Abstract

A refractive index (RI) tunable functional materials infiltrated side-hole ring fiber (SHRF) is proposed to generate 10 LP OAM states with 6 topology numbers. On the basis of perturbation theory, the basis of the SHRF is demonstrated to be the LP modes. After a fixed propagation distance of 0.03 m, 0.009 m and 0.012 m, the phase difference between the odd and even LP11x, LP21x,y, LP31x,y modes in the SHRF accumulate to ± π/2 respectively with na ranging from 1.412 to 1.44. Correspondingly, the output states are OAM ± 1x, OAM ± 2x,y, OAM ± 3x,y with a bandwidth of 380 nm, 100 nm and 80 nm respectively. The proposed fiber is easy to be fabricated with the mature fiber drawing technology and could facilitate the realization of all fiber based OAM system.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Linearly polarized orbital angular momentum mode purity measurement in optical fibers

Youchao Jiang, Guobin Ren, Haisu Li, Min Tang, Yu Liu, Yue Wu, Wei Jian, and Shuisheng Jian
Appl. Opt. 56(7) 1990-1995 (2017)

Generation and excitation of different orbital angular momentum states in a tunable microstructure optical fiber

Wei Huang, Yan-ge Liu, Zhi Wang, Wanchen Zhang, Mingming Luo, Xiaoqi Liu, Junqi Guo, Bo Liu, and Lie Lin
Opt. Express 23(26) 33741-33752 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
  2. G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5(5), 4491 (2014).
  3. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
  4. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
  5. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
  6. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
  7. P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air core optical fibers,” Optica 2(3), 267–270 (2014).
  8. S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, “On the scalability of ring fiber designs for OAM multiplexing,” Opt. Express 23(3), 3721–3730 (2015).
  9. C. Brunet, B. Ung, L. Wang, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design of a family of ring-core fibers for OAM transmission studies,” Opt. Express 23(8), 10553–10563 (2015).
  10. Z. Zhang, J. Gan, X. Heng, Y. Wu, Q. Li, Q. Qian, D. Chen, and Z. Yang, “Optical fiber design with orbital angular momentum light purity higher than 99.9,” Opt. Express 23(23), 29331–29341 (2015).
  11. H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. An Nguyen, D. A. Nolan, M. J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Sci. Rep. 5, 14931 (2015).
  12. Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
  13. S. Li and J. Wang, “Compensation of a distorted N-fold orbital angular momentum multicasting link using adaptive optics,” Opt. Lett. 41(7), 1482–1485 (2016).
  14. J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
  15. J. Zhou, “OAM states generation/detection based on the multimode interference effect in a ring core fiber,” Opt. Express 23(8), 10247–10258 (2015).
  16. C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, G. Milione, and M. A. Yavorsky, “Spin-orbit-interaction-induced generation of optical vortices in multihelicoidal fibers,” Phys. Rev. A 88(6), 147–152 (2013).
  17. P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
  18. Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
  19. Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, “Fiber coupler for generating orbital angular momentum modes,” Opt. Lett. 36(21), 4269–4271 (2011).
  20. W. Huang, Y. G. Liu, Z. Wang, W. Zhang, M. Luo, X. Liu, J. Guo, B. Liu, and L. Lin, “Generation and excitation of different orbital angular momentum states in a tunable microstructure optical fiber,” Opt. Express 23(26), 33741–33752 (2015).
  21. D. McGloin, N. B. Simpson, and M. J. Padgett, “Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam,” Appl. Opt. 37(3), 469–472 (1998).
  22. S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular momentum mode converter,” Opt. Lett. 40(18), 4376–4379 (2015).
  23. N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
  24. L. Wang and S. LaRochelle, “Design of eight-mode polarization-maintaining few-mode fiber for multiple-input multiple-output-free spatial division multiplexing,” Opt. Lett. 40(24), 5846–5849 (2015).
  25. M. Luo, Y. G. Liu, Z. Wang, T. Han, J. Guo, and W. Huang, “Microfluidic assistant beat-frequency interferometer based on a single-hole-infiltrated dual-mode microstructured optical fiber,” Opt. Express 22(21), 25224–25232 (2014).
  26. W. Lin, H. Zhang, B. Song, Y. Miao, B. Liu, D. Yan, and Y. Liu, “Magnetically controllable wavelength-division-multiplexing fiber coupler,” Opt. Express 23(9), 11123–11134 (2015).
  27. H. E. Horng, C. Y. Hong, S. Y. Yang, and H. C. Yang, “Designing the refractive indices by using magnetic fluids,” Appl. Phys. Lett. 82(15), 2434–2436 (2003).
  28. S. Mathews, G. Farrell, and Y. Semenova, “All-fiber polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibers,” Sens. Actuators A Phys. 167(1), 54–59 (2011).
  29. B. Y. Ho, H. P. Su, Y. P. Tseng, S. T. Wu, and S. J. Hwang, “Temperature effects of Mach-Zehnder interferometer using a liquid crystal-filled fiber,” Opt. Express 23(26), 33588–33596 (2015).
  30. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232–25240 (2010).
  31. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  32. C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, Lasers, Optics and Electro-Optics Research Trends (Nova Publishers, 2007).
  33. K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, “Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers,” Opt. Spectrosc. 93(4), 588–597 (2002).
  34. J. von Hoyningen-Huene, R. Ryf, and P. Winzer, “LCoS-based mode shaper for few-mode fiber,” Opt. Express 21(15), 18097–18110 (2013).
  35. B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 6456–6460 (2008).
  36. W. Huang, Y. G. Liu, Z. Wang, B. Liu, J. Wang, M. Luo, J. Guo, and L. Lin, “Multi-component-intermodal-interference mechanism and characteristics of a long period grating assistant fluid-filled photonic crystal fiber interferometer,” Opt. Express 22(5), 5883–5894 (2014).
  37. R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).

