Abstract

Strong absorption of femtosecond laser pulses in Au nano-colloidal suspensions was used to generate coherent ultrasound signals at 1–20 MHz frequency range. The most efficient ultrasound generation was observed at negative chirp values and was proportional to the pulse duration. Maximization of a dimensionless factor A ≡ αc0tp defined as the ratio of pulse duration tp and the time required for sound at speed c0 to cross the optical energy deposition length (an inverse of the absorption coefficient α) given by 1/(αc0). Chirp controlled pulse duration allows effective enhancement of ultrasound generation at higher frequencies (shorter wavelengths) and is promising for a high spatial resolution acoustic imaging.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser-induced hard X-ray generation in air from a solution flow of Au nano-sphere suspension using an automatic positioning system

Wei-Hung Hsu, Frances Camille P. Masim, Matteo Porta, Mai Thanh Nguyen, Tetsu Yonezawa, Armandas Balčytis, Xuewen Wang, Lorenzo Rosa, Saulius Juodkazis, and Koji Hatanaka
Opt. Express 24(18) 19994-20001 (2016)

Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation

Frances Camille P. Masim, Hao-Li Liu, Matteo Porta, Tetsu Yonezawa, Armandas Balčytis, Saulius Juodkazis, Wei-Hung Hsu, and Koji Hatanaka
Opt. Express 24(13) 14781-14792 (2016)

Photoacoustic signal enhancements from gold nano-colloidal suspensions excited by a pair of time-delayed femtosecond pulses

Frances Camille P. Masim, Wei-Hung Hsu, Hao-Li Liu, Tetsu Yonezawa, Armandas Balčytis, Saulius Juodkazis, and Koji Hatanaka
Opt. Express 25(16) 19497-19507 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quant. Elect. 21, 155–248 (1997).
    [Crossref]
  2. E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Comm. 176, 441–452 (2000).
    [Crossref]
  3. G. Toker, V. Bulatov, T. Kovalchuk, and I. Schechter, “Micro-dynamics of optical breakdown in water induced by nanosecond laser pulses of 1064 nm wavelength,” Chem. Phys. Lett. 471, 244–248 (2009).
    [Crossref]
  4. H. Zhang, Z. Zhou, A. Lin, J. Cheng, L. Yan, J. Si, F. Chen, and X. Hou, “Chirp structure measurement of a supercontinuum pulse based on transient lens effect in tellurite glass,” J. Appl. Phys. Lett. 113, 113106 (2013).
  5. C. Milian, A. Jarnac, Y. Brelet, V. Jukna, A. Houard, A. Mysyrowicz, and A. Couairon, “Effect of input pulse chirp on nonlinear energy deposition and plasma excitation,” J. Opt. Soc. Am. B. 31, 2829–2837 (2014).
    [Crossref]
  6. D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mat. Sci. 76, 154–228 (2016).
    [Crossref]
  7. T. Winkler, C. Sarpe, N. Nelzow, L. H. Lillevang, N. Gotte, B. Zielinski, P. Balling, A. Seftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations,” Appl. Surf. Sci. 374, 235–242 (2015).
    [Crossref]
  8. A. Dazzi, C. B. Prater, Q. Hu, D. B. Chase, J. F. Rabolt, and C. Marcott, “Afm-air: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical charaterization,” Appl. Spectrosc. 66, 1365–1384 (2012).
    [Crossref] [PubMed]
  9. A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107, 124519 (2010).
    [Crossref]
  10. H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, H.-M. Kim, H. Kim, and D. K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging”, ACS Nano. 9(3), 2711–2719 (2015).
    [Crossref] [PubMed]
  11. X. Gao, C. Tao, X. Wang, and X. Liu, “Quantitative imaging of microvasculature in deep tissue with a spectrum-based photo-acoustic microscopy”, Opt. Lett. 4(6), 970–973 (2015).
    [Crossref]
  12. Y. Brelet, A. Jarnac, J. Carbonnel, Y. Andre, A. Mysyrowicz, and A. Houard, “Underwater acoustic signals induced by intense ultrashort laser pulse”, J. Acoust. Soc. Am. 137(4), 288–292 (2015).
    [Crossref]
  13. G. Langer, K. D. Bouchal, H. Grun, P. Burgholzer, and T Berer, “Two-photon absorption-induced photoacoustic imaging of Rhodamine B dyed polyethylene spheres using femtosecond laser"”, Opt. Express 21(19), 22410–22422 (2013).
    [Crossref] [PubMed]
  14. A. Houard, Y. Brelet, A. Jarnac, J. Carbonnel, A. Mysyrowicz, C. Milian, A. Couarion, R. Guillermin, and J. P. Sessaego, “Propagation of intense femtosecond laser pulse in water and acoustic waves generation”, in Conference on Lasers and Electro-Optics (Optical Society of America, 2014) paper STh1E.8.
  15. F. C. P. Masim, H.-L. Liu, M. Porta, T. Yonezawa, A. Balčytis, S. Juodkazis, W.-H. Hsu, and K. Hatanaka, “Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation,” Opt. Express 24(13), 14781–14792 (2016).
    [Crossref]
  16. P. J. S. V. Capel, E. Peronne, and J. I. Dijkhuis, “Nonlinear ultrafast acoustics at the nanoscale,” Ultrasonics 56, 136–151 (2015).
  17. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Physics Reports 441, 47–189 (2007).
    [Crossref]
  18. K. Hatanaka, T. Ida, H. Ono, S. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard x-ray generation from liquid target when irradiated by femtosecond laser pulses,” Opt. Express 16(17), 12650–12657 (2008).
    [Crossref] [PubMed]
  19. Y. Yamaoka, Y. Harada, M. Sakakura, T. Minamikawa, S. Nishino, S. Maehara, S. Hamano, H. Tanaka, and T. Takamatsu, “Photoacoustic microscopy using ultra-short pulses with two different pulse durations,” Opt. Express 22(14), 17063–17072 (2014).
    [Crossref] [PubMed]
  20. B. Song, A. Fiorino, E. Meyhofer, and P. Redyy, “Near-field radiative thermal transport: From theory to experiment,” AIP Advances 5, 053503 (2015).
    [Crossref]
  21. V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nature Photonics 5, 110–116 (2011).
    [Crossref] [PubMed]
  22. Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emalianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 9(18), 8867–8878 (2013).
  23. T. A. El-Brossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of gold nanoparticles studied by photoacoustic techniques,” Eur. Phys. J. Special Topics 153, 361–364 (2008).
    [Crossref]
  24. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon resonance oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B. 103, 8410–8426 (1999).
    [Crossref]
  25. Y. Yamaoka and T. Takamatsu, “Enhancement of multiphoton excitation-induced photoacoustic signals by using gold nanoparticles surrounded by fluorescent dyes,” Proc. of SPIE 7177, 71772 (2012).
    [Crossref]
  26. J.-W. Liaw, S.-W. Tsai, H. H. Lin, T.-C. Yen, and B.-R. Chen, “Wavelength-dependent Faraday-Tyndall effect on laser-induced microbubble in gold colloid”, J. Quant. Spectro. Rad. Trans. 113, 2234–2242 (2012).
    [Crossref]
  27. S.-Y. Yu, S.-W. Tsai, Y.-J. Chen, and J.-W. Liaw, “Pulsed laser induced microbubble in gold nanorod colloid”, Microelec. Eng. 138, 102–106 (2015).
    [Crossref]
  28. C. Tarapacki, C. Kumaradas, and R. Karshafian, “Enhancing laser-thermal therapy using ultrasound-microbubbles and gold nanorods of in vitro cells,” Ultrasonics 53, 793–798 (2013).
    [Crossref] [PubMed]
  29. J. Baumgart, L. Humbert, E. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials33 (2012).
    [Crossref]
  30. R. J. Zemp, R. Bitton, M. L. Li, k. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Optics 12, 010501 (2007).
    [Crossref]
  31. H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express 14, 9317 (2006).
    [Crossref] [PubMed]
  32. W. Song, W. Zheng, R. Liu, H. Huang, X. Gong, S. Yang, and L. Song, “Reflection mode in vivo photoacoustic microscopy with subwavelength lateral resolution,” Biomed. Opt. Express 5, 4235 (2014).
    [Crossref]
  33. H.-W. Yang, H.-L. Liu, M.-L. Li, I.-W. Hsi, C. T. Fan, C.-Y. Huang, Y.-J. Lu, M.-Y. Hua, H.-Y. Chou, J.-W Liaw, C.-C. Ma, and K.-C. Wei, “Magnetic gold nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy”, Biomater. 34, 5651–5660 (2013).
    [Crossref]
  34. N. I. Koroteev and I. L. Shumay, Physics of High Power Laser Radiation (NaukaMoscow, 1991).
  35. N. Linz, S. Freidank, X.-X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B 91, 134114 (2015).
    [Crossref]
  36. G. Fibich and A. L. Gaeta, “Critical power of self-focusing in buld media and in hollow waveguides,” Opt. Lett. 25, 335–337 (2000).
    [Crossref]
  37. R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Topics in Applied Physics (Springer, 2009).
    [Crossref]
  38. S. I. Kudryashov, V. D. Zvorykin, A. A. Ionin, V. Mizeikis, S. Juodkazis, and H. Misawa, “Acoustic monitoring of microplasma formation and filamentation of tightly focused femtosecond laser pulses in silica glass,” Appl. Phys. Lett. 92, 101916 (2008).
    [Crossref]
  39. K. Hatanaka, M. Porta, F. C. P. Masim, W. H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, and S. Juodkazis, “Efficient X-ray generation from gold colloidal solutions”, https://arxiv.org/abs/1604.07541 .
  40. R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

