Abstract

A bidirectional fiber-wireless and fiber-invisible laser light communication (IVLLC) integrated system that employs polarization-orthogonal modulation scheme for hybrid cable television (CATV)/microwave (MW)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and demonstrated. To our knowledge, it is the first one that adopts a polarization-orthogonal modulation scheme in a bidirectional fiber-wireless and fiber-IVLLC integrated system with hybrid CATV/MW/MMW/BB signal. For downlink transmission, carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) perform well over 40-km single-mode fiber (SMF) and 10-m RF/50-m optical wireless transport scenarios. For uplink transmission, good BER performance is obtained over 40-km SMF and 50-m optical wireless transport scenario. Such a bidirectional fiber-wireless and fiber-IVLLC integrated system for hybrid CATV/MW/MMW/BB signal transmission will be an attractive alternative for providing broadband integrated services, including CATV, Internet, and telecommunication services. It is shown to be a prominent one to present the advancements for the convergence of fiber backbone and RF/optical wireless feeder.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bidirectional fiber-IVLLC and fiber-wireless convergence system with two orthogonally polarized optical sidebands

Hai-Han Lu, Hsiao-Wen Wu, Chung-Yi Li, Chun-Ming Ho, Zih-Yi Yang, Ming-Te Cheng, and Chang-Kai Lu
Opt. Express 25(9) 9743-9754 (2017)

Hybrid CATV/MMW/BB lightwave transmission system based on fiber-wired/fiber-wireless/fiber-VLLC integrations

Chung-Yi Li, Hai-Han Lu, Ting-Chieh Lu, Chien-An Chu, Bo-Rui Chen, Chun-Yu Lin, and Peng-Chun Peng
Opt. Express 23(25) 31807-31816 (2015)

A full-duplex CATV/wireless-over-fiber lightwave transmission system

Chung-Yi Li, Hai-Han Lu, Cheng-Ling Ying, Chun-Jen Cheng, Che-Yu Lin, Zhi-Wei Wan, and Jian-Hua Chen
Opt. Express 23(7) 9221-9232 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. H. Lu, C. Y. Li, T. C. Lu, C. J. Wu, C. A. Chu, A. Shiva, and T. Mochii, “Bidirectional fiber-wireless and fiber-VLLC transmission system based on an OEO-based BLS and a RSOA,” Opt. Lett. 41(3), 476–479 (2016).
    [Crossref] [PubMed]
  2. C. Y. Li, H. H. Lu, T. C. Lu, C. A. Chu, B. R. Chen, C. Y. Lin, and P. C. Peng, “Hybrid CATV/MMW/BB lightwave transmission system based on fiber-wired/fiber-wireless/fiber-VLLC integrations,” Opt. Express 23(25), 31807–31816 (2015).
    [Crossref] [PubMed]
  3. C. H. Lin, C. T. Lin, H. T. Huang, W. S. Zeng, S. C. Chiang, and H. Y. Chang, “60-GHz optical/wireless MIMO system integrated with optical subcarrier multiplexing and 2x2 wireless communication,” Opt. Express 23(9), 12111–12116 (2015).
    [Crossref] [PubMed]
  4. M. Zhu, L. Zhang, J. Wang, L. Cheng, C. Liu, and G.-K. Chang, “Radio-over-fiber access architecture for integrated broadband wireless services,” IEEE/OSA. J. Lightwave Technol. 31(23), 3614–3620 (2013).
    [Crossref]
  5. C. Y. Li, H. H. Lu, C. Y. Lin, C. A. Chu, B. R. Chen, H. H. Lin, and C. J. Wu, “Fiber-wireless and fiber-IVLLC convergences based on MZM-OEO-based BLS,” IEEE Photonics J. 8(2), 7902810 (2016).
    [Crossref]
  6. Z. Tang and S. Pan, “A full-duplex radio-over-fiber link based on a dual-polarization Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 28(8), 852–855 (2016).
    [Crossref]
  7. B. Wu, M. Zhu, M. Xu, J. Wang, M. Wang, F. Yan, S. Jian, and G.-K. Chang, “Flexible compensation of dispersion-induced power fading for multi-service RoF links based on a phase-coherent orthogonal lightwave generator,” Opt. Lett. 40(9), 2103–2106 (2015).
    [Crossref] [PubMed]
  8. J. Zheng, J. Wang, J. Yu, M. Zhu, Z. Dong, X. Wang, T. Su, J. Liu, N. Zhu, and G.-K. Chang, “Photonic microwave-signal-mixing technique using phase-coherent orthogonal optical carriers for radio-over-fiber application,” Opt. Lett. 39(18), 5263–5266 (2014).
    [Crossref] [PubMed]
  9. H. Kiuchi, T. Kawanishi, M. Yamada, T. Sakamoto, M. Tsuchiya, J. Amagai, and M. Izutsu, “High extinction ratio Mach-Zehnder modulator applied to a highly stable optical signal generator,” IEEE Trans. Microw. Theory Tech. 55(9), 1964–1972 (2007).
    [Crossref]
  10. M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
    [Crossref]
  11. C. Y. Li, H. H. Lu, T. C. Lu, C. A. Chu, B. R. Chen, C. Y. Lin, and P. C. Peng, “Hybrid CATV/MMW/BB lightwave transmission system based on fiber-wired/fiber-wireless/fiber-VLLC integrations,” Opt. Express 23(25), 31807–31816 (2015).
    [Crossref] [PubMed]
  12. W. Lu, Z. Zhang, X. Yu, and M. Li, “Transmitting and receiving lens design in free space optics,” Proc. SPIE 5284, 365–368 (2004).
  13. Y. P. Lin, H. H. Lu, P. Y. Wu, C. Y. Chen, T. W. Jhang, S. S. Ruan, and K. H. Wu, “A 10-Gbps optical WiMAX transport system,” Opt. Express 22(3), 2761–2769 (2014).
    [Crossref] [PubMed]
  14. W. Lee, M. Y. Park, S. H. Cho, J. Lee, B. W. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 17(11), 2460–2462 (2005).
    [Crossref]

