Abstract

A continuous-wave (CW) interband cascade laser (ICL) based mid-infrared sensor system was demonstrated for simultaneous detection of atmospheric methane (CH4) and ethane (C2H6). A 3.337 µm CW ICL with an emitting wavenumber range of 2996.0−3001.5 cm−1 was used to simultaneously target two absorption lines, C2H6 at 2996.88 cm−1 and CH4 at 2999.06 cm−1, respectively. The sensor performance was first evaluated for single-gas detection by only targeting the absorption line of one gas species. Allan deviations of 11.2 parts per billion in volume (ppbv) for CH4 and 1.86 ppbv for C2H6 with an averaging time of 3.4 s were achieved for the detection of these two gases. Dual-gas detection was realized by using a long-term scan signal to target both CH4 and C2H6 lines. The Allan deviations increased slightly to 17.4 ppbv for CH4 and 2.4 ppbv for C2H6 with an averaging time of 4.6 s due to laser temperature and power drift caused by long-term wavelength scanning. Measurements for both indoor and outdoor concentration changes of CH4 and C2H6 were conducted. The reported single ICL based dual-gas sensor system has the advantages of reduced size and cost compared to two separate sensor systems.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

19 July 2016: Corrections were made to the author listing and author affiliations.


OSA Recommended Articles
Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing

Lei Dong, Frank K. Tittel, Chunguang Li, Nancy P. Sanchez, Hongpeng Wu, Chuantao Zheng, Yajun Yu, Angelo Sampaolo, and Robert J. Griffin
Opt. Express 24(6) A528-A535 (2016)

CW EC-QCL-based sensor for simultaneous detection of H2O, HDO, N2O and CH4 using multi-pass absorption spectroscopy

Yajun Yu, Nancy P. Sanchez, Robert J. Griffin, and Frank K. Tittel
Opt. Express 24(10) 10391-10401 (2016)

Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser

Yingchun Cao, Nancy P. Sanchez, Wenzhe Jiang, Robert J. Griffin, Feng Xie, Lawrence C. Hughes, Chung-en Zah, and Frank K. Tittel
Opt. Express 23(3) 2121-2132 (2015)