2016 (1)

2015 (11)

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

J. Zhou, “OAM states generation/detection based on the multimode interference effect in a ring core fiber,” Opt. Express 23(8), 10247–10258 (2015).

S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, “On the scalability of ring fiber designs for OAM multiplexing,” Opt. Express 23(3), 3721–3730 (2015).

C. Brunet, B. Ung, L. Wang, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design of a family of ring-core fibers for OAM transmission studies,” Opt. Express 23(8), 10553–10563 (2015).

Z. Zhang, J. Gan, X. Heng, Y. Wu, Q. Li, Q. Qian, D. Chen, and Z. Yang, “Optical fiber design with orbital angular momentum light purity higher than 99.9,” Opt. Express 23(23), 29331–29341 (2015).

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. An Nguyen, D. A. Nolan, M. J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Sci. Rep. 5, 14931 (2015).

W. Huang, Y. G. Liu, Z. Wang, W. Zhang, M. Luo, X. Liu, J. Guo, B. Liu, and L. Lin, “Generation and excitation of different orbital angular momentum states in a tunable microstructure optical fiber,” Opt. Express 23(26), 33741–33752 (2015).

S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular momentum mode converter,” Opt. Lett. 40(18), 4376–4379 (2015).

L. Wang and S. LaRochelle, “Design of eight-mode polarization-maintaining few-mode fiber for multiple-input multiple-output-free spatial division multiplexing,” Opt. Lett. 40(24), 5846–5849 (2015).

W. Lin, H. Zhang, B. Song, Y. Miao, B. Liu, D. Yan, and Y. Liu, “Magnetically controllable wavelength-division-multiplexing fiber coupler,” Opt. Express 23(9), 11123–11134 (2015).

B. Y. Ho, H. P. Su, Y. P. Tseng, S. T. Wu, and S. J. Hwang, “Temperature effects of Mach-Zehnder interferometer using a liquid crystal-filled fiber,” Opt. Express 23(26), 33588–33596 (2015).