2016 (2)

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mat. Sci. 76, 154–228 (2016).
[Crossref]

F. C. P. Masim, H.-L. Liu, M. Porta, T. Yonezawa, A. Balčytis, S. Juodkazis, W.-H. Hsu, and K. Hatanaka, “Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation,” Opt. Express 24(13), 14781–14792 (2016).
[Crossref]

2015 (8)

S.-Y. Yu, S.-W. Tsai, Y.-J. Chen, and J.-W. Liaw, “Pulsed laser induced microbubble in gold nanorod colloid”, Microelec. Eng. 138, 102–106 (2015).
[Crossref]

N. Linz, S. Freidank, X.-X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B 91, 134114 (2015).
[Crossref]

T. Winkler, C. Sarpe, N. Nelzow, L. H. Lillevang, N. Gotte, B. Zielinski, P. Balling, A. Seftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations,” Appl. Surf. Sci. 374, 235–242 (2015).
[Crossref]

B. Song, A. Fiorino, E. Meyhofer, and P. Redyy, “Near-field radiative thermal transport: From theory to experiment,” AIP Advances 5, 053503 (2015).
[Crossref]

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, H.-M. Kim, H. Kim, and D. K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging”, ACS Nano. 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

X. Gao, C. Tao, X. Wang, and X. Liu, “Quantitative imaging of microvasculature in deep tissue with a spectrum-based photo-acoustic microscopy”, Opt. Lett. 4(6), 970–973 (2015).
[Crossref]

Y. Brelet, A. Jarnac, J. Carbonnel, Y. Andre, A. Mysyrowicz, and A. Houard, “Underwater acoustic signals induced by intense ultrashort laser pulse”, J. Acoust. Soc. Am. 137(4), 288–292 (2015).
[Crossref]

P. J. S. V. Capel, E. Peronne, and J. I. Dijkhuis, “Nonlinear ultrafast acoustics at the nanoscale,” Ultrasonics 56, 136–151 (2015).

2014 (3)

2013 (6)

G. Langer, K. D. Bouchal, H. Grun, P. Burgholzer, and T Berer, “Two-photon absorption-induced photoacoustic imaging of Rhodamine B dyed polyethylene spheres using femtosecond laser"”, Opt. Express 21(19), 22410–22422 (2013).
[Crossref] [PubMed]

H.-W. Yang, H.-L. Liu, M.-L. Li, I.-W. Hsi, C. T. Fan, C.-Y. Huang, Y.-J. Lu, M.-Y. Hua, H.-Y. Chou, J.-W Liaw, C.-C. Ma, and K.-C. Wei, “Magnetic gold nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy”, Biomater. 34, 5651–5660 (2013).
[Crossref]

C. Tarapacki, C. Kumaradas, and R. Karshafian, “Enhancing laser-thermal therapy using ultrasound-microbubbles and gold nanorods of in vitro cells,” Ultrasonics 53, 793–798 (2013).
[Crossref] [PubMed]

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

H. Zhang, Z. Zhou, A. Lin, J. Cheng, L. Yan, J. Si, F. Chen, and X. Hou, “Chirp structure measurement of a supercontinuum pulse based on transient lens effect in tellurite glass,” J. Appl. Phys. Lett. 113, 113106 (2013).

Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emalianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 9(18), 8867–8878 (2013).

2012 (3)

Y. Yamaoka and T. Takamatsu, “Enhancement of multiphoton excitation-induced photoacoustic signals by using gold nanoparticles surrounded by fluorescent dyes,” Proc. of SPIE 7177, 71772 (2012).
[Crossref]

J.-W. Liaw, S.-W. Tsai, H. H. Lin, T.-C. Yen, and B.-R. Chen, “Wavelength-dependent Faraday-Tyndall effect on laser-induced microbubble in gold colloid”, J. Quant. Spectro. Rad. Trans. 113, 2234–2242 (2012).
[Crossref]

A. Dazzi, C. B. Prater, Q. Hu, D. B. Chase, J. F. Rabolt, and C. Marcott, “Afm-air: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical charaterization,” Appl. Spectrosc. 66, 1365–1384 (2012).
[Crossref] [PubMed]

2011 (1)

V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nature Photonics 5, 110–116 (2011).
[Crossref] [PubMed]

2010 (1)

A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107, 124519 (2010).
[Crossref]

2009 (1)

G. Toker, V. Bulatov, T. Kovalchuk, and I. Schechter, “Micro-dynamics of optical breakdown in water induced by nanosecond laser pulses of 1064 nm wavelength,” Chem. Phys. Lett. 471, 244–248 (2009).
[Crossref]

2008 (3)

T. A. El-Brossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of gold nanoparticles studied by photoacoustic techniques,” Eur. Phys. J. Special Topics 153, 361–364 (2008).
[Crossref]

K. Hatanaka, T. Ida, H. Ono, S. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard x-ray generation from liquid target when irradiated by femtosecond laser pulses,” Opt. Express 16(17), 12650–12657 (2008).
[Crossref] [PubMed]

S. I. Kudryashov, V. D. Zvorykin, A. A. Ionin, V. Mizeikis, S. Juodkazis, and H. Misawa, “Acoustic monitoring of microplasma formation and filamentation of tightly focused femtosecond laser pulses in silica glass,” Appl. Phys. Lett. 92, 101916 (2008).
[Crossref]

2007 (2)

R. J. Zemp, R. Bitton, M. L. Li, k. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Optics 12, 010501 (2007).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Physics Reports 441, 47–189 (2007).
[Crossref]

2006 (1)

2000 (2)

G. Fibich and A. L. Gaeta, “Critical power of self-focusing in buld media and in hollow waveguides,” Opt. Lett. 25, 335–337 (2000).
[Crossref]

E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Comm. 176, 441–452 (2000).
[Crossref]

1999 (1)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon resonance oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B. 103, 8410–8426 (1999).
[Crossref]

1997 (1)

K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quant. Elect. 21, 155–248 (1997).
[Crossref]

Abdallah, S.