References

  • View by:
  • |
  • |
  • |

  1. I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: Attributing atmospheric concentrations to emissions,” Environ. Pollut. 190, 65–74 (2014).
    [Crossref] [PubMed]
  2. F. A. Smith, S. Elliott, D. R. Blake, and F. S. Rowland, “Spatiotemporal variation of methane and other trace hydrocarbon concentrations in the Valley of Mexico,” Environ. Sci. Policy 5(6), 449–461 (2002).
    [Crossref]
  3. I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
    [Crossref]
  4. Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, “Global budget of ethane and regional constraints on U.S. sources,” J. Geophys. Res. 113(D21), D21306 (2008).
    [Crossref]
  5. G. Etiope and P. Ciccioli, “Earth’s degassing: a missing ethane and propane source,” Science 323(5913), 478 (2009).
    [Crossref] [PubMed]
  6. P. Paredi, S. A. Kharitonov, and P. J. Barnes, “Elevation of exhaled ethane concentration in asthma,” Am. J. Respir. Crit. Care Med. 162(4), 1450–1454 (2000).
    [Crossref] [PubMed]
  7. B. K. Puri, B. M. Ross, and I. H. Treasaden, “Increased levels of ethane, a non-invasive, quantitative, direct marker of n-3 lipid peroxidation, in the breath of patients with schizophrenia,” Prog. Neuropsychopharmacol. Biol. Psychiatry 32(3), 858–862 (2008).
    [Crossref] [PubMed]
  8. K. D. Skeldon, L. C. McMillan, C. A. Wyse, S. D. Monk, G. Gibson, C. Patterson, T. France, C. Longbottom, and M. J. Padgett, “Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer,” Respir. Med. 100(2), 300–306 (2006).
    [Crossref] [PubMed]
  9. D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3.,” Opt. Commun. 175(4-6), 461–468 (2000).
    [Crossref] [PubMed]
  10. D. G. Lancaster and J. M. Dawes, “Methane detection with a narrow-band source at 3.4 µm based on a Nd:YAG pump laser and a combination of stimulated Raman scattering and difference frequency mixing,” Appl. Opt. 35(21), 4041–4045 (1996).
    [Crossref] [PubMed]
  11. C. Fischer and M. W. Sigrist, “Trace-gas sensing in the 3.3-μm region using a diode-based difference-frequency laser photoacoustic system,” Appl. Phys. B-Lasers 75(2–3), 305–310 (2002).
    [Crossref]
  12. D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B-Lasers 67(3), 347–350 (1998).
    [Crossref]
  13. K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B-Lasers 4(5), 567–572 (1997).
    [Crossref]
  14. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31(6), 707–717 (1992).
    [Crossref] [PubMed]
  15. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54(2), 197–236 (1998).
    [Crossref]
  16. S. Schilt, L. Thévenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42(33), 6728–6738 (2003).
    [Crossref] [PubMed]
  17. J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
    [Crossref]
  18. J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, ““Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B-Lasers 85(2–3), 391–396 (2006).
    [Crossref]
  19. T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
    [Crossref] [PubMed]
  20. C. Li, L. Dong, C. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detectionby use of a 3.34 m room-temperature CW interband cascade laser,” Sensor. Actuat. Biol. Chem. 232, 188–194 (2016).
  21. L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
    [Crossref]
  22. K. Liu, T. Liu, J. Jiang, G. D. Peng, H. Zhang, D. Jia, Y. Wang, W. Jing, and Y. Zhang, “Investigation of wavelength modulation and wavelength sweep techniques in intracavity fiber laser for gas detection,” J. Lightwave Technol. 29(1), 15–21 (2011).
    [Crossref]
  23. R. Arndt, “Analytical line shapes for Lorenzian signals broadened by modulation,” J. Appl. Phys. 36(8), 2522–2524 (1965).
    [Crossref]
  24. J. Reid and D. Labrie, ““Second harmonic detection with tunable diode lasers-comparison of experiment and theory,” Appl. Phys. B-Lasers 26(3), 203–210 (1981).

2016 (2)

C. Li, L. Dong, C. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detectionby use of a 3.34 m room-temperature CW interband cascade laser,” Sensor. Actuat. Biol. Chem. 232, 188–194 (2016).

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

2014 (3)

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
[Crossref]

I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: Attributing atmospheric concentrations to emissions,” Environ. Pollut. 190, 65–74 (2014).
[Crossref] [PubMed]

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

2011 (1)

2009 (1)

G. Etiope and P. Ciccioli, “Earth’s degassing: a missing ethane and propane source,” Science 323(5913), 478 (2009).
[Crossref] [PubMed]

2008 (2)

B. K. Puri, B. M. Ross, and I. H. Treasaden, “Increased levels of ethane, a non-invasive, quantitative, direct marker of n-3 lipid peroxidation, in the breath of patients with schizophrenia,” Prog. Neuropsychopharmacol. Biol. Psychiatry 32(3), 858–862 (2008).
[Crossref] [PubMed]

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, “Global budget of ethane and regional constraints on U.S. sources,” J. Geophys. Res. 113(D21), D21306 (2008).
[Crossref]

2006 (3)

I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
[Crossref]

K. D. Skeldon, L. C. McMillan, C. A. Wyse, S. D. Monk, G. Gibson, C. Patterson, T. France, C. Longbottom, and M. J. Padgett, “Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer,” Respir. Med. 100(2), 300–306 (2006).
[Crossref] [PubMed]

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, ““Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B-Lasers 85(2–3), 391–396 (2006).
[Crossref]

2003 (1)

2002 (2)

C. Fischer and M. W. Sigrist, “Trace-gas sensing in the 3.3-μm region using a diode-based difference-frequency laser photoacoustic system,” Appl. Phys. B-Lasers 75(2–3), 305–310 (2002).
[Crossref]