2014 (6)

2013 (3)

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, G. Milione, and M. A. Yavorsky, “Spin-orbit-interaction-induced generation of optical vortices in multihelicoidal fibers,” Phys. Rev. A 88(6), 147–152 (2013).

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).

J. von Hoyningen-Huene, R. Ryf, and P. Winzer, “LCoS-based mode shaper for few-mode fiber,” Opt. Express 21(15), 18097–18110 (2013).

2012 (3)

2011 (4)

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).

Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, “Fiber coupler for generating orbital angular momentum modes,” Opt. Lett. 36(21), 4269–4271 (2011).

S. Mathews, G. Farrell, and Y. Semenova, “All-fiber polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibers,” Sens. Actuators A Phys. 167(1), 54–59 (2011).

2010 (1)

2008 (1)

B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 6456–6460 (2008).

2006 (1)

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).

2003 (1)

H. E. Horng, C. Y. Hong, S. Y. Yang, and H. C. Yang, “Designing the refractive indices by using magnetic fluids,” Appl. Phys. Lett. 82(15), 2434–2436 (2003).

2002 (1)

K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, “Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers,” Opt. Spectrosc. 93(4), 588–597 (2002).

1998 (1)

1987 (1)

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).

Ahmed, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. An Nguyen, D. A. Nolan, M. J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Sci. Rep. 5, 14931 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).

Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, “Fiber coupler for generating orbital angular momentum modes,” Opt. Lett. 36(21), 4269–4271 (2011).

Alekseev, K. N.

K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, “Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers,” Opt. Spectrosc. 93(4), 588–597 (2002).

Alexeyev, A. N.

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, G. Milione, and M. A. Yavorsky, “Spin-orbit-interaction-induced generation of optical vortices in multihelicoidal fibers,” Phys. Rev. A 88(6), 147–152 (2013).

Alexeyev, C. N.

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, G. Milione, and M. A. Yavorsky, “Spin-orbit-interaction-induced generation of optical vortices in multihelicoidal fibers,” Phys. Rev. A 88(6), 147–152 (2013).

Alfano, R. R.

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. An Nguyen, D. A. Nolan, M. J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Sci. Rep. 5, 14931 (2015).

Alhassen, F.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).

An Nguyen, T.

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. An Nguyen, D. A. Nolan, M. J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Sci. Rep. 5, 14931 (2015).

Bao, C.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).

Birnbaum, K.

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).

Brambilla, G.

Brasselet, E.

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5(5), 4491 (2014).

Brunet, C.

Cao, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. An Nguyen, D. A. Nolan, M. J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Sci. Rep. 5, 14931 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).

Chen, D.

Cižmár, T.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).

Dashti, P. Z.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).

Dholakia, K.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, “Fiber coupler for generating orbital angular momentum modes,” Opt. Lett. 36(21), 4269–4271 (2011).

Dolinar, S. J.

Du, C.

Durnin, J.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).

Eberly, J. H.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).

Eggleton, B. J.

Fadeeva, T. A.

K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, “Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers,” Opt. Spectrosc. 93(4), 588–597 (2002).

Farrell, G.

S. Mathews, G. Farrell, and Y. Semenova, “All-fiber polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibers,” Sens. Actuators A Phys. 167(1), 54–59 (2011).

Fazal, I. M.

Franke-Arnold, S.

B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 6456–6460 (2008).

Gan, J.

Giessen, H.

Gissibl, T.

Golowich, S.

Golowich, S. E.

Gregg, P.

Guo, J.

Han, T.

Heng, X.

Ho, B. Y.

Hong, C. Y.

H. E. Horng, C. Y. Hong, S. Y. Yang, and H. C. Yang, “Designing the refractive indices by using magnetic fluids,” Appl. Phys. Lett. 82(15), 2434–2436 (2003).

Horng, H. E.