2016 (3)

C. Y. Li, H. H. Lu, C. Y. Lin, C. A. Chu, B. R. Chen, H. H. Lin, and C. J. Wu, “Fiber-wireless and fiber-IVLLC convergences based on MZM-OEO-based BLS,” IEEE Photonics J. 8(2), 7902810 (2016).
[Crossref]

Z. Tang and S. Pan, “A full-duplex radio-over-fiber link based on a dual-polarization Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 28(8), 852–855 (2016).
[Crossref]

H. H. Lu, C. Y. Li, T. C. Lu, C. J. Wu, C. A. Chu, A. Shiva, and T. Mochii, “Bidirectional fiber-wireless and fiber-VLLC transmission system based on an OEO-based BLS and a RSOA,” Opt. Lett. 41(3), 476–479 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (2)

2013 (1)

M. Zhu, L. Zhang, J. Wang, L. Cheng, C. Liu, and G.-K. Chang, “Radio-over-fiber access architecture for integrated broadband wireless services,” IEEE/OSA. J. Lightwave Technol. 31(23), 3614–3620 (2013).
[Crossref]

2007 (1)

H. Kiuchi, T. Kawanishi, M. Yamada, T. Sakamoto, M. Tsuchiya, J. Amagai, and M. Izutsu, “High extinction ratio Mach-Zehnder modulator applied to a highly stable optical signal generator,” IEEE Trans. Microw. Theory Tech. 55(9), 1964–1972 (2007).
[Crossref]

2005 (1)

W. Lee, M. Y. Park, S. H. Cho, J. Lee, B. W. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

2004 (1)

W. Lu, Z. Zhang, X. Yu, and M. Li, “Transmitting and receiving lens design in free space optics,” Proc. SPIE 5284, 365–368 (2004).

1993 (1)

M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
[Crossref]

Amagai, J.

H. Kiuchi, T. Kawanishi, M. Yamada, T. Sakamoto, M. Tsuchiya, J. Amagai, and M. Izutsu, “High extinction ratio Mach-Zehnder modulator applied to a highly stable optical signal generator,” IEEE Trans. Microw. Theory Tech. 55(9), 1964–1972 (2007).
[Crossref]

Chang, G.-K.

Chang, H. Y.

Chen, B. R.

Chen, C. Y.

Cheng, L.

M. Zhu, L. Zhang, J. Wang, L. Cheng, C. Liu, and G.-K. Chang, “Radio-over-fiber access architecture for integrated broadband wireless services,” IEEE/OSA. J. Lightwave Technol. 31(23), 3614–3620 (2013).
[Crossref]

Chiang, S. C.

Cho, S. H.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, B. W. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

Chu, C. A.

Dong, Z.

Huang, H. T.

Izutsu, M.