F. A. Smith, S. Elliott, D. R. Blake, and F. S. Rowland, “Spatiotemporal variation of methane and other trace hydrocarbon concentrations in the Valley of Mexico,” Environ. Sci. Policy 5(6), 449–461 (2002).
[Crossref]

2000 (2)

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3.,” Opt. Commun. 175(4-6), 461–468 (2000).
[Crossref] [PubMed]

P. Paredi, S. A. Kharitonov, and P. J. Barnes, “Elevation of exhaled ethane concentration in asthma,” Am. J. Respir. Crit. Care Med. 162(4), 1450–1454 (2000).
[Crossref] [PubMed]

1998 (2)

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B-Lasers 67(3), 347–350 (1998).
[Crossref]

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54(2), 197–236 (1998).
[Crossref]

1997 (1)

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B-Lasers 4(5), 567–572 (1997).
[Crossref]

1996 (1)

1992 (1)

1981 (1)

J. Reid and D. Labrie, ““Second harmonic detection with tunable diode lasers-comparison of experiment and theory,” Appl. Phys. B-Lasers 26(3), 203–210 (1981).

1965 (1)

R. Arndt, “Analytical line shapes for Lorenzian signals broadened by modulation,” J. Appl. Phys. 36(8), 2522–2524 (1965).
[Crossref]

Agnese, M.

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

Ajtai, T.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, ““Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B-Lasers 85(2–3), 391–396 (2006).
[Crossref]

Arbore, M.

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B-Lasers 4(5), 567–572 (1997).
[Crossref]

Arndt, R.

R. Arndt, “Analytical line shapes for Lorenzian signals broadened by modulation,” J. Appl. Phys. 36(8), 2522–2524 (1965).
[Crossref]

Bakhirkin, Y. A.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, ““Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B-Lasers 85(2–3), 391–396 (2006).
[Crossref]

Bamberger, I.

I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: Attributing atmospheric concentrations to emissions,” Environ. Pollut. 190, 65–74 (2014).
[Crossref] [PubMed]

Barnes, P. J.

P. Paredi, S. A. Kharitonov, and P. J. Barnes, “Elevation of exhaled ethane concentration in asthma,” Am. J. Respir. Crit. Care Med. 162(4), 1450–1454 (2000).
[Crossref] [PubMed]

Blake, D. R.

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, “Global budget of ethane and regional constraints on U.S. sources,” J. Geophys. Res. 113(D21), D21306 (2008).
[Crossref]

I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
[Crossref]

F. A. Smith, S. Elliott, D. R. Blake, and F. S. Rowland, “Spatiotemporal variation of methane and other trace hydrocarbon concentrations in the Valley of Mexico,” Environ. Sci. Policy 5(6), 449–461 (2002).
[Crossref]

Buchmann, N.

I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: Attributing atmospheric concentrations to emissions,” Environ. Pollut. 190, 65–74 (2014).
[Crossref] [PubMed]

Ciccioli, P.

G. Etiope and P. Ciccioli, “Earth’s degassing: a missing ethane and propane source,” Science 323(5913), 478 (2009).
[Crossref] [PubMed]

Conley, S. A.

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

Curl, R. F.

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B-Lasers 67(3), 347–350 (1998).
[Crossref]

Dawes, J. M.

Dlugokencky, E. J.

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B-Lasers 4(5), 567–572 (1997).
[Crossref]

Dong, L.

C. Li, L. Dong, C. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detectionby use of a 3.34 m room-temperature CW interband cascade laser,” Sensor. Actuat. Biol. Chem. 232, 188–194 (2016).

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

Elliott, S.

F. A. Smith, S. Elliott, D. R. Blake, and F. S. Rowland, “Spatiotemporal variation of methane and other trace hydrocarbon concentrations in the Valley of Mexico,” Environ. Sci. Policy 5(6), 449–461 (2002).
[Crossref]

Etiope, G.

G. Etiope and P. Ciccioli, “Earth’s degassing: a missing ethane and propane source,” Science 323(5913), 478 (2009).
[Crossref] [PubMed]

Eugster, W.

