, R. A.

Wixforth, A.

C. Ruppert, F. Föster, A. Zrenner, J. B. Kinzel, A. Wixforth, H. J. Krenner, and M. Betz, “Radio frequency electromechanical control over a surface plasmon polariton coupler,” ACS Photon. 1, 91–95 (2014).
[Crossref]

J. Zimmer, A. Wixforth, H. Karl, and H. J. Krenner, “Ion beam synthesis of nanothermochromic diffraction gratings with giant switching contrast at telecom wavelengths,” Appl. Phys. Lett. 100, 231911 (2012).
[Crossref]

Wolf, S. A.

Wuttig, M.

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13, 3470–3475 (2013).
[Crossref] [PubMed]

Xie, Z.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1–6 (2016).

Yang, Z.

Zhang, L.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

Zhang, S.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Zhang, X.

X.-Y. Peng, B. Wang, J. Teng, J. B. Kana Kana, and X. Zhang, “Active near infrared linear polarizer based on VO2 phase transition,” J. Appl. Phys. 114, 163103 (2013).
[Crossref]

Zhang, Y.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1–6 (2016).

Zheludev, N. I.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2009).
[Crossref]

Zhou, Y.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Zimmer, J.

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105, 071107 (2014).
[Crossref]

J. Zimmer, A. Wixforth, H. Karl, and H. J. Krenner, “Ion beam synthesis of nanothermochromic diffraction gratings with giant switching contrast at telecom wavelengths,” Appl. Phys. Lett. 100, 231911 (2012).
[Crossref]

Zrenner, A.

C. Ruppert, F. Föster, A. Zrenner, J. B. Kinzel, A. Wixforth, H. J. Krenner, and M. Betz, “Radio frequency electromechanical control over a surface plasmon polariton coupler,” ACS Photon. 1, 91–95 (2014).
[Crossref]

Zylbersztejn, A.

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11, 4383–4395 (1975).
[Crossref]

ACS Photon. (3)

C. Ruppert, F. Föster, A. Zrenner, J. B. Kinzel, A. Wixforth, H. J. Krenner, and M. Betz, “Radio frequency electromechanical control over a surface plasmon polariton coupler,” ACS Photon. 1, 91–95 (2014).
[Crossref]

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

M. Rudé, R. E. Simpson, R. Quidant, V. Pruneri, and J. Renger, “Active control of surface plasmon waveguides with a phase change material,” ACS Photon. 2, 669–674 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

J. Zimmer, A. Wixforth, H. Karl, and H. J. Krenner, “Ion beam synthesis of nanothermochromic diffraction gratings with giant switching contrast at telecom wavelengths,” Appl. Phys. Lett. 100, 231911 (2012).
[Crossref]

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105, 071107 (2014).
[Crossref]

T. V. Son, C. O. F. Ba, R. Vallée, and A. Haché, “Nanometer-thick flat lens with adjustable focus,” Appl. Phys. Lett. 105, 231120 (2014).
[Crossref]

T. Hira, T. Homma, T. Uchiyama, K. Kuwamura, and T. Saiki, “Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology,” Appl. Phys. Lett. 103, 241101 (2013).
[Crossref]

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett. 88, 133115 (2006).
[Crossref]

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. S. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102, 061101 (2013).
[Crossref]

J Opt Soci Am (1)

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J Opt Soci Am 55, 1205–1209 (1965).
[Crossref]

J. Appl. Phys. (2)

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys. 92, 4031–4036 (2002).
[Crossref]

X.-Y. Peng, B. Wang, J. Teng, J. B. Kana Kana, and X. Zhang, “Active near infrared linear polarizer based on VO2 phase transition,” J. Appl. Phys. 114, 163103 (2013).
[Crossref]

Jap. J. Appl. Phys. (1)

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jap. J. Appl. Phys. 46, L113 (2007).
[Crossref]

Nano Lett. (2)

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

A.-K. U. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13, 3470–3475 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

J. D. Cox and F. Javier García de Abajo, “Electrically tunable nonlinear plasmonics in graphene nanoislands,” Nat. Commun. 5, 5725 (2014).
[Crossref] [PubMed]

Nat. Photon. (1)

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2009).
[Crossref]

Opt. Express (8)

R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18, 11192–11201 (2010).
[Crossref] [PubMed]

J. D. Ryckman, K. A. Hallman, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition,” Opt. Express 21, 10753–10763 (2013).
[Crossref] [PubMed]

P. Markov, K. Appavoo, R. F. Haglund, and S. M. Weiss, “Hybrid Si-VO2-Au optical modulator based on near-field plasmonic coupling,” Opt. Express 23, 6878–6887 (2015).
[Crossref] [PubMed]

B. A. Kruger, A. Joushaghani, and J. K. S. Poon, “Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches,” Opt. Express 20, 23598–23609 (2012).
[Crossref] [PubMed]