H. E. Horng, C. Y. Hong, S. Y. Yang, and H. C. Yang, “Designing the refractive indices by using magnetic fluids,” Appl. Phys. Lett. 82(15), 2434–2436 (2003).

Hu, X.

Huang, H.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. An Nguyen, D. A. Nolan, M. J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Sci. Rep. 5, 14931 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Huang, W.

Hwang, S. J.

Ismaeel, R.

Jack, B.

B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 6456–6460 (2008).

Jung, Y.

Kristensen, P.

Kuhlmey, B. T.

Lapin, B. P.

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, G. Milione, and M. A. Yavorsky, “Spin-orbit-interaction-induced generation of optical vortices in multihelicoidal fibers,” Phys. Rev. A 88(6), 147–152 (2013).

LaRochelle, S.

Lavery, M. P.

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. An Nguyen, D. A. Nolan, M. J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Sci. Rep. 5, 14931 (2015).

Lavery, M. P. J.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).

Lee, H. P.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).

Lee, T.

Li, L.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).

Li, M. J.

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. An Nguyen, D. A. Nolan, M. J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Sci. Rep. 5, 14931 (2015).

Li, Q.

Li, S.

Lin, L.

Lin, W.

Liu, B.

Liu, X.

Liu, Y.

Liu, Y. G.

Luo, M.

Mathews, S.

S. Mathews, G. Farrell, and Y. Semenova, “All-fiber polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibers,” Sens. Actuators A Phys. 167(1), 54–59 (2011).

McGloin, D.

Messaddeq, Y.

Miao, Y.

Miceli, J.

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).

Milione, G.

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. An Nguyen, D. A. Nolan, M. J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Sci. Rep. 5, 14931 (2015).

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, G. Milione, and M. A. Yavorsky, “Spin-orbit-interaction-induced generation of optical vortices in multihelicoidal fibers,” Phys. Rev. A 88(6), 147–152 (2013).

Mo, Q.

Molisch, A. F.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).

Nolan, D. A.

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. An Nguyen, D. A. Nolan, M. J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Sci. Rep. 5, 14931 (2015).

Oduro, B.

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).

Padgett, M. J.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).

B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 6456–6460 (2008).

D. McGloin, N. B. Simpson, and M. J. Padgett, “Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam,” Appl. Opt. 37(3), 469–472 (1998).

Pricking, S.

Qian, Q.

Ramachandran, S.

Ren, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. An Nguyen, D. A. Nolan, M. J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Sci. Rep. 5, 14931 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Rusch, L. A.

Ryf, R.

Semenova, Y.

S. Mathews, G. Farrell, and Y. Semenova, “All-fiber polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibers,” Sens. Actuators A Phys. 167(1), 54–59 (2011).

Shamee, B.

Simpson, N. B.

Song, B.

Su, H. P.

Tkachenko, G.

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5(5), 4491 (2014).

Tseng, Y. P.

Tur, M.

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. An Nguyen, D. A. Nolan, M. J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Sci. Rep. 5, 14931 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Ung, B.

Vieweg, M.

Volyar, A. V.

K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, “Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers,” Opt. Spectrosc. 93(4), 588–597 (2002).

von Hoyningen-Huene, J.

Wang, J.

Wang, L.

Wang, Z.

Willner, A. E.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. An Nguyen, D. A. Nolan, M. J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Sci. Rep. 5, 14931 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).

Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, “Fiber coupler for generating orbital angular momentum modes,” Opt. Lett. 36(21), 4269–4271 (2011).

Winzer, P.

Wu, D. C.

Wu, S. T.

Wu, Y.

Xie, G.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. An Nguyen, D. A. Nolan, M. J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Sci. Rep. 5, 14931 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).

Yan, D.

Yan, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).

Y. Yan, J. Wang, L. Zhang, J. Y. Yang, I. M. Fazal, N. Ahmed, B. Shamee, A. E. Willner, K. Birnbaum, and S. Dolinar, “Fiber coupler for generating orbital angular momentum modes,” Opt. Lett. 36(21), 4269–4271 (2011).