I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: Attributing atmospheric concentrations to emissions,” Environ. Pollut. 190, 65–74 (2014).
[Crossref] [PubMed]

Fejer, M. M.

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B-Lasers 4(5), 567–572 (1997).
[Crossref]

Fischer, C.

C. Fischer and M. W. Sigrist, “Trace-gas sensing in the 3.3-μm region using a diode-based difference-frequency laser photoacoustic system,” Appl. Phys. B-Lasers 75(2–3), 305–310 (2002).
[Crossref]

Fischer, H.

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
[Crossref]

Fischer, M.

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

Floerchinger, C.

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

France, T.

K. D. Skeldon, L. C. McMillan, C. A. Wyse, S. D. Monk, G. Gibson, C. Patterson, T. France, C. Longbottom, and M. J. Padgett, “Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer,” Respir. Med. 100(2), 300–306 (2006).
[Crossref] [PubMed]

Gibson, G.

K. D. Skeldon, L. C. McMillan, C. A. Wyse, S. D. Monk, G. Gibson, C. Patterson, T. France, C. Longbottom, and M. J. Padgett, “Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer,” Respir. Med. 100(2), 300–306 (2006).
[Crossref] [PubMed]

Gluszek, A. K.

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

Griffin, R.

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

Herndon, S. C.

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

Hildebrandt, L.

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

Hill, C. J.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, ““Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B-Lasers 85(2–3), 391–396 (2006).
[Crossref]

Hollberg, L. W.

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B-Lasers 4(5), 567–572 (1997).
[Crossref]

Hudman, R. C.

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, “Global budget of ethane and regional constraints on U.S. sources,” J. Geophys. Res. 113(D21), D21306 (2008).
[Crossref]

Jacob, D. J.

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, “Global budget of ethane and regional constraints on U.S. sources,” J. Geophys. Res. 113(D21), D21306 (2008).
[Crossref]

Jia, D.

Jiang, J.

Jing, W.

Karion, A.

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

Kharitonov, S. A.

P. Paredi, S. A. Kharitonov, and P. J. Barnes, “Elevation of exhaled ethane concentration in asthma,” Am. J. Respir. Crit. Care Med. 162(4), 1450–1454 (2000).
[Crossref] [PubMed]

Koeth, J.

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

Kofler, J.

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

Kolb, C. E.

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

Kort, E. A.

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

Labrie, D.

J. Reid and D. Labrie, ““Second harmonic detection with tunable diode lasers-comparison of experiment and theory,” Appl. Phys. B-Lasers 26(3), 203–210 (1981).

Lancaster, D. G.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3.,” Opt. Commun. 175(4-6), 461–468 (2000).
[Crossref] [PubMed]

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B-Lasers 67(3), 347–350 (1998).
[Crossref]

D. G. Lancaster and J. M. Dawes, “Methane detection with a narrow-band source at 3.4 µm based on a Nd:YAG pump laser and a combination of stimulated Raman scattering and difference frequency mixing,” Appl. Opt. 35(21), 4041–4045 (1996).
[Crossref] [PubMed]

Li, C.

C. Li, L. Dong, C. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detectionby use of a 3.34 m room-temperature CW interband cascade laser,” Sensor. Actuat. Biol. Chem. 232, 188–194 (2016).

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

Li, J.

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
[Crossref]

Limpert, J.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3.,” Opt. Commun. 175(4-6), 461–468 (2000).
[Crossref] [PubMed]

Liu, K.

Liu, T.

Logan, J. A.

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, “Global budget of ethane and regional constraints on U.S. sources,” J. Geophys. Res. 113(D21), D21306 (2008).
[Crossref]

Longbottom, C.

K. D. Skeldon, L. C. McMillan, C. A. Wyse, S. D. Monk, G. Gibson, C. Patterson, T. France, C. Longbottom, and M. J. Padgett, “Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer,” Respir. Med. 100(2), 300–306 (2006).
[Crossref] [PubMed]

McGovern, R. M.

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

McManus, J. B.

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

McMillan, L. C.