M. Beebe, L. Wang, S. E. Madaras, J. M. Klopf, Z. Li, D. Brantley, M. Heimburger, R. A. Wincheski, S. Kittiwatanakul, J. Lu, S. A. Wolf, and R. A. Lukaszew, “Surface plasmon resonance modulation in nanopatterned Au gratings by the insulator-metal transition in vanadium dioxide films,” Opt. Express 23, 13222–13229 (2015).
[Crossref] [PubMed]

S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel, R. F. Haglund, and A. Roberts, “Tunable optical antennas enabled by the phase transition in vanadium dioxide,” Opt. Express 21, 27503–27508 (2013).
[Crossref] [PubMed]

L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express 20, 8700–8709 (2012).
[Crossref] [PubMed]

Y. Sharma, V. A. Tiruveedhula, J. F. Muth, and A. Dhawan, “VO2 based waveguide-mode plasmonic nano-gratings for optical switching,” Opt. Express 23, 5822–5849 (2015).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys Rev B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys Rev B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. (1)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 788–798 (1968).
[Crossref]

Phys. Rev. B (1)

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11, 4383–4395 (1975).
[Crossref]

Phys. Rev. Lett. (3)

F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3, 34–36 (1959).
[Crossref]

J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, “Coupling light into graphene plasmons through surface acoustic waves,” Phys. Rev. Lett. 111, 237405 (2013).
[Crossref]

R. Lopez, L. Feldman, and R. F. Haglund, “Size-dependent optical properties of VO2 nanoparticle arrays,” Phys. Rev. Lett. 93, 177403 (2004).
[Crossref]

Plasmonics (1)

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1–6 (2016).

Sci. Rep. (3)

T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity,” Sci. Rep. 4, 4463 (2014).
[Crossref] [PubMed]

K. Appavoo and R. F. Haglund, “Polarization selective phase-change nanomodulator,” Sci. Rep. 4, 6771 (2014).
[Crossref] [PubMed]

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Sci. Rep. 5, 15020 (2015).
[Crossref] [PubMed]

Zeitschrift für Physik (1)

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplas-maschwingungen,” Zeitschrift für Physik 241, 313–324 (1971).
[Crossref]

Other (1)

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Cross-section transmission electron microscope image of ion beam synthesized VO2 nanocrystals (NCs) embedded in a fused silica matrix. (b) Real and (c) imaginary part of the refractive index of the VO2 nanocrystal (NC) layer as determined by ellipsometry for different sample temperatures. Blue: 28°C (insulating). Red: 100°C (metallic). The vertical dashed lines indicate the photon energies used for the plasmonic switching. (d) Decrease of optical transmissivity related to the phase transition from insulating to metallic VO2-NCs. The red line is a Gaussian fit to the data.

Fig. 2
Fig. 2

(a) Schematic top view of the grating structures fabricated by site-selective deactivation of the metal-insulator phase transition (MIT) using implantation of Ar+ ions. (b) First order diffraction efficiency of λ = 1.55µm light (normal incidence) for various sample temperatures during heating (red quares) and cooling cycles (blue circles).

Fig. 3
Fig. 3

(a) Schematic cross-section of a gold covered VO2 nanocrystal (NC) sample featuring alternating stripes of deactivated and as-grown NCs. The red area illustrates the field distribution of surface plasmon polaritions (SPPs), launched at λ = 1.55µm (black line). (b) Difference of TM and TE polarized transmission for insulating (blue) and metallic (red) VO2-NCs in the as-grown areas. Dashed lines are parabolic fits to the background signals. (c) Background-corrected transmission data for different grating periods. The vertical arrows mark the expected SPP resonance positions.

Fig. 4
Fig. 4

(a) Schematic cross-section of the sample geometry used in the Kretschmann configuration. TM polarized light (black line) is incident on a fused silica prism attached to a gold covered VO2 nanocrystal (NC) sample. The red area illustrates the field distribution of surface plasmon polaritons. (b) Reflectivity data RTM(θ) for insulating (blue line) and metallic (red line) VO2-NCs together with normalized metallic phase data (red dashed line).

Fig. 5
Fig. 5

Change of the reflectance of TM polarized light in the Kretschmann configuration caused by the phase transition from insulating to metallic VO2 for different photon energies. (a)–(c) Experimental data (red lines) and results of simulations based on the transfer-matrix method (black lines). (d)–(f) Simulation results for a change of either only the imaginary or only the real part of the VO2 refractive index ñ = n + ik. Blue lines reflect the change in the real part of the dielectric function while the orange lines originate from the change in the imaginary part. Black lines show simulations for the full change of the dielectric function which are also contained in panels (a)–(c).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k SPP = k 0 ε m ε m + 1
k SPP = k 0 sin ( θ ) ± m K G
k SPP = n s sin ( θ ) k 0 .

Metrics