Yang, H. C.

H. E. Horng, C. Y. Hong, S. Y. Yang, and H. C. Yang, “Designing the refractive indices by using magnetic fluids,” Appl. Phys. Lett. 82(15), 2434–2436 (2003).

Yang, J. Y.

Yang, S. Y.

H. E. Horng, C. Y. Hong, S. Y. Yang, and H. C. Yang, “Designing the refractive indices by using magnetic fluids,” Appl. Phys. Lett. 82(15), 2434–2436 (2003).

Yang, Z.

Yavorsky, M. A.

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, G. Milione, and M. A. Yavorsky, “Spin-orbit-interaction-induced generation of optical vortices in multihelicoidal fibers,” Phys. Rev. A 88(6), 147–152 (2013).

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Zhang, H.

Zhang, L.

Zhang, W.

Zhang, Z.

Zhao, Z.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).

Zhou, J.

Adv. Opt. Photonics (1)

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, and Z. Zhao, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. E. Horng, C. Y. Hong, S. Y. Yang, and H. C. Yang, “Designing the refractive indices by using magnetic fluids,” Appl. Phys. Lett. 82(15), 2434–2436 (2003).

Nat. Commun. (2)

G. Tkachenko and E. Brasselet, “Helicity-dependent three-dimensional optical trapping of chiral microparticles,” Nat. Commun. 5(5), 4491 (2014).

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).

Nat. Photonics (3)

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

New J. Phys. (1)

B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 6456–6460 (2008).

Opt. Express (12)

W. Huang, Y. G. Liu, Z. Wang, B. Liu, J. Wang, M. Luo, J. Guo, and L. Lin, “Multi-component-intermodal-interference mechanism and characteristics of a long period grating assistant fluid-filled photonic crystal fiber interferometer,” Opt. Express 22(5), 5883–5894 (2014).

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).

W. Huang, Y. G. Liu, Z. Wang, W. Zhang, M. Luo, X. Liu, J. Guo, B. Liu, and L. Lin, “Generation and excitation of different orbital angular momentum states in a tunable microstructure optical fiber,” Opt. Express 23(26), 33741–33752 (2015).

B. Y. Ho, H. P. Su, Y. P. Tseng, S. T. Wu, and S. J. Hwang, “Temperature effects of Mach-Zehnder interferometer using a liquid crystal-filled fiber,” Opt. Express 23(26), 33588–33596 (2015).

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232–25240 (2010).

M. Luo, Y. G. Liu, Z. Wang, T. Han, J. Guo, and W. Huang, “Microfluidic assistant beat-frequency interferometer based on a single-hole-infiltrated dual-mode microstructured optical fiber,” Opt. Express 22(21), 25224–25232 (2014).

W. Lin, H. Zhang, B. Song, Y. Miao, B. Liu, D. Yan, and Y. Liu, “Magnetically controllable wavelength-division-multiplexing fiber coupler,” Opt. Express 23(9), 11123–11134 (2015).

S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, “On the scalability of ring fiber designs for OAM multiplexing,” Opt. Express 23(3), 3721–3730 (2015).

C. Brunet, B. Ung, L. Wang, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design of a family of ring-core fibers for OAM transmission studies,” Opt. Express 23(8), 10553–10563 (2015).

Z. Zhang, J. Gan, X. Heng, Y. Wu, Q. Li, Q. Qian, D. Chen, and Z. Yang, “Optical fiber design with orbital angular momentum light purity higher than 99.9,” Opt. Express 23(23), 29331–29341 (2015).

J. Zhou, “OAM states generation/detection based on the multimode interference effect in a ring core fiber,” Opt. Express 23(8), 10247–10258 (2015).

J. von Hoyningen-Huene, R. Ryf, and P. Winzer, “LCoS-based mode shaper for few-mode fiber,” Opt. Express 21(15), 18097–18110 (2013).