K. D. Skeldon, L. C. McMillan, C. A. Wyse, S. D. Monk, G. Gibson, C. Patterson, T. France, C. Longbottom, and M. J. Padgett, “Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer,” Respir. Med. 100(2), 300–306 (2006).
[Crossref] [PubMed]

Meinardi, S.

I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
[Crossref]

Miller, J. H.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, ““Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B-Lasers 85(2–3), 391–396 (2006).
[Crossref]

Monk, S. D.

K. D. Skeldon, L. C. McMillan, C. A. Wyse, S. D. Monk, G. Gibson, C. Patterson, T. France, C. Longbottom, and M. J. Padgett, “Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer,” Respir. Med. 100(2), 300–306 (2006).
[Crossref] [PubMed]

Nähle, L.

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

Nelson, D. D.

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

Neu, W.

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B-Lasers 67(3), 347–350 (1998).
[Crossref]

Padgett, M. J.

K. D. Skeldon, L. C. McMillan, C. A. Wyse, S. D. Monk, G. Gibson, C. Patterson, T. France, C. Longbottom, and M. J. Padgett, “Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer,” Respir. Med. 100(2), 300–306 (2006).
[Crossref] [PubMed]

Parchatka, U.

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
[Crossref]

Paredi, P.

P. Paredi, S. A. Kharitonov, and P. J. Barnes, “Elevation of exhaled ethane concentration in asthma,” Am. J. Respir. Crit. Care Med. 162(4), 1450–1454 (2000).
[Crossref] [PubMed]

Patterson, C.

K. D. Skeldon, L. C. McMillan, C. A. Wyse, S. D. Monk, G. Gibson, C. Patterson, T. France, C. Longbottom, and M. J. Padgett, “Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer,” Respir. Med. 100(2), 300–306 (2006).
[Crossref] [PubMed]

Peng, G. D.

Pétron, G.

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

Petrov, K. P.

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B-Lasers 4(5), 567–572 (1997).
[Crossref]

Puri, B. K.

B. K. Puri, B. M. Ross, and I. H. Treasaden, “Increased levels of ethane, a non-invasive, quantitative, direct marker of n-3 lipid peroxidation, in the breath of patients with schizophrenia,” Prog. Neuropsychopharmacol. Biol. Psychiatry 32(3), 858–862 (2008).
[Crossref] [PubMed]

Reid, J.

J. Reid and D. Labrie, ““Second harmonic detection with tunable diode lasers-comparison of experiment and theory,” Appl. Phys. B-Lasers 26(3), 203–210 (1981).

Richter, D.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3.,” Opt. Commun. 175(4-6), 461–468 (2000).
[Crossref] [PubMed]

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B-Lasers 67(3), 347–350 (1998).
[Crossref]

Robert, P.

Roscioli, J. R.

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

Ross, B. M.

B. K. Puri, B. M. Ross, and I. H. Treasaden, “Increased levels of ethane, a non-invasive, quantitative, direct marker of n-3 lipid peroxidation, in the breath of patients with schizophrenia,” Prog. Neuropsychopharmacol. Biol. Psychiatry 32(3), 858–862 (2008).
[Crossref] [PubMed]

Rowland, F. S.

I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
[Crossref]

F. A. Smith, S. Elliott, D. R. Blake, and F. S. Rowland, “Spatiotemporal variation of methane and other trace hydrocarbon concentrations in the Valley of Mexico,” Environ. Sci. Policy 5(6), 449–461 (2002).
[Crossref]

Sanchez, N. P.

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

Schilt, S.

Sigrist, M. W.

C. Fischer and M. W. Sigrist, “Trace-gas sensing in the 3.3-μm region using a diode-based difference-frequency laser photoacoustic system,” Appl. Phys. B-Lasers 75(2–3), 305–310 (2002).
[Crossref]

Silver, J. A.

Simpson, I. J.

I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
[Crossref]

Skeldon, K. D.

K. D. Skeldon, L. C. McMillan, C. A. Wyse, S. D. Monk, G. Gibson, C. Patterson, T. France, C. Longbottom, and M. J. Padgett, “Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer,” Respir. Med. 100(2), 300–306 (2006).
[Crossref] [PubMed]

Smith, F. A.