T. A. El-Brossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of gold nanoparticles studied by photoacoustic techniques,” Eur. Phys. J. Special Topics 153, 361–364 (2008).
[Crossref]

Abdallah, T.

T. A. El-Brossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of gold nanoparticles studied by photoacoustic techniques,” Eur. Phys. J. Special Topics 153, 361–364 (2008).
[Crossref]

Abraham, E.

E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Comm. 176, 441–452 (2000).
[Crossref]

Andre, Y.

Y. Brelet, A. Jarnac, J. Carbonnel, Y. Andre, A. Mysyrowicz, and A. Houard, “Underwater acoustic signals induced by intense ultrashort laser pulse”, J. Acoust. Soc. Am. 137(4), 288–292 (2015).
[Crossref]

Balcytis, A.

Balling, P.

T. Winkler, C. Sarpe, N. Nelzow, L. H. Lillevang, N. Gotte, B. Zielinski, P. Balling, A. Seftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations,” Appl. Surf. Sci. 374, 235–242 (2015).
[Crossref]

Baumert, T.

T. Winkler, C. Sarpe, N. Nelzow, L. H. Lillevang, N. Gotte, B. Zielinski, P. Balling, A. Seftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations,” Appl. Surf. Sci. 374, 235–242 (2015).
[Crossref]

Baumgart, J.

J. Baumgart, L. Humbert, E. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials33 (2012).
[Crossref]

Berer, T

Bitton, R.

R. J. Zemp, R. Bitton, M. L. Li, k. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Optics 12, 010501 (2007).
[Crossref]

Blandin, P.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Bouchal, K. D.

Boulais, E.

J. Baumgart, L. Humbert, E. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials33 (2012).
[Crossref]

Boyd, R. W.

R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Topics in Applied Physics (Springer, 2009).
[Crossref]

Brelet, Y.

Y. Brelet, A. Jarnac, J. Carbonnel, Y. Andre, A. Mysyrowicz, and A. Houard, “Underwater acoustic signals induced by intense ultrashort laser pulse”, J. Acoust. Soc. Am. 137(4), 288–292 (2015).
[Crossref]

C. Milian, A. Jarnac, Y. Brelet, V. Jukna, A. Houard, A. Mysyrowicz, and A. Couairon, “Effect of input pulse chirp on nonlinear energy deposition and plasma excitation,” J. Opt. Soc. Am. B. 31, 2829–2837 (2014).
[Crossref]

A. Houard, Y. Brelet, A. Jarnac, J. Carbonnel, A. Mysyrowicz, C. Milian, A. Couarion, R. Guillermin, and J. P. Sessaego, “Propagation of intense femtosecond laser pulse in water and acoustic waves generation”, in Conference on Lasers and Electro-Optics (Optical Society of America, 2014) paper STh1E.8.

Bulatov, V.

G. Toker, V. Bulatov, T. Kovalchuk, and I. Schechter, “Micro-dynamics of optical breakdown in water induced by nanosecond laser pulses of 1064 nm wavelength,” Chem. Phys. Lett. 471, 244–248 (2009).
[Crossref]

Burgholzer, P.

Capel, P. J. S. V.

P. J. S. V. Capel, E. Peronne, and J. I. Dijkhuis, “Nonlinear ultrafast acoustics at the nanoscale,” Ultrasonics 56, 136–151 (2015).

Carbonnel, J.

Y. Brelet, A. Jarnac, J. Carbonnel, Y. Andre, A. Mysyrowicz, and A. Houard, “Underwater acoustic signals induced by intense ultrashort laser pulse”, J. Acoust. Soc. Am. 137(4), 288–292 (2015).
[Crossref]

A. Houard, Y. Brelet, A. Jarnac, J. Carbonnel, A. Mysyrowicz, C. Milian, A. Couarion, R. Guillermin, and J. P. Sessaego, “Propagation of intense femtosecond laser pulse in water and acoustic waves generation”, in Conference on Lasers and Electro-Optics (Optical Society of America, 2014) paper STh1E.8.

Carminati, R.

A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107, 124519 (2010).
[Crossref]

Chang, J.-H.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, H.-M. Kim, H. Kim, and D. K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging”, ACS Nano. 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Chase, D. B.

Chen, B.-R.

J.-W. Liaw, S.-W. Tsai, H. H. Lin, T.-C. Yen, and B.-R. Chen, “Wavelength-dependent Faraday-Tyndall effect on laser-induced microbubble in gold colloid”, J. Quant. Spectro. Rad. Trans. 113, 2234–2242 (2012).
[Crossref]

Chen, F.

H. Zhang, Z. Zhou, A. Lin, J. Cheng, L. Yan, J. Si, F. Chen, and X. Hou, “Chirp structure measurement of a supercontinuum pulse based on transient lens effect in tellurite glass,” J. Appl. Phys. Lett. 113, 113106 (2013).

Chen, Y. S.

Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emalianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 9(18), 8867–8878 (2013).

Chen, Y.-J.

S.-Y. Yu, S.-W. Tsai, Y.-J. Chen, and J.-W. Liaw, “Pulsed laser induced microbubble in gold nanorod colloid”, Microelec. Eng. 138, 102–106 (2015).
[Crossref]

Cheng, J.

H. Zhang, Z. Zhou, A. Lin, J. Cheng, L. Yan, J. Si, F. Chen, and X. Hou, “Chirp structure measurement of a supercontinuum pulse based on transient lens effect in tellurite glass,” J. Appl. Phys. Lett. 113, 113106 (2013).

Chon, J. W. M.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Chou, H.-Y.

H.-W. Yang, H.-L. Liu, M.-L. Li, I.-W. Hsi, C. T. Fan, C.-Y. Huang, Y.-J. Lu, M.-Y. Hua, H.-Y. Chou, J.-W Liaw, C.-C. Ma, and K.-C. Wei, “Magnetic gold nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy”, Biomater. 34, 5651–5660 (2013).
[Crossref]

Clayton, A. H. A.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Couairon, A.

C. Milian, A. Jarnac, Y. Brelet, V. Jukna, A. Houard, A. Mysyrowicz, and A. Couairon, “Effect of input pulse chirp on nonlinear energy deposition and plasma excitation,” J. Opt. Soc. Am. B. 31, 2829–2837 (2014).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Physics Reports 441, 47–189 (2007).
[Crossref]

Couarion, A.

A. Houard, Y. Brelet, A. Jarnac, J. Carbonnel, A. Mysyrowicz, C. Milian, A. Couarion, R. Guillermin, and J. P. Sessaego, “Propagation of intense femtosecond laser pulse in water and acoustic waves generation”, in Conference on Lasers and Electro-Optics (Optical Society of America, 2014) paper STh1E.8.

Dazzi, A.

Dijkhuis, J. I.

P. J. S. V. Capel, E. Peronne, and J. I. Dijkhuis, “Nonlinear ultrafast acoustics at the nanoscale,” Ultrasonics 56, 136–151 (2015).

Easawi, K.

T. A. El-Brossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of gold nanoparticles studied by photoacoustic techniques,” Eur. Phys. J. Special Topics 153, 361–364 (2008).
[Crossref]

El-Brossy, T. A.

T. A. El-Brossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of gold nanoparticles studied by photoacoustic techniques,” Eur. Phys. J. Special Topics 153, 361–364 (2008).
[Crossref]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon resonance oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B. 103, 8410–8426 (1999).
[Crossref]

Emalianov, S.

Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emalianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 9(18), 8867–8878 (2013).

Fan, C. T.