Opt. Lett. (6)

Opt. Spectrosc. (1)

K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, “Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers,” Opt. Spectrosc. 93(4), 588–597 (2002).

Optica (1)

Phys. Rev. A (1)

C. N. Alexeyev, A. N. Alexeyev, B. P. Lapin, G. Milione, and M. A. Yavorsky, “Spin-orbit-interaction-induced generation of optical vortices in multihelicoidal fibers,” Phys. Rev. A 88(6), 147–152 (2013).

Phys. Rev. Lett. (2)

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).

J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).

Sci. Rep. (1)

H. Huang, G. Milione, M. P. Lavery, G. Xie, Y. Ren, Y. Cao, N. Ahmed, T. An Nguyen, D. A. Nolan, M. J. Li, M. Tur, R. R. Alfano, and A. E. Willner, “Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre,” Sci. Rep. 5, 14931 (2015).

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).

Sens. Actuators A Phys. (1)

S. Mathews, G. Farrell, and Y. Semenova, “All-fiber polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibers,” Sens. Actuators A Phys. 167(1), 54–59 (2011).

Other (2)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, Lasers, Optics and Electro-Optics Research Trends (Nova Publishers, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Cross section (a) and composition (b) of the SHRF.
Fig. 2
Fig. 2 The intensity and phase of the LPl,1even, LPl,1odd, LPl,1even + LPl,1odd (0), OAMl (π/2), LPl,1even-LPl,1odd (π), OAM-l (-π/2), for l = 1 (a), l = 2 (b) and l = 3(c). The intensity of the OAM ± l is replaced by that of the interference patterns with a reference Gaussian beam.
Fig. 3
Fig. 3 The relationship between the fiber length L and the RI of the tunable liquid na for x and y polarized OAMl mode with na ranging from 1.35 to 1.444 (a) and 1.40 to 1.444 (b). The fixed fiber length L is selected as 0.015m, thus the OAM-l modes is generated when L = 3LB/4 (LB/4 = 0.005 m), and the OAMl modes is generated when L = LB/4 (LB/4 = 0.015 m). The intersection points between the purple dotted horizontal line and the 6 curves are the corresponding value of na for the OAMl modes. The intersection points between the orange dotted horizontal line and the 6 curves are the corresponding value of na for the OAM-l modes.
Fig. 4
Fig. 4 The quarter fiber beat length LB/4 as variations of input wavelength and na for x-polarized (a1) and y-polarized (b1) OAM ± 1 modes, x-polarized (a2) and y-polarized (b2) OAM ± 2 modes, x-polarized (a3) and y-polarized (b3) OAM ± 3 modes. The white and black curves of (a1) represents the LB/4 are 0.01 and 0.03 m respectively. The yellow curves of (b1) represents the LB/4 are 0.0033m, 0.002m and 0.0016m respectively. The white and black curves of (a2) and (b2) represent the LB/4 are 0.003 and 0.009 m respectively. The white and black curves of (a3) and (b3) represents the LB/4 are 0.004 and 0.012 m respectively.
Fig. 5
Fig. 5 Tunable generation of LP-OAM modes based on the SHRF.

Tables (2)