F. A. Smith, S. Elliott, D. R. Blake, and F. S. Rowland, “Spatiotemporal variation of methane and other trace hydrocarbon concentrations in the Valley of Mexico,” Environ. Sci. Policy 5(6), 449–461 (2002).
[Crossref]

Stieger, J.

I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: Attributing atmospheric concentrations to emissions,” Environ. Pollut. 190, 65–74 (2014).
[Crossref] [PubMed]

Sweeney, C.

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

Thévenaz, L.

Tittel, F. K.

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

C. Li, L. Dong, C. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detectionby use of a 3.34 m room-temperature CW interband cascade laser,” Sensor. Actuat. Biol. Chem. 232, 188–194 (2016).

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, ““Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B-Lasers 85(2–3), 391–396 (2006).
[Crossref]

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3.,” Opt. Commun. 175(4-6), 461–468 (2000).
[Crossref] [PubMed]

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B-Lasers 67(3), 347–350 (1998).
[Crossref]

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B-Lasers 4(5), 567–572 (1997).
[Crossref]

Treasaden, I. H.

B. K. Puri, B. M. Ross, and I. H. Treasaden, “Increased levels of ethane, a non-invasive, quantitative, direct marker of n-3 lipid peroxidation, in the breath of patients with schizophrenia,” Prog. Neuropsychopharmacol. Biol. Psychiatry 32(3), 858–862 (2008).
[Crossref] [PubMed]

Waltman, S.

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B-Lasers 4(5), 567–572 (1997).
[Crossref]

Wang, Y.

Weidner, R.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3.,” Opt. Commun. 175(4-6), 461–468 (2000).
[Crossref] [PubMed]

Werle, P.

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54(2), 197–236 (1998).
[Crossref]

Wyse, C. A.

K. D. Skeldon, L. C. McMillan, C. A. Wyse, S. D. Monk, G. Gibson, C. Patterson, T. France, C. Longbottom, and M. J. Padgett, “Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer,” Respir. Med. 100(2), 300–306 (2006).
[Crossref] [PubMed]

Xiao, Y.

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, “Global budget of ethane and regional constraints on U.S. sources,” J. Geophys. Res. 113(D21), D21306 (2008).
[Crossref]

Yacovitch, T. I.

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

Yang, R. Q.

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, ““Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B-Lasers 85(2–3), 391–396 (2006).
[Crossref]

Yantosca, R.

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, “Global budget of ethane and regional constraints on U.S. sources,” J. Geophys. Res. 113(D21), D21306 (2008).
[Crossref]

Zahniser, M. S.

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

Zhang, H.

Zhang, Y.

Zheng, C.

C. Li, L. Dong, C. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detectionby use of a 3.34 m room-temperature CW interband cascade laser,” Sensor. Actuat. Biol. Chem. 232, 188–194 (2016).

Am. J. Respir. Crit. Care Med. (1)

P. Paredi, S. A. Kharitonov, and P. J. Barnes, “Elevation of exhaled ethane concentration in asthma,” Am. J. Respir. Crit. Care Med. 162(4), 1450–1454 (2000).
[Crossref] [PubMed]

Anal. Methods (1)

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B-Lasers (5)

J. Reid and D. Labrie, ““Second harmonic detection with tunable diode lasers-comparison of experiment and theory,” Appl. Phys. B-Lasers 26(3), 203–210 (1981).

C. Fischer and M. W. Sigrist, “Trace-gas sensing in the 3.3-μm region using a diode-based difference-frequency laser photoacoustic system,” Appl. Phys. B-Lasers 75(2–3), 305–310 (2002).
[Crossref]

D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B-Lasers 67(3), 347–350 (1998).
[Crossref]

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B-Lasers 4(5), 567–572 (1997).
[Crossref]

J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, and R. Q. Yang, ““Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser,” Appl. Phys. B-Lasers 85(2–3), 391–396 (2006).
[Crossref]

Appl. Phys. Lett. (1)