H.-W. Yang, H.-L. Liu, M.-L. Li, I.-W. Hsi, C. T. Fan, C.-Y. Huang, Y.-J. Lu, M.-Y. Hua, H.-Y. Chou, J.-W Liaw, C.-C. Ma, and K.-C. Wei, “Magnetic gold nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy”, Biomater. 34, 5651–5660 (2013).
[Crossref]

Fibich, G.

Fiorino, A.

B. Song, A. Fiorino, E. Meyhofer, and P. Redyy, “Near-field radiative thermal transport: From theory to experiment,” AIP Advances 5, 053503 (2015).
[Crossref]

Freidank, S.

N. Linz, S. Freidank, X.-X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B 91, 134114 (2015).
[Crossref]

Frey, W.

Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emalianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 9(18), 8867–8878 (2013).

Fukumura, H.

Gaeta, A. L.

Gao, X.

X. Gao, C. Tao, X. Wang, and X. Liu, “Quantitative imaging of microvasculature in deep tissue with a spectrum-based photo-acoustic microscopy”, Opt. Lett. 4(6), 970–973 (2015).
[Crossref]

Glotin, F.

A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107, 124519 (2010).
[Crossref]

Gong, X.

Gotte, N.

T. Winkler, C. Sarpe, N. Nelzow, L. H. Lillevang, N. Gotte, B. Zielinski, P. Balling, A. Seftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations,” Appl. Surf. Sci. 374, 235–242 (2015).
[Crossref]

Grun, H.

Guillermin, R.

A. Houard, Y. Brelet, A. Jarnac, J. Carbonnel, A. Mysyrowicz, C. Milian, A. Couarion, R. Guillermin, and J. P. Sessaego, “Propagation of intense femtosecond laser pulse in water and acoustic waves generation”, in Conference on Lasers and Electro-Optics (Optical Society of America, 2014) paper STh1E.8.

Hamano, S.

Hammer, D. X.

K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quant. Elect. 21, 155–248 (1997).
[Crossref]

Harada, Y.

Hartley, J. S.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Hatanaka, K.

Homan, K.

Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emalianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 9(18), 8867–8878 (2013).

Hou, X.

H. Zhang, Z. Zhou, A. Lin, J. Cheng, L. Yan, J. Si, F. Chen, and X. Hou, “Chirp structure measurement of a supercontinuum pulse based on transient lens effect in tellurite glass,” J. Appl. Phys. Lett. 113, 113106 (2013).

Houard, A.

Y. Brelet, A. Jarnac, J. Carbonnel, Y. Andre, A. Mysyrowicz, and A. Houard, “Underwater acoustic signals induced by intense ultrashort laser pulse”, J. Acoust. Soc. Am. 137(4), 288–292 (2015).
[Crossref]

C. Milian, A. Jarnac, Y. Brelet, V. Jukna, A. Houard, A. Mysyrowicz, and A. Couairon, “Effect of input pulse chirp on nonlinear energy deposition and plasma excitation,” J. Opt. Soc. Am. B. 31, 2829–2837 (2014).
[Crossref]

A. Houard, Y. Brelet, A. Jarnac, J. Carbonnel, A. Mysyrowicz, C. Milian, A. Couarion, R. Guillermin, and J. P. Sessaego, “Propagation of intense femtosecond laser pulse in water and acoustic waves generation”, in Conference on Lasers and Electro-Optics (Optical Society of America, 2014) paper STh1E.8.

Hsi, I.-W.

H.-W. Yang, H.-L. Liu, M.-L. Li, I.-W. Hsi, C. T. Fan, C.-Y. Huang, Y.-J. Lu, M.-Y. Hua, H.-Y. Chou, J.-W Liaw, C.-C. Ma, and K.-C. Wei, “Magnetic gold nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy”, Biomater. 34, 5651–5660 (2013).
[Crossref]

Hsu, W.-H.

Hu, Q.

Hua, M.-Y.

H.-W. Yang, H.-L. Liu, M.-L. Li, I.-W. Hsi, C. T. Fan, C.-Y. Huang, Y.-J. Lu, M.-Y. Hua, H.-Y. Chou, J.-W Liaw, C.-C. Ma, and K.-C. Wei, “Magnetic gold nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy”, Biomater. 34, 5651–5660 (2013).
[Crossref]

Huang, C.-Y.

H.-W. Yang, H.-L. Liu, M.-L. Li, I.-W. Hsi, C. T. Fan, C.-Y. Huang, Y.-J. Lu, M.-Y. Hua, H.-Y. Chou, J.-W Liaw, C.-C. Ma, and K.-C. Wei, “Magnetic gold nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy”, Biomater. 34, 5651–5660 (2013).
[Crossref]

Huang, H.

Humbert, L.

J. Baumgart, L. Humbert, E. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials33 (2012).
[Crossref]

Ida, T.

Ionin, A. A.

S. I. Kudryashov, V. D. Zvorykin, A. A. Ionin, V. Mizeikis, S. Juodkazis, and H. Misawa, “Acoustic monitoring of microplasma formation and filamentation of tightly focused femtosecond laser pulses in silica glass,” Appl. Phys. Lett. 92, 101916 (2008).
[Crossref]

Jarnac, A.

Y. Brelet, A. Jarnac, J. Carbonnel, Y. Andre, A. Mysyrowicz, and A. Houard, “Underwater acoustic signals induced by intense ultrashort laser pulse”, J. Acoust. Soc. Am. 137(4), 288–292 (2015).
[Crossref]

C. Milian, A. Jarnac, Y. Brelet, V. Jukna, A. Houard, A. Mysyrowicz, and A. Couairon, “Effect of input pulse chirp on nonlinear energy deposition and plasma excitation,” J. Opt. Soc. Am. B. 31, 2829–2837 (2014).
[Crossref]

A. Houard, Y. Brelet, A. Jarnac, J. Carbonnel, A. Mysyrowicz, C. Milian, A. Couarion, R. Guillermin, and J. P. Sessaego, “Propagation of intense femtosecond laser pulse in water and acoustic waves generation”, in Conference on Lasers and Electro-Optics (Optical Society of America, 2014) paper STh1E.8.

Jukna, V.

C. Milian, A. Jarnac, Y. Brelet, V. Jukna, A. Houard, A. Mysyrowicz, and A. Couairon, “Effect of input pulse chirp on nonlinear energy deposition and plasma excitation,” J. Opt. Soc. Am. B. 31, 2829–2837 (2014).
[Crossref]

Juodkazis, S.

F. C. P. Masim, H.-L. Liu, M. Porta, T. Yonezawa, A. Balčytis, S. Juodkazis, W.-H. Hsu, and K. Hatanaka, “Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation,” Opt. Express 24(13), 14781–14792 (2016).
[Crossref]

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

K. Hatanaka, T. Ida, H. Ono, S. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard x-ray generation from liquid target when irradiated by femtosecond laser pulses,” Opt. Express 16(17), 12650–12657 (2008).
[Crossref] [PubMed]

S. I. Kudryashov, V. D. Zvorykin, A. A. Ionin, V. Mizeikis, S. Juodkazis, and H. Misawa, “Acoustic monitoring of microplasma formation and filamentation of tightly focused femtosecond laser pulses in silica glass,” Appl. Phys. Lett. 92, 101916 (2008).
[Crossref]

Kabashin, A.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Karshafian, R.

C. Tarapacki, C. Kumaradas, and R. Karshafian, “Enhancing laser-thermal therapy using ultrasound-microbubbles and gold nanorods of in vitro cells,” Ultrasonics 53, 793–798 (2013).
[Crossref] [PubMed]

Kennedy, K.

K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quant. Elect. 21, 155–248 (1997).
[Crossref]

Kim, H.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, H.-M. Kim, H. Kim, and D. K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging”, ACS Nano. 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, H.-M. Kim, H. Kim, and D. K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging”, ACS Nano. 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Kim, H.-M.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, H.-M. Kim, H. Kim, and D. K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging”, ACS Nano. 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Kim, S.

Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emalianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 9(18), 8867–8878 (2013).

Koroteev, N. I.

N. I. Koroteev and I. L. Shumay, Physics of High Power Laser Radiation (NaukaMoscow, 1991).

Kovalchuk, T.

G. Toker, V. Bulatov, T. Kovalchuk, and I. Schechter, “Micro-dynamics of optical breakdown in water induced by nanosecond laser pulses of 1064 nm wavelength,” Chem. Phys. Lett. 471, 244–248 (2009).
[Crossref]

Kruizinga, P.

Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emalianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 9(18), 8867–8878 (2013).

Kubiliute, R.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Kudryashov, S. I.

S. I. Kudryashov, V. D. Zvorykin, A. A. Ionin, V. Mizeikis, S. Juodkazis, and H. Misawa, “Acoustic monitoring of microplasma formation and filamentation of tightly focused femtosecond laser pulses in silica glass,” Appl. Phys. Lett. 92, 101916 (2008).
[Crossref]

Kumar, D.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, H.-M. Kim, H. Kim, and D. K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging”, ACS Nano. 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Kumaradas, C.

C. Tarapacki, C. Kumaradas, and R. Karshafian, “Enhancing laser-thermal therapy using ultrasound-microbubbles and gold nanorods of in vitro cells,” Ultrasonics 53, 793–798 (2013).
[Crossref] [PubMed]

Lachaine, R.

J. Baumgart, L. Humbert, E. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials33 (2012).
[Crossref]

Lajevardipour, A.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Langer, G.

Lebrun, J. J.

J. Baumgart, L. Humbert, E. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials33 (2012).
[Crossref]

Li, M. L.

R. J. Zemp, R. Bitton, M. L. Li, k. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Optics 12, 010501 (2007).
[Crossref]

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express 14, 9317 (2006).
[Crossref] [PubMed]

Li, M.-L.

H.-W. Yang, H.-L. Liu, M.-L. Li, I.-W. Hsi, C. T. Fan, C.-Y. Huang, Y.-J. Lu, M.-Y. Hua, H.-Y. Chou, J.-W Liaw, C.-C. Ma, and K.-C. Wei, “Magnetic gold nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy”, Biomater. 34, 5651–5660 (2013).
[Crossref]

Liang, X.-X.

N. Linz, S. Freidank, X.-X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B 91, 134114 (2015).
[Crossref]

Liaw, J.-W

H.-W. Yang, H.-L. Liu, M.-L. Li, I.-W. Hsi, C. T. Fan, C.-Y. Huang, Y.-J. Lu, M.-Y. Hua, H.-Y. Chou, J.-W Liaw, C.-C. Ma, and K.-C. Wei, “Magnetic gold nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy”, Biomater. 34, 5651–5660 (2013).
[Crossref]

Liaw, J.-W.

S.-Y. Yu, S.-W. Tsai, Y.-J. Chen, and J.-W. Liaw, “Pulsed laser induced microbubble in gold nanorod colloid”, Microelec. Eng. 138, 102–106 (2015).
[Crossref]

J.-W. Liaw, S.-W. Tsai, H. H. Lin, T.-C. Yen, and B.-R. Chen, “Wavelength-dependent Faraday-Tyndall effect on laser-induced microbubble in gold colloid”, J. Quant. Spectro. Rad. Trans. 113, 2234–2242 (2012).
[Crossref]

Lillevang, L. H.

T. Winkler, C. Sarpe, N. Nelzow, L. H. Lillevang, N. Gotte, B. Zielinski, P. Balling, A. Seftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations,” Appl. Surf. Sci. 374, 235–242 (2015).
[Crossref]

Lim, D. K.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, H.-M. Kim, H. Kim, and D. K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging”, ACS Nano. 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Lin, A.

H. Zhang, Z. Zhou, A. Lin, J. Cheng, L. Yan, J. Si, F. Chen, and X. Hou, “Chirp structure measurement of a supercontinuum pulse based on transient lens effect in tellurite glass,” J. Appl. Phys. Lett. 113, 113106 (2013).

Lin, H. H.

J.-W. Liaw, S.-W. Tsai, H. H. Lin, T.-C. Yen, and B.-R. Chen, “Wavelength-dependent Faraday-Tyndall effect on laser-induced microbubble in gold colloid”, J. Quant. Spectro. Rad. Trans. 113, 2234–2242 (2012).
[Crossref]

Link, S.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon resonance oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B. 103, 8410–8426 (1999).
[Crossref]

Linz, N.

N. Linz, S. Freidank, X.-X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B 91, 134114 (2015).
[Crossref]

Liu, H.-L.

F. C. P. Masim, H.-L. Liu, M. Porta, T. Yonezawa, A. Balčytis, S. Juodkazis, W.-H. Hsu, and K. Hatanaka, “Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation,” Opt. Express 24(13), 14781–14792 (2016).
[Crossref]

H.-W. Yang, H.-L. Liu, M.-L. Li, I.-W. Hsi, C. T. Fan, C.-Y. Huang, Y.-J. Lu, M.-Y. Hua, H.-Y. Chou, J.-W Liaw, C.-C. Ma, and K.-C. Wei, “Magnetic gold nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy”, Biomater. 34, 5651–5660 (2013).
[Crossref]

Liu, R.

Liu, X.

X. Gao, C. Tao, X. Wang, and X. Liu, “Quantitative imaging of microvasculature in deep tissue with a spectrum-based photo-acoustic microscopy”, Opt. Lett. 4(6), 970–973 (2015).
[Crossref]

Lu, Y.-J.

H.-W. Yang, H.-L. Liu, M.-L. Li, I.-W. Hsi, C. T. Fan, C.-Y. Huang, Y.-J. Lu, M.-Y. Hua, H.-Y. Chou, J.-W Liaw, C.-C. Ma, and K.-C. Wei, “Magnetic gold nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy”, Biomater. 34, 5651–5660 (2013).
[Crossref]

Lukishova, S. G.

R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Topics in Applied Physics (Springer, 2009).
[Crossref]

Ma, C.-C.

H.-W. Yang, H.-L. Liu, M.-L. Li, I.-W. Hsi, C. T. Fan, C.-Y. Huang, Y.-J. Lu, M.-Y. Hua, H.-Y. Chou, J.-W Liaw, C.-C. Ma, and K.-C. Wei, “Magnetic gold nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy”, Biomater. 34, 5651–5660 (2013).
[Crossref]

Maehara, S.

Marcott, C.

Masim, F. C. P.

Maslov, K.

Matsumoto, H.

E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Comm. 176, 441–452 (2000).
[Crossref]

Matsushima, S.

Maximova, K.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Meunier, M.

J. Baumgart, L. Humbert, E. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials33 (2012).
[Crossref]

Meyhofer, E.

B. Song, A. Fiorino, E. Meyhofer, and P. Redyy, “Near-field radiative thermal transport: From theory to experiment,” AIP Advances 5, 053503 (2015).
[Crossref]

Milian, C.

C. Milian, A. Jarnac, Y. Brelet, V. Jukna, A. Houard, A. Mysyrowicz, and A. Couairon, “Effect of input pulse chirp on nonlinear energy deposition and plasma excitation,” J. Opt. Soc. Am. B. 31, 2829–2837 (2014).
[Crossref]

A. Houard, Y. Brelet, A. Jarnac, J. Carbonnel, A. Mysyrowicz, C. Milian, A. Couarion, R. Guillermin, and J. P. Sessaego, “Propagation of intense femtosecond laser pulse in water and acoustic waves generation”, in Conference on Lasers and Electro-Optics (Optical Society of America, 2014) paper STh1E.8.

Minamikawa, T.