Tables Icon

Table 1 Parameters of the Side Hole Fiber

Tables Icon

Table 2 Values of na and Purity for Each OAMl Mode with L = 0.015m

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

( t 2 + n 2 k 2 β 2 ) e t = t ( e t t ln n 2 ) n 2 ( x,y )= n co 2 ( 12Δf( x,y ) )Δ= n co 2 n clad 2 2 n co 2 f( x,y )={ 1 ( x 2 + y 2 ) / ρ 2 1 0 ( x 2 + y 2 ) / ρ 2 1
n 2 ( x,y )=[ n x 2 0 0 n y 2 ]( 12Δf( x,y ) )= n ˜ 2 ( x,y ) I ^ +δ n 2 σ ^ z n ˜ 2 ( x,y )= n co 2 ( 12Δf( x,y ) ) n co 2 =( n x 2 + n y 2 )/2δ n 2 =( n x 2 n y 2 )/2 I ^ =[ 10 01 ] σ ^ z =[ 10 01 ]
( H ^ 0 +δ n 2 σ ^ z + U ^ )| e t = β 2 | e t H ^ 0 =( 2 + k 2 n ˜ 2 ( x,y ) ) I ^ U ^ =( x lnn 2 ( x,y ) x x lnn 2 ( x,y ) y y lnn 2 ( x,y ) x y lnn 2 ( x,y ) y )
| Ψ = 1 2 ( e x i e y e x +i e y )= 1 2 ( 1i 1i )( e x e y )=C| e t
( H ^ 0 +δ n 2 σ ^ x + V ^ )| Ψ = β 2 | Ψ V ^ = S + U ^ S σ ^ x =[ 01 10 ]
( t 2 + n 2 k 2 β ˜ 2 ) Ψ 0 =0 H ^ 0 | Ψ 0 i = β ˜ | Ψ 0 i
| Ψ 1 =| 1,l =( 1 0 ) e ilφ F l ( R ),| Ψ 2 =| 1, l = ( 1 0 ) e ilφ F l ( R ) | Ψ 3 =| 1, l =( 0 1 ) e ilφ F l ( R ) ,| Ψ 4 =| 1, l =( 0 1 ) e ilφ F l ( R )
F l ( R )={ J l ( UR ) J l ( U ) R1 K l ( WR ) K l ( W ) R1
det| ( H ^ per ) ij δ ij β 2 |=0
δ H ^ ij = Ψ i | δ H ^ | Ψ j
δ H ^ =( A l 00E 0 B l E B l 0E A l 0 E B l 0 B l )( l=1 )δ H ^ =( A l 00E 0 A l E0 0E A l 0 E00 A l )( l>1 ) A l = 2πΔ r 0 2 ( F l 2 F l F l ) R=1 B l = 2πΔ r 0 2 ( F l 2 + F l F l ) R=1 E= n co k 2 Δn= n co k 2 ( n x n y )
( Ψ 1 Ψ 2 Ψ 3 Ψ 4 )=( cos θ 1 sinlϕsin θ 1 coslϕ sin θ 1 sinlϕcos θ 1 coslϕ cos θ 3 coslϕsin θ 3 sinlϕ sin θ 3 coslϕcos θ 3 sinlϕ )( e x e y ) tan( 2 θ 1 )= A l 2E ,tan( 2 θ 3 )= A l +2 B l 2E ,2 θ i [ 0,π ]
( Ψ 1 Ψ 2 Ψ 3 Ψ 4 )={ ( H E 2,1 odd T E 0,1 H E 2,1 even T M 0,1 )=( sinϕcosϕ sinϕcosϕ cosϕsinϕ cosϕsinϕ )( e x e y )l=1 ( H E l+1,1 odd E H l1,1 odd H E l+1,1 even E H l1,1 even )=( sinlϕcoslϕ sinlϕcoslϕ coslϕsinlϕ coslϕsinlϕ )( e x e y )l2
( Ψ 1 Ψ 2 Ψ 3 Ψ 4 )=( L P l,1 odd,x L P l,1 even,y L P l,1 even,x L P l,1 odd,y )=( sinlϕ0 0coslϕ coslϕ0 0sinlϕ )( e x e y )l1
Ψ l (x,y) =OA M l (x,y) =L P l,1 even,(x,y) ±iL P l,1 odd,(x,y) =( e x e y ) e ±ilϕ F l,1
L B/4 = L B 4 = λ 4B = λ 4( n eff ( L P l,1 even,(x,y) ) -n eff ( L P l,1 odd,(x,y) ) )
C l = 1 2π 0 2π f( ϕ ) exp( ilϕ )dϕ
phase( ϕ )| r=a =f( ϕ )= l= C l exp( ilϕ ) l= | C l | 2 =1

Metrics