L. Dong, C. Li, N. P. Sanchez, A. K. Gluszek, R. Griffin, and F. K. Tittel, “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser,” Appl. Phys. Lett. 108(1), 011106 (2016).
[Crossref]

Environ. Pollut. (1)

I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: Attributing atmospheric concentrations to emissions,” Environ. Pollut. 190, 65–74 (2014).
[Crossref] [PubMed]

Environ. Sci. Policy (1)

F. A. Smith, S. Elliott, D. R. Blake, and F. S. Rowland, “Spatiotemporal variation of methane and other trace hydrocarbon concentrations in the Valley of Mexico,” Environ. Sci. Policy 5(6), 449–461 (2002).
[Crossref]

Environ. Sci. Technol. (1)

T. I. Yacovitch, S. C. Herndon, J. R. Roscioli, C. Floerchinger, R. M. McGovern, M. Agnese, G. Pétron, J. Kofler, C. Sweeney, A. Karion, S. A. Conley, E. A. Kort, L. Nähle, M. Fischer, L. Hildebrandt, J. Koeth, J. B. McManus, D. D. Nelson, M. S. Zahniser, and C. E. Kolb, “Demonstration of an Ethane Spectrometer for Methane Source Identification,” Environ. Sci. Technol. 48(14), 8028–8034 (2014).
[Crossref] [PubMed]

Geophys. Res. Lett. (1)

I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
[Crossref]

J. Appl. Phys. (1)

R. Arndt, “Analytical line shapes for Lorenzian signals broadened by modulation,” J. Appl. Phys. 36(8), 2522–2524 (1965).
[Crossref]

J. Geophys. Res. (1)

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, “Global budget of ethane and regional constraints on U.S. sources,” J. Geophys. Res. 113(D21), D21306 (2008).
[Crossref]

J. Lightwave Technol. (1)

Opt. Commun. (1)

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, “Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3.,” Opt. Commun. 175(4-6), 461–468 (2000).
[Crossref] [PubMed]

Prog. Neuropsychopharmacol. Biol. Psychiatry (1)

B. K. Puri, B. M. Ross, and I. H. Treasaden, “Increased levels of ethane, a non-invasive, quantitative, direct marker of n-3 lipid peroxidation, in the breath of patients with schizophrenia,” Prog. Neuropsychopharmacol. Biol. Psychiatry 32(3), 858–862 (2008).
[Crossref] [PubMed]

Respir. Med. (1)

K. D. Skeldon, L. C. McMillan, C. A. Wyse, S. D. Monk, G. Gibson, C. Patterson, T. France, C. Longbottom, and M. J. Padgett, “Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer,” Respir. Med. 100(2), 300–306 (2006).
[Crossref] [PubMed]

Science (1)

G. Etiope and P. Ciccioli, “Earth’s degassing: a missing ethane and propane source,” Science 323(5913), 478 (2009).
[Crossref] [PubMed]

Sensor. Actuat. Biol. Chem. (1)

C. Li, L. Dong, C. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detectionby use of a 3.34 m room-temperature CW interband cascade laser,” Sensor. Actuat. Biol. Chem. 232, 188–194 (2016).

Spectrochim. Acta A (1)