Minoshima, K.

E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Comm. 176, 441–452 (2000).
[Crossref]

Misawa, H.

S. I. Kudryashov, V. D. Zvorykin, A. A. Ionin, V. Mizeikis, S. Juodkazis, and H. Misawa, “Acoustic monitoring of microplasma formation and filamentation of tightly focused femtosecond laser pulses in silica glass,” Appl. Phys. Lett. 92, 101916 (2008).
[Crossref]

K. Hatanaka, T. Ida, H. Ono, S. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard x-ray generation from liquid target when irradiated by femtosecond laser pulses,” Opt. Express 16(17), 12650–12657 (2008).
[Crossref] [PubMed]

Mizeikis, V.

S. I. Kudryashov, V. D. Zvorykin, A. A. Ionin, V. Mizeikis, S. Juodkazis, and H. Misawa, “Acoustic monitoring of microplasma formation and filamentation of tightly focused femtosecond laser pulses in silica glass,” Appl. Phys. Lett. 92, 101916 (2008).
[Crossref]

Mohamed, M. B.

T. A. El-Brossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of gold nanoparticles studied by photoacoustic techniques,” Eur. Phys. J. Special Topics 153, 361–364 (2008).
[Crossref]

Mohsin, A. S. M.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Moon, H.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, H.-M. Kim, H. Kim, and D. K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging”, ACS Nano. 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Mysyrowicz, A.

Y. Brelet, A. Jarnac, J. Carbonnel, Y. Andre, A. Mysyrowicz, and A. Houard, “Underwater acoustic signals induced by intense ultrashort laser pulse”, J. Acoust. Soc. Am. 137(4), 288–292 (2015).
[Crossref]

C. Milian, A. Jarnac, Y. Brelet, V. Jukna, A. Houard, A. Mysyrowicz, and A. Couairon, “Effect of input pulse chirp on nonlinear energy deposition and plasma excitation,” J. Opt. Soc. Am. B. 31, 2829–2837 (2014).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Physics Reports 441, 47–189 (2007).
[Crossref]

A. Houard, Y. Brelet, A. Jarnac, J. Carbonnel, A. Mysyrowicz, C. Milian, A. Couarion, R. Guillermin, and J. P. Sessaego, “Propagation of intense femtosecond laser pulse in water and acoustic waves generation”, in Conference on Lasers and Electro-Optics (Optical Society of America, 2014) paper STh1E.8.

Negm, S.

T. A. El-Brossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of gold nanoparticles studied by photoacoustic techniques,” Eur. Phys. J. Special Topics 153, 361–364 (2008).
[Crossref]

Nelzow, N.

T. Winkler, C. Sarpe, N. Nelzow, L. H. Lillevang, N. Gotte, B. Zielinski, P. Balling, A. Seftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations,” Appl. Surf. Sci. 374, 235–242 (2015).
[Crossref]

Nishino, S.

Ono, H.

Peronne, E.

P. J. S. V. Capel, E. Peronne, and J. I. Dijkhuis, “Nonlinear ultrafast acoustics at the nanoscale,” Ultrasonics 56, 136–151 (2015).

Porta, M.

Prater, C. B.

Qiu, J.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mat. Sci. 76, 154–228 (2016).
[Crossref]

Rabolt, J. F.

Redyy, P.

B. Song, A. Fiorino, E. Meyhofer, and P. Redyy, “Near-field radiative thermal transport: From theory to experiment,” AIP Advances 5, 053503 (2015).
[Crossref]

Rockwell, B. A.

K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quant. Elect. 21, 155–248 (1997).
[Crossref]

Rotomskis, R.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Sakakura, M.

Sarpe, C.

T. Winkler, C. Sarpe, N. Nelzow, L. H. Lillevang, N. Gotte, B. Zielinski, P. Balling, A. Seftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations,” Appl. Surf. Sci. 374, 235–242 (2015).
[Crossref]

Schechter, I.

G. Toker, V. Bulatov, T. Kovalchuk, and I. Schechter, “Micro-dynamics of optical breakdown in water induced by nanosecond laser pulses of 1064 nm wavelength,” Chem. Phys. Lett. 471, 244–248 (2009).
[Crossref]

Seftleben, A.

T. Winkler, C. Sarpe, N. Nelzow, L. H. Lillevang, N. Gotte, B. Zielinski, P. Balling, A. Seftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations,” Appl. Surf. Sci. 374, 235–242 (2015).
[Crossref]

Sentis, M.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Sessaego, J. P.

A. Houard, Y. Brelet, A. Jarnac, J. Carbonnel, A. Mysyrowicz, C. Milian, A. Couarion, R. Guillermin, and J. P. Sessaego, “Propagation of intense femtosecond laser pulse in water and acoustic waves generation”, in Conference on Lasers and Electro-Optics (Optical Society of America, 2014) paper STh1E.8.

Sharafudeen, K. N.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mat. Sci. 76, 154–228 (2016).
[Crossref]

Shen, Y. R.

R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Topics in Applied Physics (Springer, 2009).
[Crossref]

Shumay, I. L.

N. I. Koroteev and I. L. Shumay, Physics of High Power Laser Radiation (NaukaMoscow, 1991).

Shung, k. K.

R. J. Zemp, R. Bitton, M. L. Li, k. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Optics 12, 010501 (2007).
[Crossref]

Si, J.

H. Zhang, Z. Zhou, A. Lin, J. Cheng, L. Yan, J. Si, F. Chen, and X. Hou, “Chirp structure measurement of a supercontinuum pulse based on transient lens effect in tellurite glass,” J. Appl. Phys. Lett. 113, 113106 (2013).

Sim, C.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, H.-M. Kim, H. Kim, and D. K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging”, ACS Nano. 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Sokolov, K.

Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emalianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 9(18), 8867–8878 (2013).

Song, B.

B. Song, A. Fiorino, E. Meyhofer, and P. Redyy, “Near-field radiative thermal transport: From theory to experiment,” AIP Advances 5, 053503 (2015).
[Crossref]

Song, L.

Song, W.

Stoddart, P. R.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Stoica, G.

R. J. Zemp, R. Bitton, M. L. Li, k. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Optics 12, 010501 (2007).
[Crossref]

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express 14, 9317 (2006).
[Crossref] [PubMed]

Takamatsu, T.

Y. Yamaoka, Y. Harada, M. Sakakura, T. Minamikawa, S. Nishino, S. Maehara, S. Hamano, H. Tanaka, and T. Takamatsu, “Photoacoustic microscopy using ultra-short pulses with two different pulse durations,” Opt. Express 22(14), 17063–17072 (2014).
[Crossref] [PubMed]

Y. Yamaoka and T. Takamatsu, “Enhancement of multiphoton excitation-induced photoacoustic signals by using gold nanoparticles surrounded by fluorescent dyes,” Proc. of SPIE 7177, 71772 (2012).
[Crossref]

Talaat, H.

T. A. El-Brossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of gold nanoparticles studied by photoacoustic techniques,” Eur. Phys. J. Special Topics 153, 361–364 (2008).
[Crossref]

Tan, D.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mat. Sci. 76, 154–228 (2016).
[Crossref]

Tanaka, H.

Tao, C.

X. Gao, C. Tao, X. Wang, and X. Liu, “Quantitative imaging of microvasculature in deep tissue with a spectrum-based photo-acoustic microscopy”, Opt. Lett. 4(6), 970–973 (2015).
[Crossref]

Tarapacki, C.

C. Tarapacki, C. Kumaradas, and R. Karshafian, “Enhancing laser-thermal therapy using ultrasound-microbubbles and gold nanorods of in vitro cells,” Ultrasonics 53, 793–798 (2013).
[Crossref] [PubMed]

Toker, G.