H. Kiuchi, T. Kawanishi, M. Yamada, T. Sakamoto, M. Tsuchiya, J. Amagai, and M. Izutsu, “High extinction ratio Mach-Zehnder modulator applied to a highly stable optical signal generator,” IEEE Trans. Microw. Theory Tech. 55(9), 1964–1972 (2007).
[Crossref]

Jeong, G.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, B. W. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

Jhang, T. W.

Jian, S.

Kawanishi, T.

H. Kiuchi, T. Kawanishi, M. Yamada, T. Sakamoto, M. Tsuchiya, J. Amagai, and M. Izutsu, “High extinction ratio Mach-Zehnder modulator applied to a highly stable optical signal generator,” IEEE Trans. Microw. Theory Tech. 55(9), 1964–1972 (2007).
[Crossref]

Kim, B. W.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, B. W. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

W. Lee, M. Y. Park, S. H. Cho, J. Lee, B. W. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

Kiuchi, H.

H. Kiuchi, T. Kawanishi, M. Yamada, T. Sakamoto, M. Tsuchiya, J. Amagai, and M. Izutsu, “High extinction ratio Mach-Zehnder modulator applied to a highly stable optical signal generator,” IEEE Trans. Microw. Theory Tech. 55(9), 1964–1972 (2007).
[Crossref]

Lawrence, M.

M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
[Crossref]

Lee, J.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, B. W. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

Lee, W.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, B. W. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

Li, C. Y.

Li, M.

W. Lu, Z. Zhang, X. Yu, and M. Li, “Transmitting and receiving lens design in free space optics,” Proc. SPIE 5284, 365–368 (2004).

Lin, C. H.

Lin, C. T.

Lin, C. Y.

Lin, H. H.

C. Y. Li, H. H. Lu, C. Y. Lin, C. A. Chu, B. R. Chen, H. H. Lin, and C. J. Wu, “Fiber-wireless and fiber-IVLLC convergences based on MZM-OEO-based BLS,” IEEE Photonics J. 8(2), 7902810 (2016).
[Crossref]

Lin, Y. P.

Liu, C.

M. Zhu, L. Zhang, J. Wang, L. Cheng, C. Liu, and G.-K. Chang, “Radio-over-fiber access architecture for integrated broadband wireless services,” IEEE/OSA. J. Lightwave Technol. 31(23), 3614–3620 (2013).
[Crossref]

Liu, J.

Lu, H. H.

Lu, T. C.

Lu, W.

W. Lu, Z. Zhang, X. Yu, and M. Li, “Transmitting and receiving lens design in free space optics,” Proc. SPIE 5284, 365–368 (2004).

Mochii, T.

Pan, S.

Z. Tang and S. Pan, “A full-duplex radio-over-fiber link based on a dual-polarization Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 28(8), 852–855 (2016).
[Crossref]

Park, M. Y.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, B. W. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

Peng, P. C.

Ruan, S. S.

Sakamoto, T.

H. Kiuchi, T. Kawanishi, M. Yamada, T. Sakamoto, M. Tsuchiya, J. Amagai, and M. Izutsu, “High extinction ratio Mach-Zehnder modulator applied to a highly stable optical signal generator,” IEEE Trans. Microw. Theory Tech. 55(9), 1964–1972 (2007).
[Crossref]

Shiva, A.

Su, T.

Tang, Z.

Z. Tang and S. Pan, “A full-duplex radio-over-fiber link based on a dual-polarization Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 28(8), 852–855 (2016).
[Crossref]

Tsuchiya, M.

H. Kiuchi, T. Kawanishi, M. Yamada, T. Sakamoto, M. Tsuchiya, J. Amagai, and M. Izutsu, “High extinction ratio Mach-Zehnder modulator applied to a highly stable optical signal generator,” IEEE Trans. Microw. Theory Tech. 55(9), 1964–1972 (2007).
[Crossref]

Wang, J.

Wang, M.

Wang, X.

Wu, B.

Wu, C. J.

H. H. Lu, C. Y. Li, T. C. Lu, C. J. Wu, C. A. Chu, A. Shiva, and T. Mochii, “Bidirectional fiber-wireless and fiber-VLLC transmission system based on an OEO-based BLS and a RSOA,” Opt. Lett. 41(3), 476–479 (2016).
[Crossref] [PubMed]

C. Y. Li, H. H. Lu, C. Y. Lin, C. A. Chu, B. R. Chen, H. H. Lin, and C. J. Wu, “Fiber-wireless and fiber-IVLLC convergences based on MZM-OEO-based BLS,” IEEE Photonics J. 8(2), 7902810 (2016).
[Crossref]

Wu, K. H.