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54(2), 197–236 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic of the dual-gas CH4/C2H6 sensor based on a single CW, TEC ICL. ICL: interband cascade laser; DM: dichroic mirror; M: plane mirror; PM: parabolic mirror; MCT: mercury-cadmium-telluride. SA: signal acquisition; HE: harmonic extraction; SG: signal generation.
Fig. 2
Fig. 2 (a) HITRAN based absorption spectra of C2H6 (10 ppbv), CH4 (2 ppmv), and H2O(2%) in a narrow spectral range from 2996 cm−1 to 3002 cm−1 at a pressure of 100 Torr and an absorption length of 54.6 m. C2H6, CH4, and H2O lines are shown in green, blue and red, respectively. (b) Plot of the ICL emission wavenumber as a function of the ICL drive current at 10 °C.
Fig. 3
Fig. 3 Function diagram of the LabVIEW-based laptop platform, which performs signal generation, signal acquisition and harmonic extraction.
Fig. 4
Fig. 4 Measured amplitude of the 2f signal and the modulation depth as a function of modulation amplitude for a dry 90 ppbv C2H6:N2 mixture and 2.1 ppmv CH4:N2 mixture, where the integration time, τint, of the LabVIEW based lock-in amplifier was 16 ms, and the modulation frequency was 5 kHz.
Fig. 5
Fig. 5 (a) The recorded 2f signal for seven different CH4 concentration levels of 50, 100, 200, 400, 600, 800 and 1000 ppbv. (b) The recorded 2f signal at ten different C2H6 concentration levels of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 ppbv. The integral time of the LabVIEW-based lock-in amplifier was set at 16 ms, and the modulation frequency was 5 kHz.
Fig. 6
Fig. 6 (a) Measured 2f amplitude, max(2f), versus calibration time t for eight CH4 concentration levels of 1000, 800, 600, 400, 200, 100, 50, and 0 ppbv. (b) Experimental data and fitting curve of CH4 concentration versus max(2f). (c) Measured CH4 concentration by passing pure N2 into the MPGC for zero concentration. (d) Allan-Werle deviation plot as a function of averaging time, τ, based on the data shown in Fig. 6(c).
Fig. 7
Fig. 7 (a) Measured 2f amplitude, max(2f), versus calibration time t for eleven C2H6 concentration levels of 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 ppbv. (b) Experimental data and fitting curve of C2H6 concentration versus max(2f). (c) Measured C2H6 concentration by passing pure N2 into the MPGC for ~45 min. (d) Allan-Werle deviation plot as a function of averaging time, τ, based on the data shown in Fig. 7(c).
Fig. 8
Fig. 8 Direct output signal from the MCT detector and demodulated 2f signal by the LabVIEW-based lock-in amplifier with a time constant of ~16 ms, (a) for a CH4/C2H6:N2 mixture with a CH4 concentration of 2.1 ppmv and C2H6 concentration of 0 ppbv, and (b) for a prepared CH4/C2H6:N2 mixture with CH4 concentration of 0 ppmv and C2H6 concentration of 90 ppbv.
Fig. 9
Fig. 9 Measurement results of concentration levels of (a) four CH4 samples (0, 300, 600, 900 ppbv) and (b) four C2H6 samples (0, 30, 60, 90 ppbv). The insets in Fig. 9(a) and 9(b) exhibit the Allan deviation plots obtained from long-term measurements on 0 ppmv CH4 and 0 ppbv C2H6 samples for ~40 min, respectively, using the calibrated dual-gas sensor system.
Fig. 10
Fig. 10 (a) CH4/C2H6:N2 concentration measurements using the dual-gas sensor system described in Section 2 and 4. (b) Detailed illustration of the measured concentration during the 2nd exchange between CH4 and C2H6 streams. (c) Schematic diagram of a CH4/C2H6 mixing setup based on the C2H6 samples by the gas dilution system (GDS) and a standard 2.1 ppmv CH4 sample. FI: flow indicator; PC: pressure controller; MPGC: multipass gas cell.
Fig. 11
Fig. 11 Simultaneously measured concentrations of CH4 and C2H6 in ambient air during ~28 hours period on May 8-9, 2016 inside the Laser Science Laboratory (located in Space Science Technology building, Rice University).
Fig. 12
Fig. 12 (a) Single CW ICL based dual-gas CH4/C2H6 sensor system installed on a laboratory cart. (b) Measurement results of simultaneous CH4 and C2H6 monitoring in the atmosphere for ~67 hours time duration on the Rice University campus.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

C = 68.54 max CH 4 ( 2 f ) 0.0184 , in ppmv
C = 7762 .23 max C 2 H 6 ( 2 f ) 0. 87 , in ppbv
C CH 4 = 91 .87 max CH 4 ( 2 f ) 0.0 312 , in ppmv
C C 2 H 6 = 8022 .29 max C 2 H 6 ( 2 f ) 2 .8989 , in ppbv

Metrics