G. Toker, V. Bulatov, T. Kovalchuk, and I. Schechter, “Micro-dynamics of optical breakdown in water induced by nanosecond laser pulses of 1064 nm wavelength,” Chem. Phys. Lett. 471, 244–248 (2009).
[Crossref]

Trickl, T.

N. Linz, S. Freidank, X.-X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B 91, 134114 (2015).
[Crossref]

Tsai, S.-W.

S.-Y. Yu, S.-W. Tsai, Y.-J. Chen, and J.-W. Liaw, “Pulsed laser induced microbubble in gold nanorod colloid”, Microelec. Eng. 138, 102–106 (2015).
[Crossref]

J.-W. Liaw, S.-W. Tsai, H. H. Lin, T.-C. Yen, and B.-R. Chen, “Wavelength-dependent Faraday-Tyndall effect on laser-induced microbubble in gold colloid”, J. Quant. Spectro. Rad. Trans. 113, 2234–2242 (2012).
[Crossref]

Vogel, A.

N. Linz, S. Freidank, X.-X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B 91, 134114 (2015).
[Crossref]

Vogelmann, H.

N. Linz, S. Freidank, X.-X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B 91, 134114 (2015).
[Crossref]

Wang, L. V.

R. J. Zemp, R. Bitton, M. L. Li, k. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Optics 12, 010501 (2007).
[Crossref]

H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express 14, 9317 (2006).
[Crossref] [PubMed]

Wang, X.

X. Gao, C. Tao, X. Wang, and X. Liu, “Quantitative imaging of microvasculature in deep tissue with a spectrum-based photo-acoustic microscopy”, Opt. Lett. 4(6), 970–973 (2015).
[Crossref]

Wei, K.-C.

H.-W. Yang, H.-L. Liu, M.-L. Li, I.-W. Hsi, C. T. Fan, C.-Y. Huang, Y.-J. Lu, M.-Y. Hua, H.-Y. Chou, J.-W Liaw, C.-C. Ma, and K.-C. Wei, “Magnetic gold nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy”, Biomater. 34, 5651–5660 (2013).
[Crossref]

Winkler, T.

T. Winkler, C. Sarpe, N. Nelzow, L. H. Lillevang, N. Gotte, B. Zielinski, P. Balling, A. Seftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations,” Appl. Surf. Sci. 374, 235–242 (2015).
[Crossref]

Yamaoka, Y.

Y. Yamaoka, Y. Harada, M. Sakakura, T. Minamikawa, S. Nishino, S. Maehara, S. Hamano, H. Tanaka, and T. Takamatsu, “Photoacoustic microscopy using ultra-short pulses with two different pulse durations,” Opt. Express 22(14), 17063–17072 (2014).
[Crossref] [PubMed]

Y. Yamaoka and T. Takamatsu, “Enhancement of multiphoton excitation-induced photoacoustic signals by using gold nanoparticles surrounded by fluorescent dyes,” Proc. of SPIE 7177, 71772 (2012).
[Crossref]

Yan, L.

H. Zhang, Z. Zhou, A. Lin, J. Cheng, L. Yan, J. Si, F. Chen, and X. Hou, “Chirp structure measurement of a supercontinuum pulse based on transient lens effect in tellurite glass,” J. Appl. Phys. Lett. 113, 113106 (2013).

Yang, H.-W.

H.-W. Yang, H.-L. Liu, M.-L. Li, I.-W. Hsi, C. T. Fan, C.-Y. Huang, Y.-J. Lu, M.-Y. Hua, H.-Y. Chou, J.-W Liaw, C.-C. Ma, and K.-C. Wei, “Magnetic gold nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy”, Biomater. 34, 5651–5660 (2013).
[Crossref]

Yang, S.

Yen, T.-C.

J.-W. Liaw, S.-W. Tsai, H. H. Lin, T.-C. Yen, and B.-R. Chen, “Wavelength-dependent Faraday-Tyndall effect on laser-induced microbubble in gold colloid”, J. Quant. Spectro. Rad. Trans. 113, 2234–2242 (2012).
[Crossref]

Yonezawa, T.

Yong, J.

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

Yu, S.-Y.

S.-Y. Yu, S.-W. Tsai, Y.-J. Chen, and J.-W. Liaw, “Pulsed laser induced microbubble in gold nanorod colloid”, Microelec. Eng. 138, 102–106 (2015).
[Crossref]

Yue, Y.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mat. Sci. 76, 154–228 (2016).
[Crossref]

Zemp, R. J.

R. J. Zemp, R. Bitton, M. L. Li, k. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Optics 12, 010501 (2007).
[Crossref]

Zhang, H.

H. Zhang, Z. Zhou, A. Lin, J. Cheng, L. Yan, J. Si, F. Chen, and X. Hou, “Chirp structure measurement of a supercontinuum pulse based on transient lens effect in tellurite glass,” J. Appl. Phys. Lett. 113, 113106 (2013).

Zhang, H. F.

Zharov, V. P.

V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nature Photonics 5, 110–116 (2011).
[Crossref] [PubMed]

Zheng, W.

Zhou, Z.

H. Zhang, Z. Zhou, A. Lin, J. Cheng, L. Yan, J. Si, F. Chen, and X. Hou, “Chirp structure measurement of a supercontinuum pulse based on transient lens effect in tellurite glass,” J. Appl. Phys. Lett. 113, 113106 (2013).

Zielinski, B.

T. Winkler, C. Sarpe, N. Nelzow, L. H. Lillevang, N. Gotte, B. Zielinski, P. Balling, A. Seftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations,” Appl. Surf. Sci. 374, 235–242 (2015).
[Crossref]

Zvorykin, V. D.

S. I. Kudryashov, V. D. Zvorykin, A. A. Ionin, V. Mizeikis, S. Juodkazis, and H. Misawa, “Acoustic monitoring of microplasma formation and filamentation of tightly focused femtosecond laser pulses in silica glass,” Appl. Phys. Lett. 92, 101916 (2008).
[Crossref]

ACS Nano. (1)

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, H.-M. Kim, H. Kim, and D. K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging”, ACS Nano. 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

AIP Advances (1)

B. Song, A. Fiorino, E. Meyhofer, and P. Redyy, “Near-field radiative thermal transport: From theory to experiment,” AIP Advances 5, 053503 (2015).
[Crossref]

Appl. Phys. Lett. (1)

S. I. Kudryashov, V. D. Zvorykin, A. A. Ionin, V. Mizeikis, S. Juodkazis, and H. Misawa, “Acoustic monitoring of microplasma formation and filamentation of tightly focused femtosecond laser pulses in silica glass,” Appl. Phys. Lett. 92, 101916 (2008).
[Crossref]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (1)

T. Winkler, C. Sarpe, N. Nelzow, L. H. Lillevang, N. Gotte, B. Zielinski, P. Balling, A. Seftleben, and T. Baumert, “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations,” Appl. Surf. Sci. 374, 235–242 (2015).
[Crossref]

Biomater. (1)

H.-W. Yang, H.-L. Liu, M.-L. Li, I.-W. Hsi, C. T. Fan, C.-Y. Huang, Y.-J. Lu, M.-Y. Hua, H.-Y. Chou, J.-W Liaw, C.-C. Ma, and K.-C. Wei, “Magnetic gold nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy”, Biomater. 34, 5651–5660 (2013).
[Crossref]

Biomed. Opt. Express (1)

Chem. Phys. Lett. (1)

G. Toker, V. Bulatov, T. Kovalchuk, and I. Schechter, “Micro-dynamics of optical breakdown in water induced by nanosecond laser pulses of 1064 nm wavelength,” Chem. Phys. Lett. 471, 244–248 (2009).
[Crossref]

Eur. Phys. J. Special Topics (1)

T. A. El-Brossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of gold nanoparticles studied by photoacoustic techniques,” Eur. Phys. J. Special Topics 153, 361–364 (2008).
[Crossref]

Int. J. Nanomed. (1)

R. Kubiliūtė, K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

J. Acoust. Soc. Am. (1)

Y. Brelet, A. Jarnac, J. Carbonnel, Y. Andre, A. Mysyrowicz, and A. Houard, “Underwater acoustic signals induced by intense ultrashort laser pulse”, J. Acoust. Soc. Am. 137(4), 288–292 (2015).
[Crossref]

J. Appl. Phys. (1)

A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107, 124519 (2010).
[Crossref]

J. Appl. Phys. Lett. (1)

H. Zhang, Z. Zhou, A. Lin, J. Cheng, L. Yan, J. Si, F. Chen, and X. Hou, “Chirp structure measurement of a supercontinuum pulse based on transient lens effect in tellurite glass,” J. Appl. Phys. Lett. 113, 113106 (2013).