Wu, P. Y.

Xu, M.

Yamada, M.

H. Kiuchi, T. Kawanishi, M. Yamada, T. Sakamoto, M. Tsuchiya, J. Amagai, and M. Izutsu, “High extinction ratio Mach-Zehnder modulator applied to a highly stable optical signal generator,” IEEE Trans. Microw. Theory Tech. 55(9), 1964–1972 (2007).
[Crossref]

Yan, F.

Yu, J.

Yu, X.

W. Lu, Z. Zhang, X. Yu, and M. Li, “Transmitting and receiving lens design in free space optics,” Proc. SPIE 5284, 365–368 (2004).

Zeng, W. S.

Zhang, L.

M. Zhu, L. Zhang, J. Wang, L. Cheng, C. Liu, and G.-K. Chang, “Radio-over-fiber access architecture for integrated broadband wireless services,” IEEE/OSA. J. Lightwave Technol. 31(23), 3614–3620 (2013).
[Crossref]

Zhang, Z.

W. Lu, Z. Zhang, X. Yu, and M. Li, “Transmitting and receiving lens design in free space optics,” Proc. SPIE 5284, 365–368 (2004).

Zheng, J.

Zhu, M.

Zhu, N.

IEEE Photonics J. (1)

C. Y. Li, H. H. Lu, C. Y. Lin, C. A. Chu, B. R. Chen, H. H. Lin, and C. J. Wu, “Fiber-wireless and fiber-IVLLC convergences based on MZM-OEO-based BLS,” IEEE Photonics J. 8(2), 7902810 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Z. Tang and S. Pan, “A full-duplex radio-over-fiber link based on a dual-polarization Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 28(8), 852–855 (2016).
[Crossref]

W. Lee, M. Y. Park, S. H. Cho, J. Lee, B. W. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

H. Kiuchi, T. Kawanishi, M. Yamada, T. Sakamoto, M. Tsuchiya, J. Amagai, and M. Izutsu, “High extinction ratio Mach-Zehnder modulator applied to a highly stable optical signal generator,” IEEE Trans. Microw. Theory Tech. 55(9), 1964–1972 (2007).
[Crossref]

IEEE/OSA. J. Lightwave Technol. (1)

M. Zhu, L. Zhang, J. Wang, L. Cheng, C. Liu, and G.-K. Chang, “Radio-over-fiber access architecture for integrated broadband wireless services,” IEEE/OSA. J. Lightwave Technol. 31(23), 3614–3620 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Proc. SPIE (1)

W. Lu, Z. Zhang, X. Yu, and M. Li, “Transmitting and receiving lens design in free space optics,” Proc. SPIE 5284, 365–368 (2004).

Rep. Prog. Phys. (1)

M. Lawrence, “Lithium niobate integrated optics,” Rep. Prog. Phys. 56(3), 363–429 (1993).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The configuration of the proposed bidirectional fiber-wireless and fiber-IVLLC integrated systems based on polarization-orthogonal modulation scheme.

Fig. 2
Fig. 2

A 50-m FSO link with a pair of doublet lenses (doublet lens1 and doublet lens2).

Fig. 3
Fig. 3

The measured CNR/CSO/CTB values under NTSC channel number (CH2-78).

Fig. 4
Fig. 4

The measured BER curves of the 10 Gbps/30 GHz MW data signals for BTB and over 40-km SMF as well as 10-m RF wireless transport scenarios.

Fig. 5
Fig. 5

The measured BER curves of the 10 Gbps/45 GHz MMW data signals for BTB and over 40-km SMF as well as 10-m RF wireless transport scenarios.

Fig. 6
Fig. 6

The measured BER curves of the 10 Gbps/60 GHz MMW data signals for BTB and over 40-km SMF as well as 50-m free-space transport scenarios.

Fig. 7
Fig. 7

The measured BER curves of the 5-Gbps data stream for BTB and over 40-km SMF as well as 50-m free-space transport scenarios.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E(t)= E o e j ω o t [sinθ+cosθ J 1 (β)( e j ω 1 t + e j ω 1 t + e j ω 2 t + e j ω 2 t )+cosθ J 1 (β)( e j2 ω 1 t + e j2 ω 1 t )]
E y (t)= E o e j ω o t [cosθ J 1 (β)( e j ω 1 t + e j ω 1 t + e j ω 2 t + e j ω 2 t )+cosθ J 1 (β)( e j2 ω 1 t + e j2 ω 1 t )]
E x (t)= E o e j ω o t sinθ

Metrics