J. Biomed. Optics (1)

R. J. Zemp, R. Bitton, M. L. Li, k. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Optics 12, 010501 (2007).
[Crossref]

J. Opt. Soc. Am. B. (1)

C. Milian, A. Jarnac, Y. Brelet, V. Jukna, A. Houard, A. Mysyrowicz, and A. Couairon, “Effect of input pulse chirp on nonlinear energy deposition and plasma excitation,” J. Opt. Soc. Am. B. 31, 2829–2837 (2014).
[Crossref]

J. Phys. Chem. B. (1)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon resonance oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B. 103, 8410–8426 (1999).
[Crossref]

J. Quant. Spectro. Rad. Trans. (1)

J.-W. Liaw, S.-W. Tsai, H. H. Lin, T.-C. Yen, and B.-R. Chen, “Wavelength-dependent Faraday-Tyndall effect on laser-induced microbubble in gold colloid”, J. Quant. Spectro. Rad. Trans. 113, 2234–2242 (2012).
[Crossref]

Microelec. Eng. (1)

S.-Y. Yu, S.-W. Tsai, Y.-J. Chen, and J.-W. Liaw, “Pulsed laser induced microbubble in gold nanorod colloid”, Microelec. Eng. 138, 102–106 (2015).
[Crossref]

Nature Photonics (1)

V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nature Photonics 5, 110–116 (2011).
[Crossref] [PubMed]

Opt. Comm. (1)

E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Comm. 176, 441–452 (2000).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

G. Fibich and A. L. Gaeta, “Critical power of self-focusing in buld media and in hollow waveguides,” Opt. Lett. 25, 335–337 (2000).
[Crossref]

X. Gao, C. Tao, X. Wang, and X. Liu, “Quantitative imaging of microvasculature in deep tissue with a spectrum-based photo-acoustic microscopy”, Opt. Lett. 4(6), 970–973 (2015).
[Crossref]

Phys. Rev. B (1)

N. Linz, S. Freidank, X.-X. Liang, H. Vogelmann, T. Trickl, and A. Vogel, “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state,” Phys. Rev. B 91, 134114 (2015).
[Crossref]

Physics Reports (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Physics Reports 441, 47–189 (2007).
[Crossref]

Proc. of SPIE (1)

Y. Yamaoka and T. Takamatsu, “Enhancement of multiphoton excitation-induced photoacoustic signals by using gold nanoparticles surrounded by fluorescent dyes,” Proc. of SPIE 7177, 71772 (2012).
[Crossref]

Prog. Mat. Sci. (1)

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mat. Sci. 76, 154–228 (2016).
[Crossref]

Prog. Quant. Elect. (1)

K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quant. Elect. 21, 155–248 (1997).
[Crossref]

Ultrasonics (2)

P. J. S. V. Capel, E. Peronne, and J. I. Dijkhuis, “Nonlinear ultrafast acoustics at the nanoscale,” Ultrasonics 56, 136–151 (2015).

C. Tarapacki, C. Kumaradas, and R. Karshafian, “Enhancing laser-thermal therapy using ultrasound-microbubbles and gold nanorods of in vitro cells,” Ultrasonics 53, 793–798 (2013).
[Crossref] [PubMed]

Other (5)

J. Baumgart, L. Humbert, E. Boulais, R. Lachaine, J. J. Lebrun, and M. Meunier, “Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells,” Biomaterials33 (2012).
[Crossref]

N. I. Koroteev and I. L. Shumay, Physics of High Power Laser Radiation (NaukaMoscow, 1991).

R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Topics in Applied Physics (Springer, 2009).
[Crossref]

K. Hatanaka, M. Porta, F. C. P. Masim, W. H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, and S. Juodkazis, “Efficient X-ray generation from gold colloidal solutions”, https://arxiv.org/abs/1604.07541 .

A. Houard, Y. Brelet, A. Jarnac, J. Carbonnel, A. Mysyrowicz, C. Milian, A. Couarion, R. Guillermin, and J. P. Sessaego, “Propagation of intense femtosecond laser pulse in water and acoustic waves generation”, in Conference on Lasers and Electro-Optics (Optical Society of America, 2014) paper STh1E.8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Generation of ultrasound in aqueous solutions of Au nanoparticles with fs-laser pulses. Laser pulses are focused inside the glass tube using 10× numerical aperture NA = 0.28 objective lens. (b) Side-view of the optical image of white light continuum (WLC) in water at the focal region at different pulse energies Ep = 30,100 μJ/pulse at repetition rate of 1 kHz and pulse duration tp ≃ 40 fs; the corresponding power per pulse Pp = 0.75,2.5 GW/pulse. Distance between focal spot and hydrophone was set 1.5 cm in all experiments. Arrows mark pulse propagation direction.

Fig. 2
Fig. 2

Generation of white light continuum (WLC) with positively Φ2 > 0 (a) and negatively Φ2 < 0 (b) chirped ultra-short laser pulses in water. Spectra are plotted as lg(Intensity). Arrows mark trend with increase of pulse duration. Pulse energy was Ep = 100 μJ/pulse.

Fig. 3
Fig. 3

Representative photoacoustic signals in time domain generated by Au nanosphere colloidal suspensions: negatively-chirped pulse (800 fs) (a), transform-limited pulse (40 fs) (b), and positively-chirped pulse (800 fs) (c) at pulse energy of Ep = 100 μJ/pulse.

Fig. 4
Fig. 4

Generation of photoacoustic (PA) signal at different values of positive and negative chirp values in water (a), Au nanosphere (b), and nanorod (c) solutions. Pulse energy was Ep = 100 μJ/pulse. Insets in (b,c) shows a light intensity |E|2 distribution around nanosphere and nanorod for linearly polarized incident field E = 1 at a close to resonant condition (L-mode) for the nanorod (finite difference time domain code FDTD-Lumerical).

Fig. 5
Fig. 5

(a) White light continuum (WLC) spectral width at different pulse durations controlled by chirp. (b) The photoacoustic signal integrated over the range of hydrophone 1 – 20 MHz as a function of pulse duration defined by the GDD, Φ2. Duration of the time broadened pulse at FWHM is defined as t p = t 0 1 + [ 4 ln 2 Φ 2 / t 0 2 ] 2, where t0 = 40 fs is the shortest spectral bandwidth limited pulse duration. Note, the vertical axis of WLC spectra in Figure 2 is logarithmic. Diameter of Au spheres was 20 nm and rods were 35-nm-long and 12-nm-wide. The slope difference between the dashed lines is 1.79 times. Pulse energy was Ep = 100 μJ/pulse.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η = E a c E a b s 4 β 2 ρ 0 c p 2 I 5 × 10 14 ( I / [ W / cm 2 ] ) ,
E a c S | p m a x | 2 ρ 0 c p 2 × 2 t p ,
| p m a x | = 2 p 1 A / ( 1 + A ) [ bar ] ,

Metrics